Safety-Critical Cooperative Target Enclosing Control of Autonomous Surface Vehicles Based on Finite-Time Fuzzy Predictors and Input-to-State Safe High Order Control Barrier Functions
This paper addresses cooperative target enclosing of under-actuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input constraints, in addition to unknown kinetics induced by model nonlinearities, unknown input gains, and external disturbances. A safety-critical coo...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 32; no. 3; pp. 1 - 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6706 1941-0034 |
DOI | 10.1109/TFUZZ.2023.3309706 |
Cover
Abstract | This paper addresses cooperative target enclosing of under-actuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input constraints, in addition to unknown kinetics induced by model nonlinearities, unknown input gains, and external disturbances. A safety-critical cooperative target enclosing control method is proposed for surrounding a maneuvering target vehicle. Specifically, a finite-time fuzzy predictor is presented to learn the unknown kinetics with the integral of historical vehicle data. By using a distributed target estimator to recover the target position, a nominal distributed target enclosing control law is developed to achieve a circumnavigation formation. To avoid collisions between ASVs and obstacles/team-members, input-to-state safe high order control barrier functions are firstly introduced for encoding safety constraints. Based on the safety constraints and input constraints, a quadratic programming problem is formulated, and an optimal safety-critical control law is obtained by using projection neural networks to track the optimal solution. The closed-loop control system is proven to be input-to-state stable via Lyapunov theory. Moreover, the multiple ASV system is proven to be input-to-state safe regardless of high-order relative degree. The salient contributions of the proposed approach lie in finite-time fuzzy learning and collision-free target enclosing control under disturbances. Simulation results validate the effectiveness of the proposed safety-critical model-free control method for cooperatively surrounding a maneuvering target. |
---|---|
AbstractList | This paper addresses cooperative target enclosing of under-actuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input constraints, in addition to unknown kinetics induced by model nonlinearities, unknown input gains, and external disturbances. A safety-critical cooperative target enclosing control method is proposed for surrounding a maneuvering target vehicle. Specifically, a finite-time fuzzy predictor is presented to learn the unknown kinetics with the integral of historical vehicle data. By using a distributed target estimator to recover the target position, a nominal distributed target enclosing control law is developed to achieve a circumnavigation formation. To avoid collisions between ASVs and obstacles/team-members, input-to-state safe high order control barrier functions are firstly introduced for encoding safety constraints. Based on the safety constraints and input constraints, a quadratic programming problem is formulated, and an optimal safety-critical control law is obtained by using projection neural networks to track the optimal solution. The closed-loop control system is proven to be input-to-state stable via Lyapunov theory. Moreover, the multiple ASV system is proven to be input-to-state safe regardless of high-order relative degree. The salient contributions of the proposed approach lie in finite-time fuzzy learning and collision-free target enclosing control under disturbances. Simulation results validate the effectiveness of the proposed safety-critical model-free control method for cooperatively surrounding a maneuvering target. This article addresses cooperative target enclosing of underactuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input constraints in addition to unknown kinetics induced by model nonlinearities, unknown input gains, and external disturbances. A safety-critical cooperative target enclosing control method is proposed for surrounding a maneuvering target vehicle. Specifically, a finite-time fuzzy predictor is presented to learn the unknown kinetics with the integral of historical vehicle data. By using a distributed target estimator to recover the target position, a nominal distributed target enclosing control law is developed to achieve a circumnavigation formation. To avoid collisions between ASVs and obstacles/team members, input-to-state safe high-order control barrier functions are first introduced for encoding safety constraints. Based on the safety constraints and input constraints, a quadratic programming problem is formulated, and an optimal safety-critical control law is obtained by using projection neural networks to track the optimal solution. The closed-loop control system is proven to be input-to-state stable via Lyapunov theory. Moreover, the multiple ASV systems are proven to be input-to-state safe regardless of high-order relative degree. The salient contributions of the proposed approach lie in finite-time fuzzy learning and collision-free target enclosing control under disturbances. Simulation results validate the effectiveness of the proposed safety-critical model-free control method for cooperatively surrounding a maneuvering target. |
Author | Jiang, Yue Peng, Zhouhua Zhang, Fumin Wang, Dan Liu, Lu |
Author_xml | – sequence: 1 givenname: Yue orcidid: 0000-0001-8047-2961 surname: Jiang fullname: Jiang, Yue organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China – sequence: 2 givenname: Zhouhua orcidid: 0000-0003-4468-7281 surname: Peng fullname: Peng, Zhouhua organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China – sequence: 3 givenname: Lu surname: Liu fullname: Liu, Lu organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China – sequence: 4 givenname: Dan orcidid: 0000-0002-4099-6004 surname: Wang fullname: Wang, Dan organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China – sequence: 5 givenname: Fumin orcidid: 0000-0003-0053-4224 surname: Zhang fullname: Zhang, Fumin organization: Chen Kar-Shun Robotics Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China |
BookMark | eNp9UU1P3DAQjSoqFSh_oOrBUs_e2p7ESY6wIoCERKVdOHCJjDNejLL21naQlh_G76uXRajqofJhPB9v3sy8o-LAeYdF8Y2zGees_bnsbu_vZ4IJmAGwtmbyU3HI25JTxqA8yH8mgcoc_1IcxfjEGC8r3hwWrwtlMG3pPNhktRrJ3PsNBpXsM5KlCitM5Nzp0UfrVjnpUvAj8YacTsk7v_ZTJIspGKWR3OGj1SNGcqYiDsQ70llnE9KlXSPpppeXLfkVcLA6-RCJcgO5cpsp0eTpIqmEZDcMubSrR3ITBgwffGcqBJv9bnI6We_i1-KzUWPEk3d7XNx258v5Jb2-ubian15TLVqZKAcjKuBseOAoG2MUYA1gjOBS1jUMOt-gEqiaWmgDpdJSNfnJSiEw_VDDcfFj33cT_O8JY-qf_BRcpuxFCyA5qyvIVWJfpYOPMaDpN8GuVdj2nPU7ffo3ffqdPv27PhnU_APSNh_B7lZWdvw_9PseahHxLy4BJatL-ANww6PS |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_1016_j_jfranklin_2025_107581 crossref_primary_10_1109_TMECH_2024_3392956 crossref_primary_10_1109_TFUZZ_2024_3386849 crossref_primary_10_1016_j_oceaneng_2024_119843 crossref_primary_10_1016_j_oceaneng_2023_116541 crossref_primary_10_1109_TAES_2024_3452050 |
Cites_doi | 10.1016/j.oceaneng.2022.110740 10.3182/20070822-3-za-2920.00076 10.1016/j.automatica.2005.07.001 10.1007/s40815-017-0401-3 10.1109/TNNLS.2018.2868978 10.1109/TAC.2014.2303213 10.1109/TCYB.2020.2974775 10.1109/JOE.2013.2254214 10.1109/72.822511 10.1109/TIE.2020.2978713 10.1109/LCSYS.2020.3005101 10.1049/iet-cta.2015.1246 10.1016/j.automatica.2015.03.007 10.1109/TCYB.2019.2914717 10.1109/TNNLS.2021.3051030 10.2514/1.46287 10.1109/TCYB.2018.2890582 10.1109/TII.2020.3004343 10.1109/TRO.2017.2659727 10.1109/TCYB.2020.3009992 10.1109/LCSYS.2021.3050609 10.1016/S0005-1098(99)00113-2 10.1016/j.automatica.2006.02.013 10.1109/TII.2019.2923664 10.1109/TCST.2017.2763938 10.1109/TAC.2021.3105491 10.1080/00207179.2011.569954 10.1109/TCST.2020.2998798 10.1016/j.automatica.2011.06.020 10.1109/TAC.2016.2638961 10.1109/TAC.2017.2685082 10.1109/81.995659 10.1109/TNNLS.2020.2964017 10.1109/TCST.2019.2931524 10.1109/TFUZZ.2017.2686338 10.1109/TFUZZ.2020.3028907 10.1109/TNNLS.2021.3100147 10.1016/j.ijepes.2022.108741 10.1109/TAC.2017.2725955 10.1109/TNNLS.2021.3093330 10.1109/LCSYS.2020.3005923 10.1109/TSMCB.2008.2007810 10.1504/IJAAC.2022.122596 10.1016/j.asoc.2003.05.001 10.1109/TNNLS.2016.2577342 10.1109/TFUZZ.2021.3087920 10.1162/089976604322860730 10.1109/TCYB.2018.2873904 10.1002/9781119994138 10.1016/j.oceaneng.2010.07.006 10.1109/TNSRE.2005.847353 10.1016/j.oceaneng.2019.106341 10.1007/s40815-020-00989-5 10.1109/TFUZZ.2017.2710950 10.1016/j.automatica.2016.01.056 10.1109/TNNLS.2018.2876685 10.1109/TFUZZ.2020.2981917 10.1109/TFUZZ.2020.2967294 10.1109/TCST.2013.2281211 10.1109/JOE.2014.2300396 10.1109/LCSYS.2018.2853698 10.1016/j.automatica.2004.10.006 10.1109/TAC.2008.919857 10.1109/TSMC.2021.3062077 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TFUZZ.2023.3309706 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 15 |
ExternalDocumentID | 10_1109_TFUZZ_2023_3309706 10234074 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Key R&D Program of China grantid: 2022ZD0119902 – fundername: National Natural Science Foundation of China grantid: 51979020 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities grantid: 3132023508 funderid: 10.13039/501100012226 – fundername: Top-notch Young Talents Program of China grantid: 36261402 – fundername: China Postdoctoral Science Foundation grantid: 2023TQ0013 funderid: 10.13039/501100002858 – fundername: Liaoning Revitalization Talents Program grantid: XLYC2007188 funderid: 10.13039/501100018617 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 5VS AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD H~9 ICLAB IFJZH VH1 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c296t-13f25310db1e68ffa3e733ff2166773dc51852ea872cf34ac6a8a8a65ae30cb73 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Mon Jun 30 04:21:49 EDT 2025 Wed Oct 01 02:37:32 EDT 2025 Thu Apr 24 23:12:04 EDT 2025 Wed Aug 27 02:13:06 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c296t-13f25310db1e68ffa3e733ff2166773dc51852ea872cf34ac6a8a8a65ae30cb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4099-6004 0000-0001-8047-2961 0000-0003-4468-7281 0000-0003-0053-4224 0009-0006-6792-201X |
PQID | 2933610753 |
PQPubID | 85428 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_TFUZZ_2023_3309706 ieee_primary_10234074 proquest_journals_2933610753 crossref_primary_10_1109_TFUZZ_2023_3309706 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref11 ref10 ref54 ref17 ref16 ref19 ref18 Wang (ref55) 1994 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 Khalil (ref52) 2015 ref60 ref62 ref61 |
References_xml | – ident: ref8 doi: 10.1016/j.oceaneng.2022.110740 – ident: ref26 doi: 10.3182/20070822-3-za-2920.00076 – ident: ref58 doi: 10.1016/j.automatica.2005.07.001 – ident: ref3 doi: 10.1007/s40815-017-0401-3 – ident: ref11 doi: 10.1109/TNNLS.2018.2868978 – ident: ref18 doi: 10.1109/TAC.2014.2303213 – ident: ref48 doi: 10.1109/TCYB.2020.2974775 – ident: ref61 doi: 10.1109/JOE.2013.2254214 – ident: ref57 doi: 10.1109/72.822511 – volume-title: Adaptive Fuzzy Systems and Control: Design and Stability Analysis year: 1994 ident: ref55 – ident: ref14 doi: 10.1109/TIE.2020.2978713 – ident: ref33 doi: 10.1109/LCSYS.2020.3005101 – ident: ref21 doi: 10.1049/iet-cta.2015.1246 – ident: ref20 doi: 10.1016/j.automatica.2015.03.007 – ident: ref25 doi: 10.1109/TCYB.2019.2914717 – ident: ref42 doi: 10.1109/TNNLS.2021.3051030 – ident: ref19 doi: 10.2514/1.46287 – ident: ref47 doi: 10.1109/TCYB.2018.2890582 – start-page: 87 volume-title: Nonlinear Control year: 2015 ident: ref52 – ident: ref2 doi: 10.1109/TII.2020.3004343 – ident: ref28 doi: 10.1109/TRO.2017.2659727 – ident: ref40 doi: 10.1109/TCYB.2020.3009992 – ident: ref29 doi: 10.1109/LCSYS.2021.3050609 – ident: ref53 doi: 10.1016/S0005-1098(99)00113-2 – ident: ref54 doi: 10.1016/j.automatica.2006.02.013 – ident: ref39 doi: 10.1109/TII.2019.2923664 – ident: ref24 doi: 10.1109/TCST.2017.2763938 – ident: ref30 doi: 10.1109/TAC.2021.3105491 – ident: ref59 doi: 10.1080/00207179.2011.569954 – ident: ref9 doi: 10.1109/TCST.2020.2998798 – ident: ref64 doi: 10.1016/j.automatica.2011.06.020 – ident: ref27 doi: 10.1109/TAC.2016.2638961 – ident: ref37 doi: 10.1109/TAC.2017.2685082 – ident: ref62 doi: 10.1109/81.995659 – ident: ref36 doi: 10.1109/TNNLS.2020.2964017 – ident: ref13 doi: 10.1109/TCST.2019.2931524 – ident: ref34 doi: 10.1109/TFUZZ.2017.2686338 – ident: ref7 doi: 10.1109/TFUZZ.2020.3028907 – ident: ref10 doi: 10.1109/TNNLS.2021.3100147 – ident: ref41 doi: 10.1016/j.ijepes.2022.108741 – ident: ref56 doi: 10.1109/TAC.2017.2725955 – ident: ref6 doi: 10.1109/TNNLS.2021.3093330 – ident: ref31 doi: 10.1109/LCSYS.2020.3005923 – ident: ref60 doi: 10.1109/TSMCB.2008.2007810 – ident: ref50 doi: 10.1504/IJAAC.2022.122596 – ident: ref45 doi: 10.1016/j.asoc.2003.05.001 – ident: ref51 doi: 10.1109/TNNLS.2016.2577342 – ident: ref15 doi: 10.1109/TFUZZ.2021.3087920 – ident: ref63 doi: 10.1162/089976604322860730 – ident: ref23 doi: 10.1109/TCYB.2018.2873904 – ident: ref1 doi: 10.1002/9781119994138 – ident: ref12 doi: 10.1016/j.oceaneng.2010.07.006 – ident: ref66 doi: 10.1109/TNSRE.2005.847353 – ident: ref35 doi: 10.1016/j.oceaneng.2019.106341 – ident: ref38 doi: 10.1007/s40815-020-00989-5 – ident: ref49 doi: 10.1109/TFUZZ.2017.2710950 – ident: ref22 doi: 10.1016/j.automatica.2016.01.056 – ident: ref5 doi: 10.1109/TNNLS.2018.2876685 – ident: ref46 doi: 10.1109/TFUZZ.2020.2981917 – ident: ref4 doi: 10.1109/TFUZZ.2020.2967294 – ident: ref44 doi: 10.1109/TCST.2013.2281211 – ident: ref16 doi: 10.1109/JOE.2014.2300396 – ident: ref32 doi: 10.1109/LCSYS.2018.2853698 – ident: ref65 doi: 10.1016/j.automatica.2004.10.006 – ident: ref17 doi: 10.1109/TAC.2008.919857 – ident: ref43 doi: 10.1109/TSMC.2021.3062077 |
SSID | ssj0014518 |
Score | 2.5058692 |
Snippet | This paper addresses cooperative target enclosing of under-actuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input... This article addresses cooperative target enclosing of underactuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Autonomous surface vehicle Barriers Closed loops Collision avoidance control barrier function Control methods Control systems Control theory Cooperative control cooperative target enclosing Disturbances Feedback control fuzzy predictor Kinetic theory Kinetics Maneuvering targets Neural networks Quadratic programming Safety Safety critical safety-critical control Sea surface Surface vehicles Uncertainty Vehicle dynamics Vehicles |
Title | Safety-Critical Cooperative Target Enclosing Control of Autonomous Surface Vehicles Based on Finite-Time Fuzzy Predictors and Input-to-State Safe High Order Control Barrier Functions |
URI | https://ieeexplore.ieee.org/document/10234074 https://www.proquest.com/docview/2933610753 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELVoT3CgUIpYKGgO3JDTJE7s5NiuGhUkClJ3UdVLZDu2qKjiajc5dD-M78PjJKsVCIRyySF2RvLYM-OZN4-Q9zottVcVS5uGcepNgKLeCubUFMrGeapLKxHg_PmSXyyzT9f59QhWD1gYY0woPjMRvoZcfuN0j1dlJ9hmwAcg2R7ZE6IcwFrblEGWJwPujTPKRcwnhExcniyq5c1NhEThkQ_fS4H0RjtWKNCq_HEWBwNTHZDLSbShruRH1Hcq0pvfujb-t-zPyNPR1YTTQTeek0emPSQHE40DjLv6kDzZ6Un4gvy8ktZ0D3TiQIC5c_dm6A8Oi1A3DuetvnN4yQDzodIdnIXTvkOAhOvXcNWvrNQGvpnvoeoOzrytbMC1UN2ij0sReAJVv9k8wNcVpoqQ8wdk28DH1ktHO0eDFwwoDGAtCnzBHqHb_53JFVLt-TnaAMxYH5Fldb6YX9CR3IF69eAdTZhN_f6PG5UYXlgrmRGMWZsmnAvBGp0jrNvIQqTaskxqLgv_8FwaFmsl2Euy37rWvCKQl6xQXOkktnkmlSrKzBR4v8kxJ9xkM5JMi13rsfM5EnDc1SECiss6KEiNClKPCjIjH7Zj7oe-H__8-ghXfOfLYbFn5HhSqno8G9a1d7CYd1p9nPj6L8PekMd-9mwodTsm-92qN2-979Opd0HnfwHzxQI_ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELWgPUAPtJSiLpQyB27IaRInTnJsV4220C5I3UVVL5Ht2AJRJdVucuh-GN-Hx0lWKxCoyiUHOx7JE8-MZ948Qj6oMFNWVQwtS8apNQGSWisYU51K48ehyoxAgPPVlE_m0aeb-KYHqzssjNbaFZ9pD19dLr-sVYtXZSfYZsAGINFTsh3bsCLp4FrrpEEUBx3yjTPKE58PGBk_O5nl89tbD6nCPRvAZwkSHG3YIUes8tdp7ExMvkumg3BdZclPr22kp1Z_9G18tPR75EXvbMJppx0vyRNd7ZPdgcgB-v96n-xsdCV8RX5dC6ObBzqwIMC4ru911yEcZq5yHM4rdVfjNQOMu1p3qA2ctg1CJOp2Cdftwgil4Zv-7uru4MxayxLqCvIf6OVShJ5A3q5WD_B1gckiZP0BUZVwUVnpaFNT5wcDCgNYjQJfsEvoer0zsUCyPfuNykEzlgdknp_PxhPa0ztQqyC8oQEzoT0B_FIGmqfGCKYTxowJA86ThJUqRmC3FmkSKsMiobhI7cNjoZmvZMJek62qrvQhgThjqeRSBb6JIyFlmkU6xRtOjlnhMhqRYNjsQvW9z5GC465wMZCfFU5BClSQoleQEfm4nnPfdf747-gD3PGNkd1mj8jRoFRFfzosC-tiMeu22kjxzT-mvSfPJrOry-LyYvr5LXluV4q6wrcjstUsWv3OekKNPHb6_xuh2wWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety-Critical+Cooperative+Target+Enclosing+Control+of+Autonomous+Surface+Vehicles+Based+on+Finite-Time+Fuzzy+Predictors+and+Input-to-State+Safe+High+Order+Control+Barrier+Functions&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Jiang%2C+Yue&rft.au=Peng%2C+Zhouhua&rft.au=Liu%2C+Lu&rft.au=Wang%2C+Dan&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=1063-6706&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTFUZZ.2023.3309706&rft.externalDocID=10234074 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |