Safety-Critical Cooperative Target Enclosing Control of Autonomous Surface Vehicles Based on Finite-Time Fuzzy Predictors and Input-to-State Safe High Order Control Barrier Functions

This paper addresses cooperative target enclosing of under-actuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input constraints, in addition to unknown kinetics induced by model nonlinearities, unknown input gains, and external disturbances. A safety-critical coo...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 32; no. 3; pp. 1 - 15
Main Authors Jiang, Yue, Peng, Zhouhua, Liu, Lu, Wang, Dan, Zhang, Fumin
Format Journal Article
LanguageEnglish
Published New York IEEE 01.03.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2023.3309706

Cover

Abstract This paper addresses cooperative target enclosing of under-actuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input constraints, in addition to unknown kinetics induced by model nonlinearities, unknown input gains, and external disturbances. A safety-critical cooperative target enclosing control method is proposed for surrounding a maneuvering target vehicle. Specifically, a finite-time fuzzy predictor is presented to learn the unknown kinetics with the integral of historical vehicle data. By using a distributed target estimator to recover the target position, a nominal distributed target enclosing control law is developed to achieve a circumnavigation formation. To avoid collisions between ASVs and obstacles/team-members, input-to-state safe high order control barrier functions are firstly introduced for encoding safety constraints. Based on the safety constraints and input constraints, a quadratic programming problem is formulated, and an optimal safety-critical control law is obtained by using projection neural networks to track the optimal solution. The closed-loop control system is proven to be input-to-state stable via Lyapunov theory. Moreover, the multiple ASV system is proven to be input-to-state safe regardless of high-order relative degree. The salient contributions of the proposed approach lie in finite-time fuzzy learning and collision-free target enclosing control under disturbances. Simulation results validate the effectiveness of the proposed safety-critical model-free control method for cooperatively surrounding a maneuvering target.
AbstractList This paper addresses cooperative target enclosing of under-actuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input constraints, in addition to unknown kinetics induced by model nonlinearities, unknown input gains, and external disturbances. A safety-critical cooperative target enclosing control method is proposed for surrounding a maneuvering target vehicle. Specifically, a finite-time fuzzy predictor is presented to learn the unknown kinetics with the integral of historical vehicle data. By using a distributed target estimator to recover the target position, a nominal distributed target enclosing control law is developed to achieve a circumnavigation formation. To avoid collisions between ASVs and obstacles/team-members, input-to-state safe high order control barrier functions are firstly introduced for encoding safety constraints. Based on the safety constraints and input constraints, a quadratic programming problem is formulated, and an optimal safety-critical control law is obtained by using projection neural networks to track the optimal solution. The closed-loop control system is proven to be input-to-state stable via Lyapunov theory. Moreover, the multiple ASV system is proven to be input-to-state safe regardless of high-order relative degree. The salient contributions of the proposed approach lie in finite-time fuzzy learning and collision-free target enclosing control under disturbances. Simulation results validate the effectiveness of the proposed safety-critical model-free control method for cooperatively surrounding a maneuvering target.
This article addresses cooperative target enclosing of underactuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input constraints in addition to unknown kinetics induced by model nonlinearities, unknown input gains, and external disturbances. A safety-critical cooperative target enclosing control method is proposed for surrounding a maneuvering target vehicle. Specifically, a finite-time fuzzy predictor is presented to learn the unknown kinetics with the integral of historical vehicle data. By using a distributed target estimator to recover the target position, a nominal distributed target enclosing control law is developed to achieve a circumnavigation formation. To avoid collisions between ASVs and obstacles/team members, input-to-state safe high-order control barrier functions are first introduced for encoding safety constraints. Based on the safety constraints and input constraints, a quadratic programming problem is formulated, and an optimal safety-critical control law is obtained by using projection neural networks to track the optimal solution. The closed-loop control system is proven to be input-to-state stable via Lyapunov theory. Moreover, the multiple ASV systems are proven to be input-to-state safe regardless of high-order relative degree. The salient contributions of the proposed approach lie in finite-time fuzzy learning and collision-free target enclosing control under disturbances. Simulation results validate the effectiveness of the proposed safety-critical model-free control method for cooperatively surrounding a maneuvering target.
Author Jiang, Yue
Peng, Zhouhua
Zhang, Fumin
Wang, Dan
Liu, Lu
Author_xml – sequence: 1
  givenname: Yue
  orcidid: 0000-0001-8047-2961
  surname: Jiang
  fullname: Jiang, Yue
  organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
– sequence: 2
  givenname: Zhouhua
  orcidid: 0000-0003-4468-7281
  surname: Peng
  fullname: Peng, Zhouhua
  organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
– sequence: 3
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
– sequence: 4
  givenname: Dan
  orcidid: 0000-0002-4099-6004
  surname: Wang
  fullname: Wang, Dan
  organization: School of Marine Electrical Engineering, Dalian Maritime University, Dalian, China
– sequence: 5
  givenname: Fumin
  orcidid: 0000-0003-0053-4224
  surname: Zhang
  fullname: Zhang, Fumin
  organization: Chen Kar-Shun Robotics Institute, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
BookMark eNp9UU1P3DAQjSoqFSh_oOrBUs_e2p7ESY6wIoCERKVdOHCJjDNejLL21naQlh_G76uXRajqofJhPB9v3sy8o-LAeYdF8Y2zGees_bnsbu_vZ4IJmAGwtmbyU3HI25JTxqA8yH8mgcoc_1IcxfjEGC8r3hwWrwtlMG3pPNhktRrJ3PsNBpXsM5KlCitM5Nzp0UfrVjnpUvAj8YacTsk7v_ZTJIspGKWR3OGj1SNGcqYiDsQ70llnE9KlXSPpppeXLfkVcLA6-RCJcgO5cpsp0eTpIqmEZDcMubSrR3ITBgwffGcqBJv9bnI6We_i1-KzUWPEk3d7XNx258v5Jb2-ubian15TLVqZKAcjKuBseOAoG2MUYA1gjOBS1jUMOt-gEqiaWmgDpdJSNfnJSiEw_VDDcfFj33cT_O8JY-qf_BRcpuxFCyA5qyvIVWJfpYOPMaDpN8GuVdj2nPU7ffo3ffqdPv27PhnU_APSNh_B7lZWdvw_9PseahHxLy4BJatL-ANww6PS
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_jfranklin_2025_107581
crossref_primary_10_1109_TMECH_2024_3392956
crossref_primary_10_1109_TFUZZ_2024_3386849
crossref_primary_10_1016_j_oceaneng_2024_119843
crossref_primary_10_1016_j_oceaneng_2023_116541
crossref_primary_10_1109_TAES_2024_3452050
Cites_doi 10.1016/j.oceaneng.2022.110740
10.3182/20070822-3-za-2920.00076
10.1016/j.automatica.2005.07.001
10.1007/s40815-017-0401-3
10.1109/TNNLS.2018.2868978
10.1109/TAC.2014.2303213
10.1109/TCYB.2020.2974775
10.1109/JOE.2013.2254214
10.1109/72.822511
10.1109/TIE.2020.2978713
10.1109/LCSYS.2020.3005101
10.1049/iet-cta.2015.1246
10.1016/j.automatica.2015.03.007
10.1109/TCYB.2019.2914717
10.1109/TNNLS.2021.3051030
10.2514/1.46287
10.1109/TCYB.2018.2890582
10.1109/TII.2020.3004343
10.1109/TRO.2017.2659727
10.1109/TCYB.2020.3009992
10.1109/LCSYS.2021.3050609
10.1016/S0005-1098(99)00113-2
10.1016/j.automatica.2006.02.013
10.1109/TII.2019.2923664
10.1109/TCST.2017.2763938
10.1109/TAC.2021.3105491
10.1080/00207179.2011.569954
10.1109/TCST.2020.2998798
10.1016/j.automatica.2011.06.020
10.1109/TAC.2016.2638961
10.1109/TAC.2017.2685082
10.1109/81.995659
10.1109/TNNLS.2020.2964017
10.1109/TCST.2019.2931524
10.1109/TFUZZ.2017.2686338
10.1109/TFUZZ.2020.3028907
10.1109/TNNLS.2021.3100147
10.1016/j.ijepes.2022.108741
10.1109/TAC.2017.2725955
10.1109/TNNLS.2021.3093330
10.1109/LCSYS.2020.3005923
10.1109/TSMCB.2008.2007810
10.1504/IJAAC.2022.122596
10.1016/j.asoc.2003.05.001
10.1109/TNNLS.2016.2577342
10.1109/TFUZZ.2021.3087920
10.1162/089976604322860730
10.1109/TCYB.2018.2873904
10.1002/9781119994138
10.1016/j.oceaneng.2010.07.006
10.1109/TNSRE.2005.847353
10.1016/j.oceaneng.2019.106341
10.1007/s40815-020-00989-5
10.1109/TFUZZ.2017.2710950
10.1016/j.automatica.2016.01.056
10.1109/TNNLS.2018.2876685
10.1109/TFUZZ.2020.2981917
10.1109/TFUZZ.2020.2967294
10.1109/TCST.2013.2281211
10.1109/JOE.2014.2300396
10.1109/LCSYS.2018.2853698
10.1016/j.automatica.2004.10.006
10.1109/TAC.2008.919857
10.1109/TSMC.2021.3062077
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2023.3309706
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 15
ExternalDocumentID 10_1109_TFUZZ_2023_3309706
10234074
Genre orig-research
GrantInformation_xml – fundername: National Key R&D Program of China
  grantid: 2022ZD0119902
– fundername: National Natural Science Foundation of China
  grantid: 51979020
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 3132023508
  funderid: 10.13039/501100012226
– fundername: Top-notch Young Talents Program of China
  grantid: 36261402
– fundername: China Postdoctoral Science Foundation
  grantid: 2023TQ0013
  funderid: 10.13039/501100002858
– fundername: Liaoning Revitalization Talents Program
  grantid: XLYC2007188
  funderid: 10.13039/501100018617
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
ICLAB
IFJZH
VH1
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c296t-13f25310db1e68ffa3e733ff2166773dc51852ea872cf34ac6a8a8a65ae30cb73
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Mon Jun 30 04:21:49 EDT 2025
Wed Oct 01 02:37:32 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Wed Aug 27 02:13:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c296t-13f25310db1e68ffa3e733ff2166773dc51852ea872cf34ac6a8a8a65ae30cb73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4099-6004
0000-0001-8047-2961
0000-0003-4468-7281
0000-0003-0053-4224
0009-0006-6792-201X
PQID 2933610753
PQPubID 85428
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TFUZZ_2023_3309706
ieee_primary_10234074
proquest_journals_2933610753
crossref_primary_10_1109_TFUZZ_2023_3309706
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref11
ref10
ref54
ref17
ref16
ref19
ref18
Wang (ref55) 1994
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
Khalil (ref52) 2015
ref60
ref62
ref61
References_xml – ident: ref8
  doi: 10.1016/j.oceaneng.2022.110740
– ident: ref26
  doi: 10.3182/20070822-3-za-2920.00076
– ident: ref58
  doi: 10.1016/j.automatica.2005.07.001
– ident: ref3
  doi: 10.1007/s40815-017-0401-3
– ident: ref11
  doi: 10.1109/TNNLS.2018.2868978
– ident: ref18
  doi: 10.1109/TAC.2014.2303213
– ident: ref48
  doi: 10.1109/TCYB.2020.2974775
– ident: ref61
  doi: 10.1109/JOE.2013.2254214
– ident: ref57
  doi: 10.1109/72.822511
– volume-title: Adaptive Fuzzy Systems and Control: Design and Stability Analysis
  year: 1994
  ident: ref55
– ident: ref14
  doi: 10.1109/TIE.2020.2978713
– ident: ref33
  doi: 10.1109/LCSYS.2020.3005101
– ident: ref21
  doi: 10.1049/iet-cta.2015.1246
– ident: ref20
  doi: 10.1016/j.automatica.2015.03.007
– ident: ref25
  doi: 10.1109/TCYB.2019.2914717
– ident: ref42
  doi: 10.1109/TNNLS.2021.3051030
– ident: ref19
  doi: 10.2514/1.46287
– ident: ref47
  doi: 10.1109/TCYB.2018.2890582
– start-page: 87
  volume-title: Nonlinear Control
  year: 2015
  ident: ref52
– ident: ref2
  doi: 10.1109/TII.2020.3004343
– ident: ref28
  doi: 10.1109/TRO.2017.2659727
– ident: ref40
  doi: 10.1109/TCYB.2020.3009992
– ident: ref29
  doi: 10.1109/LCSYS.2021.3050609
– ident: ref53
  doi: 10.1016/S0005-1098(99)00113-2
– ident: ref54
  doi: 10.1016/j.automatica.2006.02.013
– ident: ref39
  doi: 10.1109/TII.2019.2923664
– ident: ref24
  doi: 10.1109/TCST.2017.2763938
– ident: ref30
  doi: 10.1109/TAC.2021.3105491
– ident: ref59
  doi: 10.1080/00207179.2011.569954
– ident: ref9
  doi: 10.1109/TCST.2020.2998798
– ident: ref64
  doi: 10.1016/j.automatica.2011.06.020
– ident: ref27
  doi: 10.1109/TAC.2016.2638961
– ident: ref37
  doi: 10.1109/TAC.2017.2685082
– ident: ref62
  doi: 10.1109/81.995659
– ident: ref36
  doi: 10.1109/TNNLS.2020.2964017
– ident: ref13
  doi: 10.1109/TCST.2019.2931524
– ident: ref34
  doi: 10.1109/TFUZZ.2017.2686338
– ident: ref7
  doi: 10.1109/TFUZZ.2020.3028907
– ident: ref10
  doi: 10.1109/TNNLS.2021.3100147
– ident: ref41
  doi: 10.1016/j.ijepes.2022.108741
– ident: ref56
  doi: 10.1109/TAC.2017.2725955
– ident: ref6
  doi: 10.1109/TNNLS.2021.3093330
– ident: ref31
  doi: 10.1109/LCSYS.2020.3005923
– ident: ref60
  doi: 10.1109/TSMCB.2008.2007810
– ident: ref50
  doi: 10.1504/IJAAC.2022.122596
– ident: ref45
  doi: 10.1016/j.asoc.2003.05.001
– ident: ref51
  doi: 10.1109/TNNLS.2016.2577342
– ident: ref15
  doi: 10.1109/TFUZZ.2021.3087920
– ident: ref63
  doi: 10.1162/089976604322860730
– ident: ref23
  doi: 10.1109/TCYB.2018.2873904
– ident: ref1
  doi: 10.1002/9781119994138
– ident: ref12
  doi: 10.1016/j.oceaneng.2010.07.006
– ident: ref66
  doi: 10.1109/TNSRE.2005.847353
– ident: ref35
  doi: 10.1016/j.oceaneng.2019.106341
– ident: ref38
  doi: 10.1007/s40815-020-00989-5
– ident: ref49
  doi: 10.1109/TFUZZ.2017.2710950
– ident: ref22
  doi: 10.1016/j.automatica.2016.01.056
– ident: ref5
  doi: 10.1109/TNNLS.2018.2876685
– ident: ref46
  doi: 10.1109/TFUZZ.2020.2981917
– ident: ref4
  doi: 10.1109/TFUZZ.2020.2967294
– ident: ref44
  doi: 10.1109/TCST.2013.2281211
– ident: ref16
  doi: 10.1109/JOE.2014.2300396
– ident: ref32
  doi: 10.1109/LCSYS.2018.2853698
– ident: ref65
  doi: 10.1016/j.automatica.2004.10.006
– ident: ref17
  doi: 10.1109/TAC.2008.919857
– ident: ref43
  doi: 10.1109/TSMC.2021.3062077
SSID ssj0014518
Score 2.5058692
Snippet This paper addresses cooperative target enclosing of under-actuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input...
This article addresses cooperative target enclosing of underactuated autonomous surface vehicles (ASVs) subject to obstacles. Each ASV suffers from input...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Autonomous surface vehicle
Barriers
Closed loops
Collision avoidance
control barrier function
Control methods
Control systems
Control theory
Cooperative control
cooperative target enclosing
Disturbances
Feedback control
fuzzy predictor
Kinetic theory
Kinetics
Maneuvering targets
Neural networks
Quadratic programming
Safety
Safety critical
safety-critical control
Sea surface
Surface vehicles
Uncertainty
Vehicle dynamics
Vehicles
Title Safety-Critical Cooperative Target Enclosing Control of Autonomous Surface Vehicles Based on Finite-Time Fuzzy Predictors and Input-to-State Safe High Order Control Barrier Functions
URI https://ieeexplore.ieee.org/document/10234074
https://www.proquest.com/docview/2933610753
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELVoT3CgUIpYKGgO3JDTJE7s5NiuGhUkClJ3UdVLZDu2qKjiajc5dD-M78PjJKsVCIRyySF2RvLYM-OZN4-Q9zottVcVS5uGcepNgKLeCubUFMrGeapLKxHg_PmSXyyzT9f59QhWD1gYY0woPjMRvoZcfuN0j1dlJ9hmwAcg2R7ZE6IcwFrblEGWJwPujTPKRcwnhExcniyq5c1NhEThkQ_fS4H0RjtWKNCq_HEWBwNTHZDLSbShruRH1Hcq0pvfujb-t-zPyNPR1YTTQTeek0emPSQHE40DjLv6kDzZ6Un4gvy8ktZ0D3TiQIC5c_dm6A8Oi1A3DuetvnN4yQDzodIdnIXTvkOAhOvXcNWvrNQGvpnvoeoOzrytbMC1UN2ij0sReAJVv9k8wNcVpoqQ8wdk28DH1ktHO0eDFwwoDGAtCnzBHqHb_53JFVLt-TnaAMxYH5Fldb6YX9CR3IF69eAdTZhN_f6PG5UYXlgrmRGMWZsmnAvBGp0jrNvIQqTaskxqLgv_8FwaFmsl2Euy37rWvCKQl6xQXOkktnkmlSrKzBR4v8kxJ9xkM5JMi13rsfM5EnDc1SECiss6KEiNClKPCjIjH7Zj7oe-H__8-ghXfOfLYbFn5HhSqno8G9a1d7CYd1p9nPj6L8PekMd-9mwodTsm-92qN2-979Opd0HnfwHzxQI_
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BbtQwELWgPUAPtJSiLpQyB27IaRInTnJsV4220C5I3UVVL5Ht2AJRJdVucuh-GN-Hx0lWKxCoyiUHOx7JE8-MZ948Qj6oMFNWVQwtS8apNQGSWisYU51K48ehyoxAgPPVlE_m0aeb-KYHqzssjNbaFZ9pD19dLr-sVYtXZSfYZsAGINFTsh3bsCLp4FrrpEEUBx3yjTPKE58PGBk_O5nl89tbD6nCPRvAZwkSHG3YIUes8tdp7ExMvkumg3BdZclPr22kp1Z_9G18tPR75EXvbMJppx0vyRNd7ZPdgcgB-v96n-xsdCV8RX5dC6ObBzqwIMC4ru911yEcZq5yHM4rdVfjNQOMu1p3qA2ctg1CJOp2Cdftwgil4Zv-7uru4MxayxLqCvIf6OVShJ5A3q5WD_B1gckiZP0BUZVwUVnpaFNT5wcDCgNYjQJfsEvoer0zsUCyPfuNykEzlgdknp_PxhPa0ztQqyC8oQEzoT0B_FIGmqfGCKYTxowJA86ThJUqRmC3FmkSKsMiobhI7cNjoZmvZMJek62qrvQhgThjqeRSBb6JIyFlmkU6xRtOjlnhMhqRYNjsQvW9z5GC465wMZCfFU5BClSQoleQEfm4nnPfdf747-gD3PGNkd1mj8jRoFRFfzosC-tiMeu22kjxzT-mvSfPJrOry-LyYvr5LXluV4q6wrcjstUsWv3OekKNPHb6_xuh2wWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Safety-Critical+Cooperative+Target+Enclosing+Control+of+Autonomous+Surface+Vehicles+Based+on+Finite-Time+Fuzzy+Predictors+and+Input-to-State+Safe+High+Order+Control+Barrier+Functions&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Jiang%2C+Yue&rft.au=Peng%2C+Zhouhua&rft.au=Liu%2C+Lu&rft.au=Wang%2C+Dan&rft.date=2024-03-01&rft.pub=IEEE&rft.issn=1063-6706&rft.spage=1&rft.epage=15&rft_id=info:doi/10.1109%2FTFUZZ.2023.3309706&rft.externalDocID=10234074
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon