Anisotropic mechanical properties in the healthy human brain estimated with multi-excitation transversely isotropic MR elastography

Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these...

Full description

Saved in:
Bibliographic Details
Published inBrain multiphysics Vol. 3; p. 100051
Main Authors Smith, Daniel R., Caban-Rivera, Diego A., McGarry, Matthew D.J., Williams, L. Tyler, McIlvain, Grace, Okamoto, Ruth J., Van Houten, Elijah E.W., Bayly, Philip V., Paulsen, Keith D., Johnson, Curtis L.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 2022
Subjects
Online AccessGet full text
ISSN2666-5220
2666-5220
DOI10.1016/j.brain.2022.100051

Cover

Abstract Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these properties have typically assumed the brain is mechanically isotropic, though the aligned fibers of white matter suggest an anisotropic material model should be considered for more accurate parameter estimation. Here we used a transversely isotropic, nonlinear inversion algorithm (TI-NLI) and multi-excitation MRE to estimate the anisotropic material parameters of individual white matter tracts in healthy young adults. We found significant differences between individual tracts for three recovered anisotropic parameters: substrate shear stiffness, μ (range: 2.57 – 3.02 kPa), shear anisotropy, φ (range: -0.026 – 0.164), and tensile anisotropy, ζ (range: 0.559 – 1.049). Additionally, we demonstrated the repeatability of these parameter estimates in terms of lower variability of repeated measures in a single subject relative to variability in our sample population. Further, we observed significant differences in anisotropic mechanical properties between segments of the corpus callosum (genu, body, and splenium), which is expected based on differences in axonal microstructure. This study shows the ability of MRE with TI-NLI to estimate anisotropic mechanical properties of white matter and presents reference properties for tracts throughout the healthy brain. In this study we use magnetic resonance elastography to determine the mechanical properties of white matter, which can be useful in characterizing neurological conditions such as multiple sclerosis and traumatic brain injury. However, due to its fibrous nature, accurate estimation of mechanical properties of white matter requires an anisotropic material model. In this work, we use a transversely isotropic inversion algorithm with data from multi-excitation MRE to determine the anisotropic mechanical properties of white matter in a healthy young population based upon an anisotropic material model. We display the ability of MRE to capture structural differences between different white matter tracts and sub-regions of these tracts, which are expected to reflect differences such as average axon thickness and myelin density. This robust estimation of white matter anisotropic properties in a young, healthy population provides an avenue for future studies to implement these methods to examine brain development, aging, and pathology.
AbstractList Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these properties have typically assumed the brain is mechanically isotropic, though the aligned fibers of white matter suggest an anisotropic material model should be considered for more accurate parameter estimation. Here we used a transversely isotropic, nonlinear inversion algorithm (TI-NLI) and multiexcitation MRE to estimate the anisotropic material parameters of individual white matter tracts in healthy young adults. We found significant differences between individual tracts for three recovered anisotropic parameters: substrate shear stiffness, μ (range: 2.57 - 3.02 kPa), shear anisotropy, ϕ (range: -0.026 - 0.164), and tensile anisotropy, ζ (range: 0.559 - 1.049). Additionally, we demonstrated the repeatability of these parameter estimates in terms of lower variability of repeated measures in a single subject relative to variability in our sample population. Further, we observed significant differences in anisotropic mechanical properties between segments of the corpus callosum (genu, body, and splenium), which is expected based on differences in axonal microstructure. This study shows the ability of MRE with TI-NLI to estimate anisotropic mechanical properties of white matter and presents reference properties for tracts throughout the healthy brain.Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these properties have typically assumed the brain is mechanically isotropic, though the aligned fibers of white matter suggest an anisotropic material model should be considered for more accurate parameter estimation. Here we used a transversely isotropic, nonlinear inversion algorithm (TI-NLI) and multiexcitation MRE to estimate the anisotropic material parameters of individual white matter tracts in healthy young adults. We found significant differences between individual tracts for three recovered anisotropic parameters: substrate shear stiffness, μ (range: 2.57 - 3.02 kPa), shear anisotropy, ϕ (range: -0.026 - 0.164), and tensile anisotropy, ζ (range: 0.559 - 1.049). Additionally, we demonstrated the repeatability of these parameter estimates in terms of lower variability of repeated measures in a single subject relative to variability in our sample population. Further, we observed significant differences in anisotropic mechanical properties between segments of the corpus callosum (genu, body, and splenium), which is expected based on differences in axonal microstructure. This study shows the ability of MRE with TI-NLI to estimate anisotropic mechanical properties of white matter and presents reference properties for tracts throughout the healthy brain.
Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties between neuroanatomical regions and sensitivity to aging, neurological disorders, and normal brain function. Past MRE studies investigating these properties have typically assumed the brain is mechanically isotropic, though the aligned fibers of white matter suggest an anisotropic material model should be considered for more accurate parameter estimation. Here we used a transversely isotropic, nonlinear inversion algorithm (TI-NLI) and multi-excitation MRE to estimate the anisotropic material parameters of individual white matter tracts in healthy young adults. We found significant differences between individual tracts for three recovered anisotropic parameters: substrate shear stiffness, μ (range: 2.57 – 3.02 kPa), shear anisotropy, φ (range: -0.026 – 0.164), and tensile anisotropy, ζ (range: 0.559 – 1.049). Additionally, we demonstrated the repeatability of these parameter estimates in terms of lower variability of repeated measures in a single subject relative to variability in our sample population. Further, we observed significant differences in anisotropic mechanical properties between segments of the corpus callosum (genu, body, and splenium), which is expected based on differences in axonal microstructure. This study shows the ability of MRE with TI-NLI to estimate anisotropic mechanical properties of white matter and presents reference properties for tracts throughout the healthy brain. In this study we use magnetic resonance elastography to determine the mechanical properties of white matter, which can be useful in characterizing neurological conditions such as multiple sclerosis and traumatic brain injury. However, due to its fibrous nature, accurate estimation of mechanical properties of white matter requires an anisotropic material model. In this work, we use a transversely isotropic inversion algorithm with data from multi-excitation MRE to determine the anisotropic mechanical properties of white matter in a healthy young population based upon an anisotropic material model. We display the ability of MRE to capture structural differences between different white matter tracts and sub-regions of these tracts, which are expected to reflect differences such as average axon thickness and myelin density. This robust estimation of white matter anisotropic properties in a young, healthy population provides an avenue for future studies to implement these methods to examine brain development, aging, and pathology.
ArticleNumber 100051
Author Caban-Rivera, Diego A.
Bayly, Philip V.
McGarry, Matthew D.J.
Williams, L. Tyler
McIlvain, Grace
Smith, Daniel R.
Okamoto, Ruth J.
Paulsen, Keith D.
Van Houten, Elijah E.W.
Johnson, Curtis L.
Author_xml – sequence: 1
  givenname: Daniel R.
  surname: Smith
  fullname: Smith, Daniel R.
  organization: Department of Biomedical Engineering, University of Delaware, Newark DE 19711, US
– sequence: 2
  givenname: Diego A.
  surname: Caban-Rivera
  fullname: Caban-Rivera, Diego A.
  organization: Department of Biomedical Engineering, University of Delaware, Newark DE 19711, US
– sequence: 3
  givenname: Matthew D.J.
  surname: McGarry
  fullname: McGarry, Matthew D.J.
  organization: Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USThayer School of Engineering, Dartmouth College, Hanover NH 03755, US
– sequence: 4
  givenname: L. Tyler
  surname: Williams
  fullname: Williams, L. Tyler
  organization: Department of Biomedical Engineering, University of Delaware, Newark DE 19711, US
– sequence: 5
  givenname: Grace
  surname: McIlvain
  fullname: McIlvain, Grace
  organization: Department of Biomedical Engineering, University of Delaware, Newark DE 19711, US
– sequence: 6
  givenname: Ruth J.
  surname: Okamoto
  fullname: Okamoto, Ruth J.
  organization: Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130, US
– sequence: 7
  givenname: Elijah E.W.
  surname: Van Houten
  fullname: Van Houten, Elijah E.W.
  organization: Département de génie mécanique, Université de Sherbrooke, Sherbrooke, QC, J1K 2R1, Canada
– sequence: 8
  givenname: Philip V.
  surname: Bayly
  fullname: Bayly, Philip V.
  organization: Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130, US
– sequence: 9
  givenname: Keith D.
  surname: Paulsen
  fullname: Paulsen, Keith D.
  organization: Thayer School of Engineering, Dartmouth College, Hanover NH 03755, USThayer School of Engineering, Dartmouth College, Hanover NH 03755, US
– sequence: 10
  givenname: Curtis L.
  orcidid: 0000-0002-7760-131X
  surname: Johnson
  fullname: Johnson, Curtis L.
  email: clj@udel.edu
  organization: Department of Biomedical Engineering, University of Delaware, Newark DE 19711, US
BookMark eNqNkD9v1jAQhy1UJErpJ2DxyJIX20mcZmCoKv5JRUgIZuviXMi9cpxgOy2Z-eK4DQjEAEw-nX6P7-55zE787JGxp1IcpJD6-fHQBSB_UEKp3BGilg_YqdJaF7VS4uS3-hE7j_GYI6qWpWzEKft26SnOKcwLWT6hHcGTBceX3MGQCCMnz9OIfERwadz4uE7g-f1IjjHRBAl7fktp5NPqEhX41VKCRHPmAvh4gyGi2_ivOe8-cHQQ0_w5wDJuT9jDAVzE8x_vGfv06uXHqzfF9fvXb68urwurWi0LWeEwtN1FZxvZg1RaoGi6squhanFoh0bVHcBgVW9LLLWQnRpsgxrbC9GhbsszVu3_rn6B7RacM0vI-4fNSGHuXJqjuT_M3Lk0u8uMPdux7OTLmk82E0WLzoHHeY1GNWWpRFVVKkfbPWrDHGPAwfxUkU2Q-8eY8g_2_5Z7sVOYxd0QBhMtobfYU0CbTD_TX_nvArq18w
CitedBy_id crossref_primary_10_1016_j_jmbbm_2023_106070
crossref_primary_10_1002_mrm_30394
crossref_primary_10_1088_1478_3975_ad88e4
crossref_primary_10_1016_j_neuroimage_2023_120234
crossref_primary_10_1016_j_jmbbm_2024_106775
crossref_primary_10_1007_s10237_024_01913_8
crossref_primary_10_1016_j_bioactmat_2024_04_025
crossref_primary_10_1115_1_4062809
crossref_primary_10_1089_neu_2024_0183
crossref_primary_10_1016_j_brain_2024_100091
crossref_primary_10_1016_j_jmbbm_2024_106625
crossref_primary_10_1016_j_jmbbm_2023_105744
crossref_primary_10_1016_j_media_2025_103457
crossref_primary_10_1115_1_4062937
crossref_primary_10_1088_1361_6560_acb482
crossref_primary_10_1109_TMI_2023_3329293
crossref_primary_10_1073_pnas_2213836120
crossref_primary_10_1111_acer_15265
crossref_primary_10_1109_TBME_2023_3283185
crossref_primary_10_1227_ons_0000000000001523
crossref_primary_10_1088_1361_6560_ad7fc9
crossref_primary_10_1007_s10439_024_03671_1
Cites_doi 10.1007/s00234-016-1767-x
10.1016/j.mri.2011.12.019
10.3389/fnins.2018.00467
10.1136/jnnp-2012-302742
10.1088/1361-6560/ab9a84
10.1002/mrm.21890
10.1118/1.4754649
10.1097/00001756-199607290-00013
10.1016/j.neuroimage.2007.12.035
10.1016/j.actbio.2016.10.036
10.1016/0006-8993(92)90179-D
10.1590/S0100-879X2003000400002
10.1016/j.jmbbm.2017.11.045
10.1115/1.4046199
10.1016/j.neuroimage.2009.06.018
10.1002/cnm.2979
10.1002/mrm.24141
10.1016/j.jbiomech.2017.03.025
10.1016/j.nicl.2017.12.023
10.1016/j.jmbbm.2016.03.005
10.1016/j.jmbbm.2013.04.007
10.1002/mrm.20355
10.1016/j.neuroimage.2011.09.015
10.1093/cercor/bhaa272
10.1002/ca.21006
10.1016/j.jbiomech.2013.09.008
10.1007/s11682-018-9988-8
10.1002/mrm.26600
10.1371/journal.pone.0029888
10.1371/journal.pone.0023451
10.1016/j.jbiomech.2016.02.018
10.1016/j.nicl.2013.09.006
10.1016/S1053-8119(03)00336-7
10.1016/j.neuroimage.2015.02.016
10.1016/j.jbiomech.2015.09.009
10.1016/j.nicl.2015.12.007
10.1016/j.jmr.2018.01.004
10.1016/S1361-8415(00)00039-6
10.1093/cercor/bhaa388
10.1016/j.neuroimage.2013.04.089
10.1016/j.neuroimage.2021.117889
10.1002/jmri.23797
10.1016/j.neuroimage.2016.02.059
10.1016/j.media.2022.102432
10.1016/j.nicl.2020.102313
10.1007/s10237-005-0007-9
10.1371/journal.pone.0081668
10.1016/j.media.2021.102212
10.1016/j.neurobiolaging.2018.01.010
10.1002/nbm.2964
10.1002/jmri.22707
10.1016/j.neuroimage.2007.07.053
10.1007/978-3-642-80328-4_13
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
ADTOC
UNPAY
DOI 10.1016/j.brain.2022.100051
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2666-5220
ExternalDocumentID 10.1016/j.brain.2022.100051
10_1016_j_brain_2022_100051
S2666522022000089
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
0R~
AABNK
AALRI
AAYWO
AAYXX
ACIUM
ACRLP
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AFXIZ
AIGII
AIKHN
AITUG
AKBMS
AKYEP
APXCP
CITATION
SSN
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c2961-14eff9b8bc71da1260e07b3b5a49ef9f725baafc2dc3e3601b2fc7e6e980be693
IEDL.DBID AIKHN
ISSN 2666-5220
IngestDate Sun Oct 26 04:00:33 EDT 2025
Thu Oct 02 11:40:17 EDT 2025
Wed Oct 01 04:46:20 EDT 2025
Thu Apr 24 22:55:15 EDT 2025
Tue Jul 25 20:57:16 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Brain
White Matter
Stiffness
Anisotropy
Magnetic Resonance Elastography
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2961-14eff9b8bc71da1260e07b3b5a49ef9f725baafc2dc3e3601b2fc7e6e980be693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-7760-131X
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S2666522022000089
PQID 2733204442
PQPubID 23479
ParticipantIDs unpaywall_primary_10_1016_j_brain_2022_100051
proquest_miscellaneous_2733204442
crossref_citationtrail_10_1016_j_brain_2022_100051
crossref_primary_10_1016_j_brain_2022_100051
elsevier_sciencedirect_doi_10_1016_j_brain_2022_100051
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Brain multiphysics
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Smith, Jenkinson, Woolrich, Beckmann, Behrens, Johansen-Berg, Bannister, De Luca, Drobnjak, Flitney, Niazy, Saunders, Vickers, Zhang, De Stefano, Brady, Matthews (bib0043) 2004
Anderson, Van Houten, McGarry, Paulsen, Holtrop, Sutton, Georgiadis, Johnson (bib0014) 2016; 59
Mesfin, Taylor (bib0002) 2018
Murphy, Curran, Glaser, Rossman, Huston, Poduslo, Jack, Felmlee, Ehman (bib0008) 2012; 30
Babaei, Fovargue, Lloyd, Miller, Jugé, Kaplan, Sinkus, Nordsletten, Bilston (bib0018) 2021; 74
Sack, Streitberger, Krefting, Paul, Braun (bib0013) 2011; 6
Green, Geng, Qin, Sinkus, Gandevia, Bilston (bib0016) 2013; 26
Hua, Zhang, Wakana, Jiang, Li, Reich, Calabresi, Pekar, van Zijl, Mori (bib0049) 2008; 39
Tweten, Okamoto, Bayly (bib0025) 2017; 78
Aboitiz, Scheibel, Fisher, Zaidel (bib0056) 1992; 598
Paus, Toro (bib0060) 2009; 3
Johnson, McGarry, Gharibans, Weaver, Paulsen, Wang, Olivero, Sutton, Georgiadis (bib0027) 2013; 79
Budday, Sommer, Birkl, Langkammer, Haybaeck, Kohnert, Bauer, Paulsen, Steinmann, Kuhl, Holzapfel (bib0051) 2017; 48
Schmidt, Tweten, Benegal, Walker, Portnoi, Okamoto, Garbow, Bayly (bib0023) 2016; 49
Aboitiz, Rodríguez, Olivares, Zaidel (bib0057) 1996; 7
Bayly, Garbow (bib0055) 2018; 291
Miller, Kolipaka, Nash, Young (bib0019) 2018; 34
Schwarb, Johnson, McGarry, Cohen (bib0037) 2016; 132
Huesmann, Schwarb, Smith, Pohlig, Anderson, McGarry, Paulsen, Wszalek, Sutton, Johnson (bib0036) 2020; 27
Manduca, Oliphant, Dresner, Mahowald, Kruse, Amromin, Felmlee, Greenleaf, Ehman (bib0004) 2001; 5
Qin, Sinkus, Geng, Cheng, Green, Rae, Bilston (bib0020) 2013; 37
Hiscox, Johnson, McGarry, Perrins, Littlejohn, van Beek, Roberts, Starr (bib0032) 2018; 65
Mori, Oishi, Jiang, Jiang, Li, Akhter, Hua, Faria, Mahmood, Woods, Toga, Pike, Neto, Evans, Zhang, Huang, Miller, van Zijl, Mazziotta (bib0048) 2008; 40
Romano, Scheel, Hirsch, Braun, Sack (bib0017) 2012; 68
Mariappan, Glaser, Ehman (bib0005) 2010; 23
Tweten, Okamoto, Schmidt, Garbow, Bayly (bib0021) 2015; 48
Smith, Guertler, Okamoto, Romano, Bayly, Johnson (bib0026) 2020; 142
McGarry, Van Houten, Johnson, Georgiadis, Sutton, Weaver, Paulsen (bib0047) 2012; 39
McGarry, Houten, Guertler, Okamoto, Smith, Sowinski, Johnson, Bayly, Weaver, Paulsen (bib0028) 2021; 66
Arani, Murphy, Glaser, Manduca, Lake, Kruse, Jack, Ehman, Huston (bib0033) 2015; 111
Lipp, Trbojevic, Paul, Fehlner, Hirsch, Scheel, Noack, Braun, Sack (bib0010) 2013; 3
Sandroff, Johnson, Motl (bib0006) 2017; 59
Rouze, Wang, Palmeri, Nightingale (bib0046) 2013; 46
Johnson, Schwarb, McGarry, Anderson, Huesmann, Sutton, Cohen (bib0031) 2016; 37
Hiscox, Johnson, McGarry, Schwarb, van Beek, Roberts, Starr (bib0038) 2020; 14
Hiscox, Schwarb, McGarry, Johnson (bib0012) 2021; 232
Stassart, Möbius, Nave, Edgar (bib0054) 2018; 12
Andersson, Skare, Ashburner (bib0042) 2003; 20
Lynn, Anand, Arshad, Homayouni, Rosenberg, Ofen, Raz, Stanley (bib0059) 2021; 31
Gerischer, Fehlner, Köbe, Prehn, Antonenko, Grittner, Braun, Sack, Flöel (bib0035) 2018; 18
Feng, Okamoto, Namani, Genin, Bayly (bib0022) 2013; 23
Streitberger, Sack, Krefting, Pfüller, Braun, Paul, Wuerfel (bib0001) 2012; 7
Brown (bib0050) 1998
Jenkinson, Beckmann, Behrens, Woolrich, Smith (bib0045) 2012; 62
Delgorio, Hiscox, Daugherty, Sanjana, Pohlig, Ellison, Martens, Schwarb, McGarry, Johnson (bib0011) 2021; 31
Schmidt, Tweten, Badachhape, Reiter, Okamoto, Garbow, Bayly (bib0052) 2018; 79
Leemans, Jones (bib0044) 2009; 61
Caban-Rivera, Smith, Okamoto, McGarry, Williams, Guertler, McIlvain, Sowinski, Van Houten, Paulsen, Bayly, Johnson (bib0039) 2021
Wuerfel, Paul, Beierbach, Hamhaber, Klatt, Papazoglou, Zipp, Martus, Braun, Sack (bib0007) 2010; 49
Murphy, Huston, Jack, Glaser, Manduca, Felmlee, Ehman (bib0009) 2011; 34
McGarry, Van Houten, Sowinski, Jyoti, Smith, Caban-Rivera, McIlvain, Bayly, Johnson, Weaver, Paulsen (bib0029) 2022; 78
Sinkus, Tanter, Catheline, Lorenzen, Kuhl, Sondermann, Fink (bib0015) 2005; 53
Feng, Qiu, Xia, Ji, Lee (bib0024) 2017; 57
Velardi, Fraternali, Angelillo (bib0053) 2006; 5
Johnson, Holtrop, Anderson, Sutton (bib0041) 2016
Aoki, Inokuchi, Gunshin, Yahagi, Suwa (bib0003) 2012; 83
Murphy, Huston, Jack, Glaser, Senjem, Chen, Manduca, Felmlee, Ehman (bib0030) 2013; 8
Murphy, Jones, Jack, Glaser, Senjem, Manduca, Felmlee, Carter, Ehman, Huston (bib0034) 2015; 10
Kailash, Rifkin, Ireland, Okamoto, Bayly (bib0040) 2019
Aboitiz, Montiel (bib0058) 2003; 36
Hiscox (10.1016/j.brain.2022.100051_bib0012) 2021; 232
Sinkus (10.1016/j.brain.2022.100051_bib0015) 2005; 53
Anderson (10.1016/j.brain.2022.100051_bib0014) 2016; 59
Caban-Rivera (10.1016/j.brain.2022.100051_bib0039) 2021
Rouze (10.1016/j.brain.2022.100051_bib0046) 2013; 46
Hiscox (10.1016/j.brain.2022.100051_bib0038) 2020; 14
Mariappan (10.1016/j.brain.2022.100051_bib0005) 2010; 23
Murphy (10.1016/j.brain.2022.100051_bib0030) 2013; 8
Murphy (10.1016/j.brain.2022.100051_bib0008) 2012; 30
Gerischer (10.1016/j.brain.2022.100051_bib0035) 2018; 18
Jenkinson (10.1016/j.brain.2022.100051_bib0045) 2012; 62
Leemans (10.1016/j.brain.2022.100051_bib0044) 2009; 61
Streitberger (10.1016/j.brain.2022.100051_bib0001) 2012; 7
Sandroff (10.1016/j.brain.2022.100051_bib0006) 2017; 59
Arani (10.1016/j.brain.2022.100051_bib0033) 2015; 111
Feng (10.1016/j.brain.2022.100051_bib0022) 2013; 23
McGarry (10.1016/j.brain.2022.100051_bib0028) 2021; 66
Brown (10.1016/j.brain.2022.100051_bib0050) 1998
Aoki (10.1016/j.brain.2022.100051_bib0003) 2012; 83
Aboitiz (10.1016/j.brain.2022.100051_bib0058) 2003; 36
Aboitiz (10.1016/j.brain.2022.100051_bib0056) 1992; 598
Paus (10.1016/j.brain.2022.100051_bib0060) 2009; 3
Feng (10.1016/j.brain.2022.100051_bib0024) 2017; 57
Aboitiz (10.1016/j.brain.2022.100051_bib0057) 1996; 7
Manduca (10.1016/j.brain.2022.100051_bib0004) 2001; 5
Johnson (10.1016/j.brain.2022.100051_bib0027) 2013; 79
Green (10.1016/j.brain.2022.100051_bib0016) 2013; 26
Tweten (10.1016/j.brain.2022.100051_bib0021) 2015; 48
Delgorio (10.1016/j.brain.2022.100051_bib0011) 2021; 31
McGarry (10.1016/j.brain.2022.100051_bib0029) 2022; 78
Budday (10.1016/j.brain.2022.100051_bib0051) 2017; 48
Miller (10.1016/j.brain.2022.100051_bib0019) 2018; 34
Schwarb (10.1016/j.brain.2022.100051_bib0037) 2016; 132
McGarry (10.1016/j.brain.2022.100051_bib0047) 2012; 39
Andersson (10.1016/j.brain.2022.100051_bib0042) 2003; 20
Johnson (10.1016/j.brain.2022.100051_bib0031) 2016; 37
Schmidt (10.1016/j.brain.2022.100051_bib0023) 2016; 49
Schmidt (10.1016/j.brain.2022.100051_bib0052) 2018; 79
Qin (10.1016/j.brain.2022.100051_bib0020) 2013; 37
Stassart (10.1016/j.brain.2022.100051_bib0054) 2018; 12
Lipp (10.1016/j.brain.2022.100051_bib0010) 2013; 3
Tweten (10.1016/j.brain.2022.100051_bib0025) 2017; 78
Babaei (10.1016/j.brain.2022.100051_bib0018) 2021; 74
Huesmann (10.1016/j.brain.2022.100051_bib0036) 2020; 27
Mori (10.1016/j.brain.2022.100051_bib0048) 2008; 40
Murphy (10.1016/j.brain.2022.100051_bib0009) 2011; 34
Velardi (10.1016/j.brain.2022.100051_bib0053) 2006; 5
Johnson (10.1016/j.brain.2022.100051_bib0041) 2016
Mesfin (10.1016/j.brain.2022.100051_bib0002) 2018
Murphy (10.1016/j.brain.2022.100051_bib0034) 2015; 10
Lynn (10.1016/j.brain.2022.100051_bib0059) 2021; 31
Hiscox (10.1016/j.brain.2022.100051_bib0032) 2018; 65
Hua (10.1016/j.brain.2022.100051_bib0049) 2008; 39
Smith (10.1016/j.brain.2022.100051_bib0026) 2020; 142
Sack (10.1016/j.brain.2022.100051_bib0013) 2011; 6
Kailash (10.1016/j.brain.2022.100051_bib0040) 2019
Bayly (10.1016/j.brain.2022.100051_bib0055) 2018; 291
Wuerfel (10.1016/j.brain.2022.100051_bib0007) 2010; 49
Smith (10.1016/j.brain.2022.100051_bib0043) 2004
Romano (10.1016/j.brain.2022.100051_bib0017) 2012; 68
References_xml – volume: 27
  start-page: 102313
  year: 2020
  ident: bib0036
  article-title: Hippocampal Stiffness in Mesial Temporal Lobe Epilepsy Measured with MR Elastography: Preliminary Comparison with Healthy Participants
  publication-title: NeuroImage. Clin.
– volume: 48
  start-page: 319
  year: 2017
  end-page: 340
  ident: bib0051
  article-title: Mechanical Characterization of Human Brain Tissue
  publication-title: Acta Biomater
– volume: 10
  start-page: 283
  year: 2015
  end-page: 290
  ident: bib0034
  article-title: Regional Brain Stiffness Changes across the Alzheimer's Disease Spectrum
  publication-title: NeuroImage. Clin.
– volume: 111
  start-page: 59
  year: 2015
  end-page: 64
  ident: bib0033
  article-title: Measuring the Effects of Aging and Sex on Regional Brain Stiffness with MR Elastography in Healthy Older Adults
  publication-title: Neuroimage
– year: 2019
  ident: bib0040
  article-title: Design And Evaluation Of A Lateral Head Excitation Device For MR Elastography Of The Brain
  publication-title: Biomedical Engineering Society Annual Meeting
– volume: 142
  start-page: 51
  year: 2020
  end-page: 59
  ident: bib0026
  article-title: Multi-Excitation Magnetic Resonance Elastography of the Brain: Wave Propagation in Anisotropic White Matter
  publication-title: J. Biomech. Eng.
– volume: 39
  start-page: 6388
  year: 2012
  end-page: 6396
  ident: bib0047
  article-title: Multiresolution MR Elastography Using Nonlinear Inversion
  publication-title: Med. Phys.
– year: 2016
  ident: bib0041
  article-title: Brain MR Elastography with Multiband Excitation and Nonlinear Motion-Induced Phase Error Correction
  publication-title: International Society of Magnetic Resonance in Medicine
– volume: 74
  start-page: 102212
  year: 2021
  ident: bib0018
  article-title: Magnetic Resonance Elastography Reconstruction for Anisotropic Tissues
  publication-title: Med. Image Anal.
– volume: 53
  start-page: 372
  year: 2005
  end-page: 387
  ident: bib0015
  article-title: Imaging Anisotropic and Viscous Properties of Breast Tissue by Magnetic Resonance-Elastography
  publication-title: Magn. Reson. Med.
– volume: 59
  start-page: 61
  year: 2017
  end-page: 67
  ident: bib0006
  article-title: Exercise Training Effects on Memory and Hippocampal Viscoelasticity in Multiple Sclerosis: A Novel Application of Magnetic Resonance Elastography
  publication-title: Neuroradiology
– volume: 34
  start-page: 494
  year: 2011
  end-page: 498
  ident: bib0009
  article-title: Decreased Brain Stiffness in Alzheimer's Disease Determined by Magnetic Resonance Elastography
  publication-title: J. Magn. Reson. Imaging
– volume: 7
  start-page: e29888
  year: 2012
  ident: bib0001
  article-title: Brain Viscoelasticity Alteration in Chronic-Progressive Multiple Sclerosis
  publication-title: PLoS One
– volume: 31
  start-page: 1032
  year: 2021
  end-page: 1045
  ident: bib0059
  article-title: Microstructure of Human Corpus Callosum across the Lifespan: Regional Variations in Axon Caliber, Density, and Myelin Content
  publication-title: Cereb. Cortex
– volume: 598
  start-page: 154
  year: 1992
  end-page: 161
  ident: bib0056
  article-title: Individual Differences in Brain Asymmetries and Fiber Composition in the Human Corpus Callosum
  publication-title: Brain Res
– volume: 3
  start-page: 381
  year: 2013
  end-page: 387
  ident: bib0010
  article-title: Cerebral Magnetic Resonance Elastography in Supranuclear Palsy and Idiopathic Parkinson's Disease
  publication-title: NeuroImage Clin
– volume: 34
  start-page: e2979
  year: 2018
  ident: bib0019
  article-title: Estimation of Transversely Isotropic Material Properties from Magnetic Resonance Elastography Using the Optimised Virtual Fields Method
  publication-title: Int. J. Numer. Method. Biomed. Eng.
– volume: 78
  start-page: 2360
  year: 2017
  end-page: 2372
  ident: bib0025
  article-title: Requirements for Accurate Estimation of Anisotropic Material Parameters by Magnetic Resonance Elastography: A Computational Study
  publication-title: Magn. Reson. Med.
– start-page: 23
  year: 2004
  ident: bib0043
  article-title: Advances in Functional and Structural MR Image Analysis and Implementation as FSL
  publication-title: Neuroimage
– volume: 37
  start-page: 217
  year: 2013
  end-page: 226
  ident: bib0020
  article-title: Combining MR Elastography and Diffusion Tensor Imaging for the Assessment of Anisotropic Mechanical Properties: A Phantom Study
  publication-title: J. Magn. Reson. Imaging
– volume: 48
  start-page: 4002
  year: 2015
  end-page: 4009
  ident: bib0021
  article-title: Estimation of Material Parameters from Slow and Fast Shear Waves in an Incompressible, Transversely Isotropic Material
  publication-title: J. Biomech.
– volume: 62
  start-page: 782
  year: 2012
  end-page: 790
  ident: bib0045
  article-title: FSL
  publication-title: Neuroimage
– year: 2021
  ident: bib0039
  article-title: Multi-Excitation Actuator Design for Anisotropic Brain MRE
  publication-title: International Society of Magnetic Resonance in Medicine
– volume: 5
  start-page: 53
  year: 2006
  end-page: 61
  ident: bib0053
  article-title: Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue
  publication-title: Biomech. Model. Mechanobiol.
– volume: 37
  start-page: 4221
  year: 2016
  end-page: 4233
  ident: bib0031
  article-title: Viscoelasticity of Subcortical Gray Matter Structures
  publication-title: Hum.BrainMapp
– volume: 46
  start-page: 2761
  year: 2013
  end-page: 2768
  ident: bib0046
  article-title: Finite Element Modeling of Impulsive Excitation and Shear Wave Propagation in an Incompressible, Transversely Isotropic Medium
  publication-title: J. Biomech.
– volume: 5
  start-page: 237
  year: 2001
  end-page: 254
  ident: bib0004
  article-title: Magnetic Resonance Elastography: Non-Invasive Mapping of Tissue Elasticity
  publication-title: Med. Image Anal.
– volume: 36
  start-page: 409
  year: 2003
  end-page: 420
  ident: bib0058
  article-title: One Hundred Million Years of Interhemispheric Communication: The History of the Corpus Callosum
  publication-title: Brazilian J. Med. Biol. Res.
– volume: 7
  start-page: 1761
  year: 1996
  end-page: 1764
  ident: bib0057
  article-title: Age-Related Changes in Fibre Composition of the Human Corpus Callosum: Sex Differences
  publication-title: Neuroreport
– volume: 8
  start-page: e81668
  year: 2013
  ident: bib0030
  article-title: Measuring the Characteristic Topography of Brain Stiffness with Magnetic Resonance Elastography
  publication-title: PLoS One
– volume: 66
  year: 2021
  ident: bib0028
  article-title: A Heterogenous, Time Harmonic, Nearly Incompressible Transverse Isotropic Finite Element Brain Simulation Platform for MR Elastography
  publication-title: Phys. Med. Biol.
– volume: 31
  start-page: 2799
  year: 2021
  end-page: 2811
  ident: bib0011
  article-title: Effect of Aging on the Viscoelastic Properties of Hippocampal Subfields Assessed with High-Resolution MR Elastography
  publication-title: Cereb. Cortex
– volume: 39
  start-page: 336
  year: 2008
  end-page: 347
  ident: bib0049
  article-title: Tract Probability Maps in Stereotaxic Spaces: Analyses of White Matter Anatomy and Tract-Specific Quantification
  publication-title: Neuroimage
– volume: 49
  start-page: 2520
  year: 2010
  end-page: 2525
  ident: bib0007
  article-title: MR-Elastography Reveals Degradation of Tissue Integrity in Multiple Sclerosis
  publication-title: Neuroimage
– volume: 83
  start-page: 870
  year: 2012
  end-page: 876
  ident: bib0003
  article-title: Diffusion Tensor Imaging Studies of Mild Traumatic Brain Injury: A Meta-Analysis
  publication-title: J. Neurol. Neurosurg. Psychiatry
– volume: 65
  start-page: 158
  year: 2018
  end-page: 167
  ident: bib0032
  article-title: High-Resolution Magnetic Resonance Elastography Reveals Differences in Subcortical Gray Matter Viscoelasticity between Young and Healthy Older Adults
  publication-title: Neurobiol. Aging
– volume: 18
  start-page: 485
  year: 2018
  end-page: 493
  ident: bib0035
  article-title: Combining Viscoelasticity, Diffusivity and Volume of the Hippocampus for the Diagnosis of Alzheimer’s Disease Based on Magnetic Resonance Imaging
  publication-title: NeuroImage. Clin.
– volume: 59
  start-page: 538
  year: 2016
  end-page: 546
  ident: bib0014
  article-title: Observation of Direction-Dependent Mechanical Properties in the Human Brain with Multi-Excitation MR Elastography
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 3
  start-page: 14
  year: 2009
  ident: bib0060
  article-title: Could Sex Differences in White Matter Be Explained by g Ratio?
  publication-title: Front. Neuroanat.
– volume: 20
  start-page: 870
  year: 2003
  end-page: 888
  ident: bib0042
  article-title: How to Correct Susceptibility Distortions in Spin-Echo Echo-Planar Images: Application to Diffusion Tensor Imaging
  publication-title: Neuroimage
– volume: 291
  start-page: 73
  year: 2018
  end-page: 83
  ident: bib0055
  article-title: Pre-Clinical MR Elastography: Principles, Techniques, and Applications
  publication-title: J. Magn. Reson.
– volume: 14
  start-page: 175
  year: 2020
  end-page: 185
  ident: bib0038
  article-title: Hippocampal Viscoelasticity and Episodic Memory Performance in Healthy Older Adults Examined with Magnetic Resonance Elastography
  publication-title: Brain Imaging Behav
– volume: 79
  start-page: 145
  year: 2013
  end-page: 152
  ident: bib0027
  article-title: Local Mechanical Properties of White Matter Structures in the Human Brain
  publication-title: Neuroimage
– volume: 49
  start-page: 1042
  year: 2016
  end-page: 1049
  ident: bib0023
  article-title: Magnetic Resonance Elastography of Slow and Fast Shear Waves Illuminates Differences in Shear and Tensile Moduli in Anisotropic Tissue
  publication-title: J. Biomech.
– volume: 68
  start-page: 1410
  year: 2012
  end-page: 1422
  ident: bib0017
  article-title: In Vivo Waveguide Elastography of White Matter Tracts in the Human Brain
  publication-title: Magn. Reson. Med.
– volume: 12
  start-page: 467
  year: 2018
  ident: bib0054
  article-title: The Axon-Myelin Unit in Development and Degenerative Disease
  publication-title: Front. Neurosci.
– volume: 40
  start-page: 570
  year: 2008
  end-page: 582
  ident: bib0048
  article-title: Stereotaxic White Matter Atlas Based on Diffusion Tensor Imaging in an ICBM Template
  publication-title: Neuroimage
– start-page: 155
  year: 1998
  end-page: 157
  ident: bib0050
  article-title: Coefficient of Variation
  publication-title: Appl. Multivar. Stat. Geohydrology Relat. Sci.
– volume: 23
  start-page: 497
  year: 2010
  end-page: 511
  ident: bib0005
  article-title: Magnetic Resonance Elastography: A Review
  publication-title: Clin. Anat.
– volume: 79
  start-page: 30
  year: 2018
  end-page: 37
  ident: bib0052
  article-title: Measurement of Anisotropic Mechanical Properties in Porcine Brain White Matter Ex Vivo Using Magnetic Resonance Elastography
  publication-title: J. Mech. Behav. Biomed. Mater.
– year: 2018
  ident: bib0002
  article-title: Diffuse Axonal Injury (DAI)
– volume: 57
  start-page: 146
  year: 2017
  end-page: 151
  ident: bib0024
  article-title: A Computational Study of Invariant I5 in a Nearly Incompressible Transversely Isotropic Model for White Matter
  publication-title: J. Biomech.
– volume: 61
  start-page: 1336
  year: 2009
  end-page: 1349
  ident: bib0044
  article-title: The B-Matrix Must Be Rotated When Correcting for Subject Motion in DTI Data
  publication-title: Magn. Reson. Med.
– volume: 30
  start-page: 535
  year: 2012
  end-page: 539
  ident: bib0008
  article-title: Magnetic Resonance Elastography of the Brain in a Mouse Model of Alzheimer's Disease: Initial Results
  publication-title: Magn. Reson. Imaging
– volume: 6
  start-page: e23451
  year: 2011
  ident: bib0013
  article-title: The Influence of Physiological Aging and Atrophy on Brain Viscoelastic Properties in Humans
  publication-title: PLoS One
– volume: 26
  start-page: 1387
  year: 2013
  end-page: 1394
  ident: bib0016
  article-title: Measuring Anisotropic Muscle Stiffness Properties Using Elastography
  publication-title: NMR Biomed
– volume: 232
  start-page: 117889
  year: 2021
  ident: bib0012
  article-title: Aging Brain Mechanics: Progress and Promise of Magnetic Resonance Elastography
  publication-title: Neuroimage
– volume: 132
  start-page: 534
  year: 2016
  end-page: 541
  ident: bib0037
  article-title: Medial Temporal Lobe Viscoelasticity and Relational Memory Performance
  publication-title: Neuroimage
– volume: 23
  start-page: 117
  year: 2013
  end-page: 132
  ident: bib0022
  article-title: Measurements of Mechanical Anisotropy in Brain Tissue and Implications for Transversely Isotropic Material Models of White Matter
  publication-title: J. Mech. Behav. Biomed. Mater.
– volume: 78
  start-page: 104432
  year: 2022
  ident: bib0029
  article-title: Mapping Heterogenous Anisotropic Tissue Mechanical Properties with Transverse Isotropic Nonlinear Inversion MR Elastography
  publication-title: Med. Image Anal.
– volume: 59
  start-page: 61
  issue: 1
  year: 2017
  ident: 10.1016/j.brain.2022.100051_bib0006
  article-title: Exercise Training Effects on Memory and Hippocampal Viscoelasticity in Multiple Sclerosis: A Novel Application of Magnetic Resonance Elastography
  publication-title: Neuroradiology
  doi: 10.1007/s00234-016-1767-x
– volume: 30
  start-page: 535
  issue: 4
  year: 2012
  ident: 10.1016/j.brain.2022.100051_bib0008
  article-title: Magnetic Resonance Elastography of the Brain in a Mouse Model of Alzheimer's Disease: Initial Results
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2011.12.019
– volume: 12
  start-page: 467
  issue: JUL
  year: 2018
  ident: 10.1016/j.brain.2022.100051_bib0054
  article-title: The Axon-Myelin Unit in Development and Degenerative Disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00467
– volume: 83
  start-page: 870
  issue: 9
  year: 2012
  ident: 10.1016/j.brain.2022.100051_bib0003
  article-title: Diffusion Tensor Imaging Studies of Mild Traumatic Brain Injury: A Meta-Analysis
  publication-title: J. Neurol. Neurosurg. Psychiatry
  doi: 10.1136/jnnp-2012-302742
– volume: 66
  issue: 5
  year: 2021
  ident: 10.1016/j.brain.2022.100051_bib0028
  article-title: A Heterogenous, Time Harmonic, Nearly Incompressible Transverse Isotropic Finite Element Brain Simulation Platform for MR Elastography
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab9a84
– volume: 61
  start-page: 1336
  issue: 6
  year: 2009
  ident: 10.1016/j.brain.2022.100051_bib0044
  article-title: The B-Matrix Must Be Rotated When Correcting for Subject Motion in DTI Data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21890
– volume: 39
  start-page: 6388
  issue: 10
  year: 2012
  ident: 10.1016/j.brain.2022.100051_bib0047
  article-title: Multiresolution MR Elastography Using Nonlinear Inversion
  publication-title: Med. Phys.
  doi: 10.1118/1.4754649
– volume: 7
  start-page: 1761
  issue: 11
  year: 1996
  ident: 10.1016/j.brain.2022.100051_bib0057
  article-title: Age-Related Changes in Fibre Composition of the Human Corpus Callosum: Sex Differences
  publication-title: Neuroreport
  doi: 10.1097/00001756-199607290-00013
– volume: 40
  start-page: 570
  issue: 2
  year: 2008
  ident: 10.1016/j.brain.2022.100051_bib0048
  article-title: Stereotaxic White Matter Atlas Based on Diffusion Tensor Imaging in an ICBM Template
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.12.035
– volume: 48
  start-page: 319
  year: 2017
  ident: 10.1016/j.brain.2022.100051_bib0051
  article-title: Mechanical Characterization of Human Brain Tissue
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2016.10.036
– volume: 598
  start-page: 154
  issue: 1–2
  year: 1992
  ident: 10.1016/j.brain.2022.100051_bib0056
  article-title: Individual Differences in Brain Asymmetries and Fiber Composition in the Human Corpus Callosum
  publication-title: Brain Res
  doi: 10.1016/0006-8993(92)90179-D
– volume: 36
  start-page: 409
  issue: 4
  year: 2003
  ident: 10.1016/j.brain.2022.100051_bib0058
  article-title: One Hundred Million Years of Interhemispheric Communication: The History of the Corpus Callosum
  publication-title: Brazilian J. Med. Biol. Res.
  doi: 10.1590/S0100-879X2003000400002
– volume: 3
  start-page: 14
  issue: SEP
  year: 2009
  ident: 10.1016/j.brain.2022.100051_bib0060
  article-title: Could Sex Differences in White Matter Be Explained by g Ratio?
  publication-title: Front. Neuroanat.
– volume: 79
  start-page: 30
  year: 2018
  ident: 10.1016/j.brain.2022.100051_bib0052
  article-title: Measurement of Anisotropic Mechanical Properties in Porcine Brain White Matter Ex Vivo Using Magnetic Resonance Elastography
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2017.11.045
– volume: 142
  start-page: 51
  issue: 7
  year: 2020
  ident: 10.1016/j.brain.2022.100051_bib0026
  article-title: Multi-Excitation Magnetic Resonance Elastography of the Brain: Wave Propagation in Anisotropic White Matter
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4046199
– volume: 49
  start-page: 2520
  issue: 3
  year: 2010
  ident: 10.1016/j.brain.2022.100051_bib0007
  article-title: MR-Elastography Reveals Degradation of Tissue Integrity in Multiple Sclerosis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2009.06.018
– volume: 34
  start-page: e2979
  issue: 6
  year: 2018
  ident: 10.1016/j.brain.2022.100051_bib0019
  article-title: Estimation of Transversely Isotropic Material Properties from Magnetic Resonance Elastography Using the Optimised Virtual Fields Method
  publication-title: Int. J. Numer. Method. Biomed. Eng.
  doi: 10.1002/cnm.2979
– volume: 68
  start-page: 1410
  issue: 5
  year: 2012
  ident: 10.1016/j.brain.2022.100051_bib0017
  article-title: In Vivo Waveguide Elastography of White Matter Tracts in the Human Brain
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.24141
– volume: 57
  start-page: 146
  year: 2017
  ident: 10.1016/j.brain.2022.100051_bib0024
  article-title: A Computational Study of Invariant I5 in a Nearly Incompressible Transversely Isotropic Model for White Matter
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.03.025
– volume: 18
  start-page: 485
  year: 2018
  ident: 10.1016/j.brain.2022.100051_bib0035
  article-title: Combining Viscoelasticity, Diffusivity and Volume of the Hippocampus for the Diagnosis of Alzheimer’s Disease Based on Magnetic Resonance Imaging
  publication-title: NeuroImage. Clin.
  doi: 10.1016/j.nicl.2017.12.023
– volume: 59
  start-page: 538
  year: 2016
  ident: 10.1016/j.brain.2022.100051_bib0014
  article-title: Observation of Direction-Dependent Mechanical Properties in the Human Brain with Multi-Excitation MR Elastography
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2016.03.005
– volume: 23
  start-page: 117
  year: 2013
  ident: 10.1016/j.brain.2022.100051_bib0022
  article-title: Measurements of Mechanical Anisotropy in Brain Tissue and Implications for Transversely Isotropic Material Models of White Matter
  publication-title: J. Mech. Behav. Biomed. Mater.
  doi: 10.1016/j.jmbbm.2013.04.007
– volume: 53
  start-page: 372
  issue: 2
  year: 2005
  ident: 10.1016/j.brain.2022.100051_bib0015
  article-title: Imaging Anisotropic and Viscous Properties of Breast Tissue by Magnetic Resonance-Elastography
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.20355
– volume: 62
  start-page: 782
  issue: 2
  year: 2012
  ident: 10.1016/j.brain.2022.100051_bib0045
  article-title: FSL
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.09.015
– year: 2016
  ident: 10.1016/j.brain.2022.100051_bib0041
  article-title: Brain MR Elastography with Multiband Excitation and Nonlinear Motion-Induced Phase Error Correction
  publication-title: International Society of Magnetic Resonance in Medicine
– volume: 31
  start-page: 1032
  issue: 2
  year: 2021
  ident: 10.1016/j.brain.2022.100051_bib0059
  article-title: Microstructure of Human Corpus Callosum across the Lifespan: Regional Variations in Axon Caliber, Density, and Myelin Content
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa272
– volume: 23
  start-page: 497
  issue: 5
  year: 2010
  ident: 10.1016/j.brain.2022.100051_bib0005
  article-title: Magnetic Resonance Elastography: A Review
  publication-title: Clin. Anat.
  doi: 10.1002/ca.21006
– volume: 46
  start-page: 2761
  issue: 16
  year: 2013
  ident: 10.1016/j.brain.2022.100051_bib0046
  article-title: Finite Element Modeling of Impulsive Excitation and Shear Wave Propagation in an Incompressible, Transversely Isotropic Medium
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.09.008
– volume: 14
  start-page: 175
  issue: 1
  year: 2020
  ident: 10.1016/j.brain.2022.100051_bib0038
  article-title: Hippocampal Viscoelasticity and Episodic Memory Performance in Healthy Older Adults Examined with Magnetic Resonance Elastography
  publication-title: Brain Imaging Behav
  doi: 10.1007/s11682-018-9988-8
– volume: 78
  start-page: 2360
  issue: 6
  year: 2017
  ident: 10.1016/j.brain.2022.100051_bib0025
  article-title: Requirements for Accurate Estimation of Anisotropic Material Parameters by Magnetic Resonance Elastography: A Computational Study
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26600
– year: 2019
  ident: 10.1016/j.brain.2022.100051_bib0040
  article-title: Design And Evaluation Of A Lateral Head Excitation Device For MR Elastography Of The Brain
  publication-title: Biomedical Engineering Society Annual Meeting
– volume: 7
  start-page: e29888
  issue: 1
  year: 2012
  ident: 10.1016/j.brain.2022.100051_bib0001
  article-title: Brain Viscoelasticity Alteration in Chronic-Progressive Multiple Sclerosis
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0029888
– volume: 6
  start-page: e23451
  issue: 9
  year: 2011
  ident: 10.1016/j.brain.2022.100051_bib0013
  article-title: The Influence of Physiological Aging and Atrophy on Brain Viscoelastic Properties in Humans
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0023451
– start-page: 23
  year: 2004
  ident: 10.1016/j.brain.2022.100051_bib0043
  article-title: Advances in Functional and Structural MR Image Analysis and Implementation as FSL
  publication-title: Neuroimage
– volume: 49
  start-page: 1042
  issue: 7
  year: 2016
  ident: 10.1016/j.brain.2022.100051_bib0023
  article-title: Magnetic Resonance Elastography of Slow and Fast Shear Waves Illuminates Differences in Shear and Tensile Moduli in Anisotropic Tissue
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.02.018
– volume: 3
  start-page: 381
  year: 2013
  ident: 10.1016/j.brain.2022.100051_bib0010
  article-title: Cerebral Magnetic Resonance Elastography in Supranuclear Palsy and Idiopathic Parkinson's Disease
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2013.09.006
– year: 2021
  ident: 10.1016/j.brain.2022.100051_bib0039
  article-title: Multi-Excitation Actuator Design for Anisotropic Brain MRE
  publication-title: International Society of Magnetic Resonance in Medicine
– volume: 20
  start-page: 870
  issue: 2
  year: 2003
  ident: 10.1016/j.brain.2022.100051_bib0042
  article-title: How to Correct Susceptibility Distortions in Spin-Echo Echo-Planar Images: Application to Diffusion Tensor Imaging
  publication-title: Neuroimage
  doi: 10.1016/S1053-8119(03)00336-7
– volume: 111
  start-page: 59
  year: 2015
  ident: 10.1016/j.brain.2022.100051_bib0033
  article-title: Measuring the Effects of Aging and Sex on Regional Brain Stiffness with MR Elastography in Healthy Older Adults
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2015.02.016
– volume: 48
  start-page: 4002
  issue: 15
  year: 2015
  ident: 10.1016/j.brain.2022.100051_bib0021
  article-title: Estimation of Material Parameters from Slow and Fast Shear Waves in an Incompressible, Transversely Isotropic Material
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.09.009
– volume: 10
  start-page: 283
  year: 2015
  ident: 10.1016/j.brain.2022.100051_bib0034
  article-title: Regional Brain Stiffness Changes across the Alzheimer's Disease Spectrum
  publication-title: NeuroImage. Clin.
  doi: 10.1016/j.nicl.2015.12.007
– volume: 291
  start-page: 73
  year: 2018
  ident: 10.1016/j.brain.2022.100051_bib0055
  article-title: Pre-Clinical MR Elastography: Principles, Techniques, and Applications
  publication-title: J. Magn. Reson.
  doi: 10.1016/j.jmr.2018.01.004
– volume: 5
  start-page: 237
  issue: 4
  year: 2001
  ident: 10.1016/j.brain.2022.100051_bib0004
  article-title: Magnetic Resonance Elastography: Non-Invasive Mapping of Tissue Elasticity
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(00)00039-6
– volume: 31
  start-page: 2799
  issue: 6
  year: 2021
  ident: 10.1016/j.brain.2022.100051_bib0011
  article-title: Effect of Aging on the Viscoelastic Properties of Hippocampal Subfields Assessed with High-Resolution MR Elastography
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhaa388
– volume: 79
  start-page: 145
  year: 2013
  ident: 10.1016/j.brain.2022.100051_bib0027
  article-title: Local Mechanical Properties of White Matter Structures in the Human Brain
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.04.089
– volume: 232
  start-page: 117889
  year: 2021
  ident: 10.1016/j.brain.2022.100051_bib0012
  article-title: Aging Brain Mechanics: Progress and Promise of Magnetic Resonance Elastography
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2021.117889
– volume: 37
  start-page: 217
  issue: 1
  year: 2013
  ident: 10.1016/j.brain.2022.100051_bib0020
  article-title: Combining MR Elastography and Diffusion Tensor Imaging for the Assessment of Anisotropic Mechanical Properties: A Phantom Study
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.23797
– volume: 132
  start-page: 534
  year: 2016
  ident: 10.1016/j.brain.2022.100051_bib0037
  article-title: Medial Temporal Lobe Viscoelasticity and Relational Memory Performance
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2016.02.059
– volume: 37
  start-page: 4221
  issue: 12
  year: 2016
  ident: 10.1016/j.brain.2022.100051_bib0031
  article-title: Viscoelasticity of Subcortical Gray Matter Structures
  publication-title: Hum.BrainMapp
– volume: 78
  start-page: 104432
  year: 2022
  ident: 10.1016/j.brain.2022.100051_bib0029
  article-title: Mapping Heterogenous Anisotropic Tissue Mechanical Properties with Transverse Isotropic Nonlinear Inversion MR Elastography
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2022.102432
– volume: 27
  start-page: 102313
  year: 2020
  ident: 10.1016/j.brain.2022.100051_bib0036
  article-title: Hippocampal Stiffness in Mesial Temporal Lobe Epilepsy Measured with MR Elastography: Preliminary Comparison with Healthy Participants
  publication-title: NeuroImage. Clin.
  doi: 10.1016/j.nicl.2020.102313
– volume: 5
  start-page: 53
  issue: 1
  year: 2006
  ident: 10.1016/j.brain.2022.100051_bib0053
  article-title: Anisotropic Constitutive Equations and Experimental Tensile Behavior of Brain Tissue
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-005-0007-9
– year: 2018
  ident: 10.1016/j.brain.2022.100051_bib0002
– volume: 8
  start-page: e81668
  issue: 12
  year: 2013
  ident: 10.1016/j.brain.2022.100051_bib0030
  article-title: Measuring the Characteristic Topography of Brain Stiffness with Magnetic Resonance Elastography
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0081668
– volume: 74
  start-page: 102212
  year: 2021
  ident: 10.1016/j.brain.2022.100051_bib0018
  article-title: Magnetic Resonance Elastography Reconstruction for Anisotropic Tissues
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102212
– volume: 65
  start-page: 158
  year: 2018
  ident: 10.1016/j.brain.2022.100051_bib0032
  article-title: High-Resolution Magnetic Resonance Elastography Reveals Differences in Subcortical Gray Matter Viscoelasticity between Young and Healthy Older Adults
  publication-title: Neurobiol. Aging
  doi: 10.1016/j.neurobiolaging.2018.01.010
– volume: 26
  start-page: 1387
  issue: 11
  year: 2013
  ident: 10.1016/j.brain.2022.100051_bib0016
  article-title: Measuring Anisotropic Muscle Stiffness Properties Using Elastography
  publication-title: NMR Biomed
  doi: 10.1002/nbm.2964
– volume: 34
  start-page: 494
  issue: 3
  year: 2011
  ident: 10.1016/j.brain.2022.100051_bib0009
  article-title: Decreased Brain Stiffness in Alzheimer's Disease Determined by Magnetic Resonance Elastography
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.22707
– volume: 39
  start-page: 336
  issue: 1
  year: 2008
  ident: 10.1016/j.brain.2022.100051_bib0049
  article-title: Tract Probability Maps in Stereotaxic Spaces: Analyses of White Matter Anatomy and Tract-Specific Quantification
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.053
– start-page: 155
  year: 1998
  ident: 10.1016/j.brain.2022.100051_bib0050
  article-title: Coefficient of Variation
  publication-title: Appl. Multivar. Stat. Geohydrology Relat. Sci.
  doi: 10.1007/978-3-642-80328-4_13
SSID ssj0002513170
Score 2.3112493
Snippet Magnetic resonance elastography (MRE) is an MRI technique for imaging the mechanical properties of brain in vivo, and has shown differences in properties...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 100051
SubjectTerms Anisotropy
Brain
Magnetic Resonance Elastography
Stiffness
White Matter
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBbFOeTUR9JSl6ZMIORUBa_2fTShIQQSSoghPQlJOwK3ztrYa1r32j_eGe1umpQ0pHcNeo2Yb0Yz3whxUDhbEKxw0ihfySRLrCwINcss94jKlIUKtTDnF9npJDm7Tq87nm2uhbn3fx_ysCy3SiBHTin-0R9xufRWlhLwHoitycXn8RduH0cgnFwqNep5hR6W_JftuYMtt9f1wmy-m9nsjpk5edHWb68COyFnl3w7Wjf2yP38i7vxiTt4KZ53cBPGrX68Es-w3hG745pc7ZsNHEJIAA2R9V3xa1xPV_NmOV9MHdwglwTzDcKC4_VLJl6FaQ0EGKEtntxAaPAHYWJgtg5Cv1gBh3YhJCpK_OE6DnBo2ChyDgjONvBnnvNLQALwTcec_VpMTj5dHZ_KrkeDdKrMIhkl6H1pC-vyqDIReUc4ym1sU5OU6Eufq9Qa452qXIwxeX9WeZdjhmUxspiV8RsxqOc1vhUQV2nuXVIpa-IEq9ga5qbjhjQYRQSLhkL1t6f7xXMfjZnuM9W-6rBjzUet26Meio-3QouWv-Px4VmvFrqDIC200HStjwvu90qk6YHyr4upcb5eaVL2WDErnxoKeatdT1nMu_8c_14MmuUa9wglNfZD9zp-AzXeEq0
  priority: 102
  providerName: Unpaywall
Title Anisotropic mechanical properties in the healthy human brain estimated with multi-excitation transversely isotropic MR elastography
URI https://dx.doi.org/10.1016/j.brain.2022.100051
https://www.proquest.com/docview/2733204442
https://doi.org/10.1016/j.brain.2022.100051
UnpaywallVersion publishedVersion
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 2666-5220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513170
  issn: 2666-5220
  databaseCode: ACRLP
  dateStart: 20201101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 2666-5220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513170
  issn: 2666-5220
  databaseCode: AIKHN
  dateStart: 20201101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2666-5220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002513170
  issn: 2666-5220
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tdg9wQSBAlMfKSBwxbZz3sVrtqoBaIaDScrJsZywFddOomwp64cIfZyaPshxYIY6JMsnE4_j7PJkHwKvM2YxohZNG-UJGSWRlRqxZJqlHVCbPVJsLs1gm81X07jK-PIKzIReGwyr7tb9b09vVuj8z6UdzUpfl5BNBS0LsgVNFGcnyYzgh_MmyEZzM3r6fLw-uFoJwQkn2trCIZJmh_lAb6WW5GcMbvhHHDEzj4G8YdYOD3tlVtdl_M-v1DTi6uA_3eh4pZp2qD-AIq4fwc1aV15tmu6lLJ66Qk3rZBqJmj_uWS6eKshJE-USX_rgXbYs-0aomuN4G8VcsBDtnRRtqKPG766t4i4ZhjaM4cL0Xv5-z-CiQKHjT175-BKuL889nc9l3WZBO5Ukggwi9z21mXRoUJqD9DU5TG9rYRDn63KcqtsZ4pwoXYkj7N6u8SzHBPJtaTPLwMYyqTYVPQIRFnHoXFcqaMMIitIary3FLGQwCIjZjUMO46kF57oSx1kOs2VfdvrFmY-jOGGN4fRCquwoct1-eDAbTf0wkTRhxu-DLwbyaPjH-b2Iq3OyuNU3XUHFdPTUGebD7vyjz9H-VeQZ3-ajz9TyHUbPd4QtiP4097Wf3KRwvfpzT0Wr5YfblF-M9CCE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoHOgFgdqqWwq4Uo91d2PneVwh0FLYPbQgcbNsZyyl2majJat2z_3jzOSxwAFU9ZpkkonH8XyezHzD2OfU2RRhhRNG-lyEcWhFiqhZxIkHkCZLZVMLM53Fk5vw2210u8VO-1oYSqvs1v52TW9W6-7IsBvNYVUUwx_oWmJED1QqSp4se8V2wkgl-HXujC8uJ7NNqAVdOHpJiraQiCCZnn-oyfSy1IzhK92IcgZGUfCcj3qEQXdXZWXWv818_sgdne-zvQ5H8nGr6gHbgvIN-zsui7tFvVxUheO_gIp6yQa8ooj7kqhTeVFyhHy8LX9c86ZFH29U48S3gfgVck7BWd6kGgr44zoWb16TW6MsDpiv-cNzpt85IASvO-7rt-zm_Oz6dCK6LgvCySwORBCC95lNrUuC3AS4v4FRYpWNTJiBz3wiI2uMdzJ3ChTu36z0LoEYsnRkIc7UO7ZdLkp4z7jKo8S7MJfWqBByZQ2xy1FLGQgCBDYDJvtx1b3y1Aljrvtcs5-6eWNNxtCtMQbsy0aoahk4Xr487g2mn0wkjT7iZcFPvXk1fmL038SUsFjdaZyuShKvnhwwsbH7vyjz4X-VOWG7k-vplb66mF0estd0po37fGTb9XIFR4iEanvczfR7zEUIIQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEBbFOeTUR9JSl6ZMIORUBa_2fTShIQQSSoghPQlJOwK3ztrYa1r32j_eGe1umpQ0pHcNeo2Yb0Yz3whxUDhbEKxw0ihfySRLrCwINcss94jKlIUKtTDnF9npJDm7Tq87nm2uhbn3fx_ysCy3SiBHTin-0R9xufRWlhLwHoitycXn8RduH0cgnFwqNep5hR6W_JftuYMtt9f1wmy-m9nsjpk5edHWb68COyFnl3w7Wjf2yP38i7vxiTt4KZ53cBPGrX68Es-w3hG745pc7ZsNHEJIAA2R9V3xa1xPV_NmOV9MHdwglwTzDcKC4_VLJl6FaQ0EGKEtntxAaPAHYWJgtg5Cv1gBh3YhJCpK_OE6DnBo2ChyDgjONvBnnvNLQALwTcec_VpMTj5dHZ_KrkeDdKrMIhkl6H1pC-vyqDIReUc4ym1sU5OU6Eufq9Qa452qXIwxeX9WeZdjhmUxspiV8RsxqOc1vhUQV2nuXVIpa-IEq9ga5qbjhjQYRQSLhkL1t6f7xXMfjZnuM9W-6rBjzUet26Meio-3QouWv-Px4VmvFrqDIC200HStjwvu90qk6YHyr4upcb5eaVL2WDErnxoKeatdT1nMu_8c_14MmuUa9wglNfZD9zp-AzXeEq0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+mechanical+properties+in+the+healthy+human+brain+estimated+with+multi-excitation+transversely+isotropic+MR+elastography&rft.jtitle=Brain+multiphysics&rft.au=Smith%2C+Daniel+R.&rft.au=Caban-Rivera%2C+Diego+A.&rft.au=McGarry%2C+Matthew+D.J.&rft.au=Williams%2C+L.+Tyler&rft.date=2022&rft.pub=Elsevier+Ltd&rft.issn=2666-5220&rft.eissn=2666-5220&rft.volume=3&rft_id=info:doi/10.1016%2Fj.brain.2022.100051&rft.externalDocID=S2666522022000089
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-5220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-5220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-5220&client=summon