UHF RFID Indoor Localization Algorithm Based on BP-SVR

With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment, the traditional RFID indoor localization algorithm cannot give superior performance. Because a large number of antennas cannot be deployed i...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of radio frequency identification (Online) Vol. 6; pp. 385 - 393
Main Authors Mo, Lingfei, Zhu, Yaojie, Zhang, Dongkai
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2469-7281
2469-729X
DOI10.1109/JRFID.2022.3145153

Cover

Abstract With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment, the traditional RFID indoor localization algorithm cannot give superior performance. Because a large number of antennas cannot be deployed in practical applications, the dimension of the signal strength feature vector obtained is relatively low, and it is not easy to fully describe the information in the environmental field. Thus, must adopt the appropriate antenna placement structure, the phase difference information can be effectively used as the feature. In this paper, a method of indoor localization algorithm based on Back Propagation-Support Vector Regression (BP-SVR) is proposed, which takes the signal strength and phase difference of the RFID tag as the feature inputs and uses the hidden layer of the neural network to enhance the dimensionality of the data. Moreover, the Sequential Minimal Optimization (SMO) algorithm is used to increase the rate of model learning. The method was valid in a 2D scene. Experimental results show that the method has an average positioning error of 9.5cm in the indoor area of 6m <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 8m.
AbstractList With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment, the traditional RFID indoor localization algorithm cannot give superior performance. Because a large number of antennas cannot be deployed in practical applications, the dimension of the signal strength feature vector obtained is relatively low, and it is not easy to fully describe the information in the environmental field. Thus, must adopt the appropriate antenna placement structure, the phase difference information can be effectively used as the feature. In this paper, a method of indoor localization algorithm based on Back Propagation-Support Vector Regression (BP-SVR) is proposed, which takes the signal strength and phase difference of the RFID tag as the feature inputs and uses the hidden layer of the neural network to enhance the dimensionality of the data. Moreover, the Sequential Minimal Optimization (SMO) algorithm is used to increase the rate of model learning. The method was valid in a 2D scene. Experimental results show that the method has an average positioning error of 9.5cm in the indoor area of 6m <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 8m.
With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment, the traditional RFID indoor localization algorithm cannot give superior performance. Because a large number of antennas cannot be deployed in practical applications, the dimension of the signal strength feature vector obtained is relatively low, and it is not easy to fully describe the information in the environmental field. Thus, must adopt the appropriate antenna placement structure, the phase difference information can be effectively used as the feature. In this paper, a method of indoor localization algorithm based on Back Propagation–Support Vector Regression (BP-SVR) is proposed, which takes the signal strength and phase difference of the RFID tag as the feature inputs and uses the hidden layer of the neural network to enhance the dimensionality of the data. Moreover, the Sequential Minimal Optimization (SMO) algorithm is used to increase the rate of model learning. The method was valid in a 2D scene. Experimental results show that the method has an average positioning error of 9.5cm in the indoor area of 6m [Formula Omitted] 8m.
Author Mo, Lingfei
Zhu, Yaojie
Zhang, Dongkai
Author_xml – sequence: 1
  givenname: Lingfei
  orcidid: 0000-0002-8561-9122
  surname: Mo
  fullname: Mo, Lingfei
  email: lfmo@seu.edu.cn
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu, China
– sequence: 2
  givenname: Yaojie
  orcidid: 0000-0001-7931-9804
  surname: Zhu
  fullname: Zhu, Yaojie
  email: zhuyj0929@163.com
  organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu, China
– sequence: 3
  givenname: Dongkai
  orcidid: 0000-0001-6172-2080
  surname: Zhang
  fullname: Zhang, Dongkai
  email: zdksw@qq.com
  organization: Zhongxing Telecom Equipment, Shanghai, China
BookMark eNp9kEtPAjEUhRujiYj8Ad1M4nqwj2lnugQUwZBoUIy7ptOHlgxTbIeF_nqHR1i4cHVvbs53T865AKe1rw0AVwj2EYL89nE-nt71McS4T1BGESUnoIMzxtMc8_fT416gc9CLcQkhxJwiQmkHsMVknGz5ZFpr70My80pW7kc2ztfJoPrwwTWfq2Qoo9FJexo-py9v80twZmUVTe8wu2Axvn8dTdLZ08N0NJilqnVoUmMUlUzmUFlCOOTMZppBUmDNM1pqrGCpIS4sM5nNEdEKMW1Irq2mqISlIl1ws_-7Dv5rY2Ijln4T6tZSYMbbRAwR1KrwXqWCjzEYK9bBrWT4FgiKbUViV5HYViQOFbVQ8QdSrtnFboJ01f_o9R51xpijF2c8hzkmv0enc3Y
CODEN IJRFAF
CitedBy_id crossref_primary_10_1109_TWC_2024_3414436
crossref_primary_10_1109_ACCESS_2024_3509516
crossref_primary_10_1109_TVT_2024_3425466
crossref_primary_10_3390_network4020011
crossref_primary_10_1109_LSENS_2025_3546092
crossref_primary_10_1109_OJCOMS_2024_3520005
crossref_primary_10_1088_2631_8695_ad7dcf
crossref_primary_10_3390_ijerph19105913
crossref_primary_10_1016_j_pmcj_2024_101944
crossref_primary_10_1109_ACCESS_2024_3360228
Cites_doi 10.1109/TASE.2021.3057433
10.1109/TIM.2018.2869408
10.1109/IWMN.2017.8078385
10.1109/IPIN.2018.8533847
10.1109/ECTICON.2008.4600544
10.1109/JSEN.2016.2624314
10.1109/TAP.2020.2982448
10.1023/A:1012431217818
10.1007/s10845-008-0158-5
10.1109/WD.2008.4812905
10.1109/RADAR.2002.1174758
10.1109/COMST.2016.2632427
10.1109/IWCMC.2017.7986549
10.1007/s12652-021-03219-4
10.1109/ICALIP.2016.7846624
10.1109/IMTC.2011.5944170
10.1109/JRFID.2019.2936969
10.1016/j.autcon.2015.12.001
10.23919/CJE.2009.10138253
10.1109/ISIE.2015.7281681
10.1007/978-3-540-27824-5_113
10.1109/RWS.2008.4463501
10.1109/ISMS.2014.162
10.1109/JRFID.2019.2924346
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/JRFID.2022.3145153
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 2469-729X
EndPage 393
ExternalDocumentID 10_1109_JRFID_2022_3145153
9697072
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2020YFD1100201
  funderid: 10.13039/501100012166
GroupedDBID 0R~
97E
AAJGR
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFS
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
JAVBF
OCL
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-eec5a6a70cf339096f4d60382d945bd2c0bd028f6e4f713dc16de37dfd51b0bc3
IEDL.DBID RIE
ISSN 2469-7281
IngestDate Mon Jun 30 04:30:39 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
Wed Oct 01 03:07:20 EDT 2025
Wed Aug 27 02:29:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-eec5a6a70cf339096f4d60382d945bd2c0bd028f6e4f713dc16de37dfd51b0bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7931-9804
0000-0002-8561-9122
0000-0001-6172-2080
PQID 2692816131
PQPubID 4437234
PageCount 9
ParticipantIDs crossref_primary_10_1109_JRFID_2022_3145153
crossref_citationtrail_10_1109_JRFID_2022_3145153
ieee_primary_9697072
proquest_journals_2692816131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220000
2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 20220000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of radio frequency identification (Online)
PublicationTitleAbbrev JRFID
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref15
ref14
ref11
Huang (ref13)
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
Huang (ref10)
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Keerthi (ref25) 2002; 46
References_xml – start-page: 511
  volume-title: Proc. Int. Conf. Comput. Sci. Softw. Eng.
  ident: ref13
  article-title: An improved Bayesian-based RFID indoor location algorithm
– ident: ref20
  doi: 10.1109/TASE.2021.3057433
– ident: ref21
  doi: 10.1109/TIM.2018.2869408
– ident: ref1
  doi: 10.1109/IWMN.2017.8078385
– ident: ref18
  doi: 10.1109/IPIN.2018.8533847
– ident: ref5
  doi: 10.1109/ECTICON.2008.4600544
– ident: ref11
  doi: 10.1109/JSEN.2016.2624314
– ident: ref19
  doi: 10.1109/TAP.2020.2982448
– volume: 46
  start-page: 351
  year: 2002
  ident: ref25
  article-title: Convergence of a generalized SMO algorithm for SVM classifier design
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012431217818
– ident: ref6
  doi: 10.1007/s10845-008-0158-5
– ident: ref8
  doi: 10.1109/WD.2008.4812905
– ident: ref26
  doi: 10.1109/RADAR.2002.1174758
– ident: ref3
  doi: 10.1109/COMST.2016.2632427
– ident: ref7
  doi: 10.1109/IWCMC.2017.7986549
– start-page: 280
  volume-title: Proc. Int. Conf. Comput. Model. Simul. Appl. Math.
  ident: ref10
  article-title: Research on indoor positioning algorithm based on trilateral positioning and Taylor series expansion
– ident: ref24
  doi: 10.1007/s12652-021-03219-4
– ident: ref15
  doi: 10.1109/ICALIP.2016.7846624
– ident: ref16
  doi: 10.1109/IMTC.2011.5944170
– ident: ref17
  doi: 10.1109/JRFID.2019.2936969
– ident: ref2
  doi: 10.1016/j.autcon.2015.12.001
– ident: ref9
  doi: 10.23919/CJE.2009.10138253
– ident: ref14
  doi: 10.1109/ISIE.2015.7281681
– ident: ref23
  doi: 10.1007/978-3-540-27824-5_113
– ident: ref22
  doi: 10.1109/RWS.2008.4463501
– ident: ref12
  doi: 10.1109/ISMS.2014.162
– ident: ref4
  doi: 10.1109/JRFID.2019.2924346
SSID ssj0002951355
Score 2.2877052
Snippet With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment,...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 385
SubjectTerms Algorithms
Antenna measurements
Antennas
Back propagation networks
BP neural networks
Fingerprint recognition
Indoor environments
indoor localization
Internet of Things
Localization
Location awareness
Machine learning
Neural networks
Optimization
Periodic structures
Phase shift
Radio frequency identification
RFID tags
Signal strength
Support vector machines
SVR
UHF RFID
Title UHF RFID Indoor Localization Algorithm Based on BP-SVR
URI https://ieeexplore.ieee.org/document/9697072
https://www.proquest.com/docview/2692816131
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2469-729X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002951355
  issn: 2469-7281
  databaseCode: RIE
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJy8-gkYUTQ_etNDuq90jqASIGINiuDXdR9WIrcFy8dc72xYSHzHemma32X7d3W--6c4MQqcMUxNyRtyAaRAoSYzdOA6EmzCubOU9E8fWDzm-4YMpHc3YrIbO17Ewxpji8Jlp28viX77O1NK6yjqCi8ALYMPdCEJexmqt_SkYTAXgzlVcjCc6o0l_eAkKEGMQphR4m3zhnqKYyo8duKCV_jYarwZUniZ5aS9z2VYf33I1_nfEO2irsi-dbjkhdlHNpA3Ep4O-Y8fpDFOdZQvn2jJYFYHpdOeP2eI5f3p1ekBp2oFbvVv37mGyh6b9q_uLgVsVTHAVvH7uGqNYzOPAUwkhAsRJQjX3SIi1oExqrDypwZ5IuKEJiFOtfK4NCXSimS89qcg-qqdZag6QIygsfRb6xDeEgkqUzEtCI8HeCw3VUjaRv4IyUlU2cVvUYh4VqsITUQF_ZOGPKvib6Gzd563MpfFn64bFc92ygrKJWqsvFlXL7T3CXOAQbFfiH_7e6wht2meXvpMWqueLpTkGayKXJ8U0-gSS8cQC
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPejFR9SIovbgTQvtvto9gkoAgRgF463pPqpGpAbLxV_vbFtIfMR4a5rddPt1d7_5pjszCJ0yTE3IGXEDpkGgJDF24zgQbsK4spX3TBxbP-RgyDtj2ntgDxV0voyFMcbkh89M3V7m__J1qubWVdYQXAReABvuKqOUsiJaa-lRwWAsAHsuImM80ejdtruXoAExBmlKgbnJF_bJy6n82INzYmlvosFiSMV5kpf6PJN19fEtW-N_x7yFNkoL02kWU2IbVcx0B_Fxp-3YcTrdqU7TmdO3HFbGYDrNyWM6e86eXp0WkJp24Fbrxr27v91F4_bV6KLjliUTXAWvn7nGKBbzOPBUQogAeZJQzT0SYi0okxorT2qwKBJuaALyVCufa0MCnWjmS08qsodWpunU7CNHUFj8LPSJbwgFnSiZl4RGgsUXGqqlrCJ_AWWkynzitqzFJMp1hSeiHP7Iwh-V8FfR2bLPW5FN48_WOxbPZcsSyiqqLb5YVC649whzgUOwXol_8HuvE7TWGQ36Ub87vD5E6_Y5hSelhlay2dwcgW2RyeN8Sn0CBsrHTw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UHF+RFID+Indoor+Localization+Algorithm+Based+on+BP-SVR&rft.jtitle=IEEE+journal+of+radio+frequency+identification+%28Online%29&rft.au=Mo%2C+Lingfei&rft.au=Zhu%2C+Yaojie&rft.au=Zhang%2C+Dongkai&rft.date=2022&rft.pub=IEEE&rft.eissn=2469-729X&rft.volume=6&rft.spage=385&rft.epage=393&rft_id=info:doi/10.1109%2FJRFID.2022.3145153&rft.externalDocID=9697072
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7281&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7281&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7281&client=summon