UHF RFID Indoor Localization Algorithm Based on BP-SVR
With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment, the traditional RFID indoor localization algorithm cannot give superior performance. Because a large number of antennas cannot be deployed i...
        Saved in:
      
    
          | Published in | IEEE journal of radio frequency identification (Online) Vol. 6; pp. 385 - 393 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2469-7281 2469-729X  | 
| DOI | 10.1109/JRFID.2022.3145153 | 
Cover
| Abstract | With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment, the traditional RFID indoor localization algorithm cannot give superior performance. Because a large number of antennas cannot be deployed in practical applications, the dimension of the signal strength feature vector obtained is relatively low, and it is not easy to fully describe the information in the environmental field. Thus, must adopt the appropriate antenna placement structure, the phase difference information can be effectively used as the feature. In this paper, a method of indoor localization algorithm based on Back Propagation-Support Vector Regression (BP-SVR) is proposed, which takes the signal strength and phase difference of the RFID tag as the feature inputs and uses the hidden layer of the neural network to enhance the dimensionality of the data. Moreover, the Sequential Minimal Optimization (SMO) algorithm is used to increase the rate of model learning. The method was valid in a 2D scene. Experimental results show that the method has an average positioning error of 9.5cm in the indoor area of 6m <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 8m. | 
    
|---|---|
| AbstractList | With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment, the traditional RFID indoor localization algorithm cannot give superior performance. Because a large number of antennas cannot be deployed in practical applications, the dimension of the signal strength feature vector obtained is relatively low, and it is not easy to fully describe the information in the environmental field. Thus, must adopt the appropriate antenna placement structure, the phase difference information can be effectively used as the feature. In this paper, a method of indoor localization algorithm based on Back Propagation-Support Vector Regression (BP-SVR) is proposed, which takes the signal strength and phase difference of the RFID tag as the feature inputs and uses the hidden layer of the neural network to enhance the dimensionality of the data. Moreover, the Sequential Minimal Optimization (SMO) algorithm is used to increase the rate of model learning. The method was valid in a 2D scene. Experimental results show that the method has an average positioning error of 9.5cm in the indoor area of 6m <inline-formula> <tex-math notation="LaTeX">\times </tex-math></inline-formula> 8m. With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment, the traditional RFID indoor localization algorithm cannot give superior performance. Because a large number of antennas cannot be deployed in practical applications, the dimension of the signal strength feature vector obtained is relatively low, and it is not easy to fully describe the information in the environmental field. Thus, must adopt the appropriate antenna placement structure, the phase difference information can be effectively used as the feature. In this paper, a method of indoor localization algorithm based on Back Propagation–Support Vector Regression (BP-SVR) is proposed, which takes the signal strength and phase difference of the RFID tag as the feature inputs and uses the hidden layer of the neural network to enhance the dimensionality of the data. Moreover, the Sequential Minimal Optimization (SMO) algorithm is used to increase the rate of model learning. The method was valid in a 2D scene. Experimental results show that the method has an average positioning error of 9.5cm in the indoor area of 6m [Formula Omitted] 8m.  | 
    
| Author | Mo, Lingfei Zhu, Yaojie Zhang, Dongkai  | 
    
| Author_xml | – sequence: 1 givenname: Lingfei orcidid: 0000-0002-8561-9122 surname: Mo fullname: Mo, Lingfei email: lfmo@seu.edu.cn organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu, China – sequence: 2 givenname: Yaojie orcidid: 0000-0001-7931-9804 surname: Zhu fullname: Zhu, Yaojie email: zhuyj0929@163.com organization: School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu, China – sequence: 3 givenname: Dongkai orcidid: 0000-0001-6172-2080 surname: Zhang fullname: Zhang, Dongkai email: zdksw@qq.com organization: Zhongxing Telecom Equipment, Shanghai, China  | 
    
| BookMark | eNp9kEtPAjEUhRujiYj8Ad1M4nqwj2lnugQUwZBoUIy7ptOHlgxTbIeF_nqHR1i4cHVvbs53T865AKe1rw0AVwj2EYL89nE-nt71McS4T1BGESUnoIMzxtMc8_fT416gc9CLcQkhxJwiQmkHsMVknGz5ZFpr70My80pW7kc2ztfJoPrwwTWfq2Qoo9FJexo-py9v80twZmUVTe8wu2Axvn8dTdLZ08N0NJilqnVoUmMUlUzmUFlCOOTMZppBUmDNM1pqrGCpIS4sM5nNEdEKMW1Irq2mqISlIl1ws_-7Dv5rY2Ijln4T6tZSYMbbRAwR1KrwXqWCjzEYK9bBrWT4FgiKbUViV5HYViQOFbVQ8QdSrtnFboJ01f_o9R51xpijF2c8hzkmv0enc3Y | 
    
| CODEN | IJRFAF | 
    
| CitedBy_id | crossref_primary_10_1109_TWC_2024_3414436 crossref_primary_10_1109_ACCESS_2024_3509516 crossref_primary_10_1109_TVT_2024_3425466 crossref_primary_10_3390_network4020011 crossref_primary_10_1109_LSENS_2025_3546092 crossref_primary_10_1109_OJCOMS_2024_3520005 crossref_primary_10_1088_2631_8695_ad7dcf crossref_primary_10_3390_ijerph19105913 crossref_primary_10_1016_j_pmcj_2024_101944 crossref_primary_10_1109_ACCESS_2024_3360228  | 
    
| Cites_doi | 10.1109/TASE.2021.3057433 10.1109/TIM.2018.2869408 10.1109/IWMN.2017.8078385 10.1109/IPIN.2018.8533847 10.1109/ECTICON.2008.4600544 10.1109/JSEN.2016.2624314 10.1109/TAP.2020.2982448 10.1023/A:1012431217818 10.1007/s10845-008-0158-5 10.1109/WD.2008.4812905 10.1109/RADAR.2002.1174758 10.1109/COMST.2016.2632427 10.1109/IWCMC.2017.7986549 10.1007/s12652-021-03219-4 10.1109/ICALIP.2016.7846624 10.1109/IMTC.2011.5944170 10.1109/JRFID.2019.2936969 10.1016/j.autcon.2015.12.001 10.23919/CJE.2009.10138253 10.1109/ISIE.2015.7281681 10.1007/978-3-540-27824-5_113 10.1109/RWS.2008.4463501 10.1109/ISMS.2014.162 10.1109/JRFID.2019.2924346  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| DOI | 10.1109/JRFID.2022.3145153 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2469-729X | 
    
| EndPage | 393 | 
    
| ExternalDocumentID | 10_1109_JRFID_2022_3145153 9697072  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2020YFD1100201 funderid: 10.13039/501100012166  | 
    
| GroupedDBID | 0R~ 97E AAJGR AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG ACGFS AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE JAVBF OCL RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c295t-eec5a6a70cf339096f4d60382d945bd2c0bd028f6e4f713dc16de37dfd51b0bc3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2469-7281 | 
    
| IngestDate | Mon Jun 30 04:30:39 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 Wed Oct 01 03:07:20 EDT 2025 Wed Aug 27 02:29:16 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c295t-eec5a6a70cf339096f4d60382d945bd2c0bd028f6e4f713dc16de37dfd51b0bc3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-7931-9804 0000-0002-8561-9122 0000-0001-6172-2080  | 
    
| PQID | 2692816131 | 
    
| PQPubID | 4437234 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | crossref_primary_10_1109_JRFID_2022_3145153 crossref_citationtrail_10_1109_JRFID_2022_3145153 ieee_primary_9697072 proquest_journals_2692816131  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220000 2022-00-00 20220101  | 
    
| PublicationDateYYYYMMDD | 2022-01-01 | 
    
| PublicationDate_xml | – year: 2022 text: 20220000  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE journal of radio frequency identification (Online) | 
    
| PublicationTitleAbbrev | JRFID | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref12 ref15 ref14 ref11 Huang (ref13) ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 Huang (ref10) ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Keerthi (ref25) 2002; 46  | 
    
| References_xml | – start-page: 511 volume-title: Proc. Int. Conf. Comput. Sci. Softw. Eng. ident: ref13 article-title: An improved Bayesian-based RFID indoor location algorithm – ident: ref20 doi: 10.1109/TASE.2021.3057433 – ident: ref21 doi: 10.1109/TIM.2018.2869408 – ident: ref1 doi: 10.1109/IWMN.2017.8078385 – ident: ref18 doi: 10.1109/IPIN.2018.8533847 – ident: ref5 doi: 10.1109/ECTICON.2008.4600544 – ident: ref11 doi: 10.1109/JSEN.2016.2624314 – ident: ref19 doi: 10.1109/TAP.2020.2982448 – volume: 46 start-page: 351 year: 2002 ident: ref25 article-title: Convergence of a generalized SMO algorithm for SVM classifier design publication-title: Mach. Learn. doi: 10.1023/A:1012431217818 – ident: ref6 doi: 10.1007/s10845-008-0158-5 – ident: ref8 doi: 10.1109/WD.2008.4812905 – ident: ref26 doi: 10.1109/RADAR.2002.1174758 – ident: ref3 doi: 10.1109/COMST.2016.2632427 – ident: ref7 doi: 10.1109/IWCMC.2017.7986549 – start-page: 280 volume-title: Proc. Int. Conf. Comput. Model. Simul. Appl. Math. ident: ref10 article-title: Research on indoor positioning algorithm based on trilateral positioning and Taylor series expansion – ident: ref24 doi: 10.1007/s12652-021-03219-4 – ident: ref15 doi: 10.1109/ICALIP.2016.7846624 – ident: ref16 doi: 10.1109/IMTC.2011.5944170 – ident: ref17 doi: 10.1109/JRFID.2019.2936969 – ident: ref2 doi: 10.1016/j.autcon.2015.12.001 – ident: ref9 doi: 10.23919/CJE.2009.10138253 – ident: ref14 doi: 10.1109/ISIE.2015.7281681 – ident: ref23 doi: 10.1007/978-3-540-27824-5_113 – ident: ref22 doi: 10.1109/RWS.2008.4463501 – ident: ref12 doi: 10.1109/ISMS.2014.162 – ident: ref4 doi: 10.1109/JRFID.2019.2924346  | 
    
| SSID | ssj0002951355 | 
    
| Score | 2.2877052 | 
    
| Snippet | With the widespread of Internet of Things (IoT), Radio Frequency Identification (RFID) technology is used in various fields. In the complex indoor environment,... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 385 | 
    
| SubjectTerms | Algorithms Antenna measurements Antennas Back propagation networks BP neural networks Fingerprint recognition Indoor environments indoor localization Internet of Things Localization Location awareness Machine learning Neural networks Optimization Periodic structures Phase shift Radio frequency identification RFID tags Signal strength Support vector machines SVR UHF RFID  | 
    
| Title | UHF RFID Indoor Localization Algorithm Based on BP-SVR | 
    
| URI | https://ieeexplore.ieee.org/document/9697072 https://www.proquest.com/docview/2692816131  | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2469-729X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002951355 issn: 2469-7281 databaseCode: RIE dateStart: 20170101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4gJy8-gkYUTQ_etNDuq90jqASIGINiuDXdR9WIrcFy8dc72xYSHzHemma32X7d3W--6c4MQqcMUxNyRtyAaRAoSYzdOA6EmzCubOU9E8fWDzm-4YMpHc3YrIbO17Ewxpji8Jlp28viX77O1NK6yjqCi8ALYMPdCEJexmqt_SkYTAXgzlVcjCc6o0l_eAkKEGMQphR4m3zhnqKYyo8duKCV_jYarwZUniZ5aS9z2VYf33I1_nfEO2irsi-dbjkhdlHNpA3Ep4O-Y8fpDFOdZQvn2jJYFYHpdOeP2eI5f3p1ekBp2oFbvVv37mGyh6b9q_uLgVsVTHAVvH7uGqNYzOPAUwkhAsRJQjX3SIi1oExqrDypwZ5IuKEJiFOtfK4NCXSimS89qcg-qqdZag6QIygsfRb6xDeEgkqUzEtCI8HeCw3VUjaRv4IyUlU2cVvUYh4VqsITUQF_ZOGPKvib6Gzd563MpfFn64bFc92ygrKJWqsvFlXL7T3CXOAQbFfiH_7e6wht2meXvpMWqueLpTkGayKXJ8U0-gSS8cQC | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEN4QPejFR9SIovbgTQvtvto9gkoAgRgF463pPqpGpAbLxV_vbFtIfMR4a5rddPt1d7_5pjszCJ0yTE3IGXEDpkGgJDF24zgQbsK4spX3TBxbP-RgyDtj2ntgDxV0voyFMcbkh89M3V7m__J1qubWVdYQXAReABvuKqOUsiJaa-lRwWAsAHsuImM80ejdtruXoAExBmlKgbnJF_bJy6n82INzYmlvosFiSMV5kpf6PJN19fEtW-N_x7yFNkoL02kWU2IbVcx0B_Fxp-3YcTrdqU7TmdO3HFbGYDrNyWM6e86eXp0WkJp24Fbrxr27v91F4_bV6KLjliUTXAWvn7nGKBbzOPBUQogAeZJQzT0SYi0okxorT2qwKBJuaALyVCufa0MCnWjmS08qsodWpunU7CNHUFj8LPSJbwgFnSiZl4RGgsUXGqqlrCJ_AWWkynzitqzFJMp1hSeiHP7Iwh-V8FfR2bLPW5FN48_WOxbPZcsSyiqqLb5YVC649whzgUOwXol_8HuvE7TWGQ36Ub87vD5E6_Y5hSelhlay2dwcgW2RyeN8Sn0CBsrHTw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=UHF+RFID+Indoor+Localization+Algorithm+Based+on+BP-SVR&rft.jtitle=IEEE+journal+of+radio+frequency+identification+%28Online%29&rft.au=Mo%2C+Lingfei&rft.au=Zhu%2C+Yaojie&rft.au=Zhang%2C+Dongkai&rft.date=2022&rft.pub=IEEE&rft.eissn=2469-729X&rft.volume=6&rft.spage=385&rft.epage=393&rft_id=info:doi/10.1109%2FJRFID.2022.3145153&rft.externalDocID=9697072 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-7281&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-7281&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-7281&client=summon |