Intelligent Fault Diagnosis of Multichannel Motor-Rotor System Based on Multimanifold Deep Extreme Learning Machine

Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of mechatronics equipment. To implement the rapid fusion of multichannel data and intelligent diagnosis, a new fault diagnosis method for multichan...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 25; no. 5; pp. 2177 - 2187
Main Authors Zhao, Xiaoli, Jia, Minping, Ding, Peng, Yang, Chen, She, Daoming, Liu, Zheng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1083-4435
1941-014X
DOI10.1109/TMECH.2020.3004589

Cover

More Information
Summary:Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of mechatronics equipment. To implement the rapid fusion of multichannel data and intelligent diagnosis, a new fault diagnosis method for multichannel motor-rotor system via multimanifold deep extreme learning machine (MDELM) algorithm is first proposed in this article. Specifically, the designed MDELM algorithm is divided into two main components: 1) unsupervised self-taught feature extraction via the designed extreme learning machine based-modified sparse filtering feature extractor; 2) semisupervised fault classification via the designed MELM classifier with multimanifold constraints to mine the intraclass and interclass discriminant feature information. Experimental and industrial data from motor-rotor system demonstrates the superiority of the proposed method and algorithms. Compared with other fault diagnosis methods, the proposed MDELM algorithm has better learning efficiency, and it is more suitable for intelligent diagnosis of multichannel data fusion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1083-4435
1941-014X
DOI:10.1109/TMECH.2020.3004589