Intelligent Fault Diagnosis of Multichannel Motor-Rotor System Based on Multimanifold Deep Extreme Learning Machine
Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of mechatronics equipment. To implement the rapid fusion of multichannel data and intelligent diagnosis, a new fault diagnosis method for multichan...
Saved in:
| Published in | IEEE/ASME transactions on mechatronics Vol. 25; no. 5; pp. 2177 - 2187 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1083-4435 1941-014X |
| DOI | 10.1109/TMECH.2020.3004589 |
Cover
| Abstract | Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of mechatronics equipment. To implement the rapid fusion of multichannel data and intelligent diagnosis, a new fault diagnosis method for multichannel motor-rotor system via multimanifold deep extreme learning machine (MDELM) algorithm is first proposed in this article. Specifically, the designed MDELM algorithm is divided into two main components: 1) unsupervised self-taught feature extraction via the designed extreme learning machine based-modified sparse filtering feature extractor; 2) semisupervised fault classification via the designed MELM classifier with multimanifold constraints to mine the intraclass and interclass discriminant feature information. Experimental and industrial data from motor-rotor system demonstrates the superiority of the proposed method and algorithms. Compared with other fault diagnosis methods, the proposed MDELM algorithm has better learning efficiency, and it is more suitable for intelligent diagnosis of multichannel data fusion. |
|---|---|
| AbstractList | Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of mechatronics equipment. To implement the rapid fusion of multichannel data and intelligent diagnosis, a new fault diagnosis method for multichannel motor–rotor system via multimanifold deep extreme learning machine (MDELM) algorithm is first proposed in this article. Specifically, the designed MDELM algorithm is divided into two main components: 1) unsupervised self-taught feature extraction via the designed extreme learning machine based-modified sparse filtering feature extractor; 2) semisupervised fault classification via the designed MELM classifier with multimanifold constraints to mine the intraclass and interclass discriminant feature information. Experimental and industrial data from motor–rotor system demonstrates the superiority of the proposed method and algorithms. Compared with other fault diagnosis methods, the proposed MDELM algorithm has better learning efficiency, and it is more suitable for intelligent diagnosis of multichannel data fusion. |
| Author | Yang, Chen She, Daoming Zhao, Xiaoli Ding, Peng Jia, Minping Liu, Zheng |
| Author_xml | – sequence: 1 givenname: Xiaoli orcidid: 0000-0002-9803-4158 surname: Zhao fullname: Zhao, Xiaoli email: zhaoxiaoli5258@163.com organization: School of Mechanical Engineering, Southeast University, Nanjing, China – sequence: 2 givenname: Minping orcidid: 0000-0001-9010-2307 surname: Jia fullname: Jia, Minping email: mpjia@163.com organization: School of Mechanical Engineering, Southeast University, Nanjing, China – sequence: 3 givenname: Peng orcidid: 0000-0003-4419-4858 surname: Ding fullname: Ding, Peng email: dingdapeng1005@outlook.com organization: School of Mechanical Engineering, Southeast University, Nanjing, China – sequence: 4 givenname: Chen surname: Yang fullname: Yang, Chen email: yangcheng@seu.edu.cn organization: School of Mechanical Engineering, Southeast University, Nanjing, China – sequence: 5 givenname: Daoming orcidid: 0000-0002-4499-9851 surname: She fullname: She, Daoming email: shedaoming@126.com organization: School of Mechanical Engineering, Southeast University, Nanjing, China – sequence: 6 givenname: Zheng orcidid: 0000-0002-7241-3483 surname: Liu fullname: Liu, Zheng email: zheng.liu@ubc.ca organization: School of Engineering, University of British Columbia, Kelowna, Canada |
| BookMark | eNp9kMtKAzEUQIMo-PwB3QRcT81NMq-l1tYWOghawd2QZu7UyDSpSQr6905tceHCTRLCOffCOSWH1lkk5BLYAICVN_NqNJwMOONsIBiTaVEekBMoJSQM5Oth_2aFSKQU6TE5DeGd9RAwOCFhaiN2nVmijXSsNl2k90YtrQsmUNfSqv8x-k1Zix2tXHQ-edqe9PkrRFzROxWwoc7uwJWypnVdQ-8R13T0GT2ukM5QeWvsklZKvxmL5-SoVV3Ai_19Rl7Go_lwksweH6bD21mieZnGBNOFLpmSeVNkLSCKFJTMBHCWLXTRIGao-GKRijwXDKUGrYpM8UKmwHLIlDgj17u5a-8-Nhhi_e423vYra95DUEKZs54qdpT2LgSPba1NVNE4G70yXQ2s3iaufxLX28T1PnGv8j_q2vcN_Nf_0tVOMoj4K5TAZZbl4hsWzYpx |
| CODEN | IATEFW |
| CitedBy_id | crossref_primary_10_1109_TII_2022_3161674 crossref_primary_10_1016_j_measurement_2022_111150 crossref_primary_10_1109_TIE_2021_3135520 crossref_primary_10_1109_TMECH_2022_3214505 crossref_primary_10_1002_int_22831 crossref_primary_10_1088_1361_6501_ac919b crossref_primary_10_1007_s10462_020_09910_w crossref_primary_10_1016_j_measurement_2024_116608 crossref_primary_10_1109_TIM_2021_3075017 crossref_primary_10_1080_21642583_2021_1992684 crossref_primary_10_1109_TIM_2024_3427866 crossref_primary_10_1109_TMECH_2021_3125767 crossref_primary_10_1088_1361_6501_ad4c87 crossref_primary_10_3390_machines10080610 crossref_primary_10_1016_j_inffus_2023_102186 crossref_primary_10_1016_j_isatra_2023_12_031 crossref_primary_10_1109_TIM_2020_3016045 crossref_primary_10_1109_TIM_2021_3124053 crossref_primary_10_1016_j_mechmachtheory_2023_105288 crossref_primary_10_1016_j_asoc_2023_110243 crossref_primary_10_1016_j_measurement_2020_108823 crossref_primary_10_1109_JSEN_2022_3160762 crossref_primary_10_3390_electronics11223741 crossref_primary_10_1109_TMECH_2023_3347631 crossref_primary_10_1016_j_isatra_2021_03_013 crossref_primary_10_1109_TMECH_2023_3314215 crossref_primary_10_1016_j_isatra_2023_09_027 crossref_primary_10_1109_TIM_2020_3042300 crossref_primary_10_1016_j_cie_2023_109286 crossref_primary_10_1109_TMECH_2022_3177174 crossref_primary_10_1109_TMECH_2021_3079409 crossref_primary_10_1177_09574565221139638 crossref_primary_10_1080_09544828_2023_2261095 crossref_primary_10_1093_ijlct_ctab100 crossref_primary_10_1007_s40313_021_00780_3 crossref_primary_10_1109_TII_2020_3034189 crossref_primary_10_3390_jmse11071385 crossref_primary_10_1016_j_aei_2022_101648 crossref_primary_10_1007_s11071_023_08877_x crossref_primary_10_1109_JSEN_2022_3179165 crossref_primary_10_3390_electronics12030642 crossref_primary_10_1109_TMECH_2021_3124415 crossref_primary_10_3390_s22113997 crossref_primary_10_1109_TIM_2020_3041087 crossref_primary_10_1177_01423312211037621 crossref_primary_10_1371_journal_pone_0262883 crossref_primary_10_1109_TMECH_2022_3179289 crossref_primary_10_1109_TMECH_2020_3041768 crossref_primary_10_1109_TMECH_2020_3046277 crossref_primary_10_1016_j_ress_2022_108969 crossref_primary_10_1007_s11071_021_06827_z crossref_primary_10_1109_TMECH_2022_3169143 crossref_primary_10_1109_TII_2021_3091143 crossref_primary_10_1088_1757_899X_1136_1_012059 crossref_primary_10_1016_j_knosys_2024_112952 crossref_primary_10_1088_1361_6501_ac1283 crossref_primary_10_3390_en14092509 crossref_primary_10_1109_TMECH_2021_3058061 crossref_primary_10_1016_j_knosys_2022_110172 crossref_primary_10_1109_JSEN_2022_3160183 |
| Cites_doi | 10.1016/j.neucom.2012.08.010 10.1109/TPAMI.2008.235 10.1109/TMECH.2013.2260865 10.1016/j.patcog.2015.09.014 10.1109/TII.2018.2881543 10.1109/TIE.2018.2873546 10.1016/j.neucom.2005.12.126 10.1016/j.neucom.2019.08.010 10.1016/j.neucom.2013.03.059 10.3390/s19061440 10.1016/j.ress.2013.02.022 10.1109/TII.2018.2851961 10.1109/TPAMI.2010.92 10.1109/TMECH.2017.2728371 10.1109/TIE.2017.2762639 10.1109/TMECH.2019.2951589 10.1016/j.neucom.2018.07.038 10.1007/s13042-011-0024-1 10.1016/j.measurement.2017.03.016 10.1109/TCYB.2014.2307349 10.1109/TMECH.2017.2759301 10.1109/ACCESS.2018.2888842 10.1109/ACCESS.2019.2894014 10.1109/TNNLS.2015.2424995 10.1016/j.ymssp.2013.06.004 10.1109/TSMC.2017.2691774 10.1109/TII.2018.2819674 10.1016/j.neucom.2019.03.084 10.1109/TIM.2019.2925247 10.1109/ICMLA.2017.0-177 10.1109/TIM.2019.2923829 10.1016/j.ymssp.2009.05.001 10.1016/j.jsv.2014.09.026 10.1109/TNN.2008.2005605 10.1186/1471-2105-7-91 10.1016/j.inffus.2005.07.003 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| DOI | 10.1109/TMECH.2020.3004589 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-014X |
| EndPage | 2187 |
| ExternalDocumentID | 10_1109_TMECH_2020_3004589 9124667 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51675098 funderid: 10.13039/501100001809 – fundername: China Scholarship Council funderid: 10.13039/501100004543 – fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province, China grantid: SJKY190064 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFS ACIWK ACKIV AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 OCL RIA RIE RNS TN5 VH1 AAYXX CITATION 7SC 7SP 7TB 8FD FR3 JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-e5bc90a47d86f1ee351a4631206bc8dee6ea2bb537730e4c1ca86a284510716a3 |
| IEDL.DBID | RIE |
| ISSN | 1083-4435 |
| IngestDate | Mon Jun 30 05:14:13 EDT 2025 Thu Apr 24 23:11:40 EDT 2025 Wed Oct 01 05:02:31 EDT 2025 Wed Aug 27 02:30:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-e5bc90a47d86f1ee351a4631206bc8dee6ea2bb537730e4c1ca86a284510716a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4419-4858 0000-0001-9010-2307 0000-0002-4499-9851 0000-0002-7241-3483 0000-0002-9803-4158 |
| PQID | 2451191970 |
| PQPubID | 85420 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2451191970 ieee_primary_9124667 crossref_citationtrail_10_1109_TMECH_2020_3004589 crossref_primary_10_1109_TMECH_2020_3004589 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Oct. 2020-10-00 20201001 |
| PublicationDateYYYYMMDD | 2020-10-01 |
| PublicationDate_xml | – month: 10 year: 2020 text: 2020-Oct. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE/ASME transactions on mechatronics |
| PublicationTitleAbbrev | TMECH |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 Zhao (ref3) 2019 ref19 ref18 Kasun (ref29) 2013; 28 ref24 ref23 ref25 ref20 ref22 ref21 ref28 Ngiam (ref26) 2011 ref27 ref8 ref7 ref9 ref4 ref6 ref5 |
| References_xml | – ident: ref23 doi: 10.1016/j.neucom.2012.08.010 – ident: ref34 doi: 10.1109/TPAMI.2008.235 – ident: ref10 doi: 10.1109/TMECH.2013.2260865 – ident: ref18 doi: 10.1016/j.patcog.2015.09.014 – ident: ref11 doi: 10.1109/TII.2018.2881543 – ident: ref16 doi: 10.1109/TIE.2018.2873546 – ident: ref17 doi: 10.1016/j.neucom.2005.12.126 – year: 2019 ident: ref3 article-title: A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery publication-title: Struct. Health Monit. – ident: ref8 doi: 10.1016/j.neucom.2019.08.010 – ident: ref20 doi: 10.1016/j.neucom.2013.03.059 – ident: ref14 doi: 10.3390/s19061440 – ident: ref24 doi: 10.1016/j.ress.2013.02.022 – ident: ref33 doi: 10.1109/TII.2018.2851961 – ident: ref35 doi: 10.1109/TPAMI.2010.92 – ident: ref9 doi: 10.1109/TMECH.2017.2728371 – ident: ref6 doi: 10.1109/TIE.2017.2762639 – ident: ref7 doi: 10.1109/TMECH.2019.2951589 – ident: ref15 doi: 10.1016/j.neucom.2018.07.038 – ident: ref19 doi: 10.1007/s13042-011-0024-1 – ident: ref27 doi: 10.1016/j.measurement.2017.03.016 – ident: ref22 doi: 10.1109/TCYB.2014.2307349 – volume: 28 start-page: 31 issue: 6 year: 2013 ident: ref29 article-title: Representational learning with extreme learning machine for Big Data publication-title: IEEE Intell. Syst. – ident: ref4 doi: 10.1109/TMECH.2017.2759301 – ident: ref25 doi: 10.1109/ACCESS.2018.2888842 – ident: ref28 doi: 10.1109/ACCESS.2019.2894014 – ident: ref30 doi: 10.1109/TNNLS.2015.2424995 – ident: ref1 doi: 10.1016/j.ymssp.2013.06.004 – ident: ref21 doi: 10.1109/TSMC.2017.2691774 – ident: ref5 doi: 10.1109/TII.2018.2819674 – ident: ref32 doi: 10.1016/j.neucom.2019.03.084 – ident: ref13 doi: 10.1109/TIM.2019.2925247 – start-page: 1125 volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2011 ident: ref26 article-title: Sparse filtering – ident: ref36 doi: 10.1109/ICMLA.2017.0-177 – ident: ref2 doi: 10.1109/TIM.2019.2923829 – ident: ref37 doi: 10.1016/j.ymssp.2009.05.001 – ident: ref38 doi: 10.1016/j.jsv.2014.09.026 – ident: ref31 doi: 10.1109/TNN.2008.2005605 – ident: ref39 doi: 10.1186/1471-2105-7-91 – ident: ref12 doi: 10.1016/j.inffus.2005.07.003 |
| SSID | ssj0004101 |
| Score | 2.5590878 |
| Snippet | Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2177 |
| SubjectTerms | Algorithms Artificial neural networks Data integration Data mining Fault diagnosis Feature extraction IEEE transactions information fusion intraclass and interclass information Machine learning Manifolds Mechatronics Military helicopters motor–rotor system multimanifold deep extreme learning machine (MDELM) Rotors |
| Title | Intelligent Fault Diagnosis of Multichannel Motor-Rotor System Based on Multimanifold Deep Extreme Learning Machine |
| URI | https://ieeexplore.ieee.org/document/9124667 https://www.proquest.com/docview/2451191970 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-014X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004101 issn: 1083-4435 databaseCode: RIE dateStart: 19960101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0tnODQUhbUbaHyoTeaJc6HHR8L7GqpFA4VSNwixxlXiFWy6malil_P2MkuCCrEJcrBjiy9seeNM_MG4LuM0BJNFUHGJQUokbWBCrEKyiRLYivRCp-MmV-J2U3y6za9HcCPTS0MIvrkMxy7V_8vv2rMyl2VnSpyRkLILdiSmehqtZ5qILlvdcyJUgQJcYB1gUyoTq_zyfmMQsGIIlRHYVxL92dOyHdVeXUUe_8y_Qj5emVdWsn9eNWWY_PwQrTxvUvfgw890WQ_O8v4BAOs92H3mfzgEJaXGz3Olk31at6yiy7z7m7JGst8ca6rDK5xzvKGovPgt3uyTuacnZEHrFhTdwOdkIZt5hW7QFywyb_W3TyyXr_1D8t91iYewM10cn0-C_omDIGJVNoGmJZGhTqRVSYsR4xTrhMR8ygUpckqRIE6Kss0lnRWYGK40ZnQ5PRos1MspuND2K6bGj8D07bisiopREnp6DBkBahVapSWxDGI6IyAr1EpTK9Q7hplzAsfqYSq8EgWDsmiR3IEJ5s5i06f483RQwfNZmSPygiO1uAX_RZeFpFTblNcyfDL_2d9hR337S6z7wi2278rPCaG0pbfvGk-AnxV4X0 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOfBXEQgEfuEG2ceKP-AjtrrbQ9IC2Um-R44wrxCqp2KyE-PWMnexSAUJcohxsxdIbe944M28A3ugMPdFUlRRcU4CSeZ-YFJukFoXIvUavYjJmea4WF-Ljpbzcg3e7WhhEjMlnOA2v8V9-07lNuCo7MuSMlNK34LYUQsihWutXFSSPzY45kYpEEAvYlsik5mhZzo4XFAxmFKMGEhOaut9wQ7Gvyh-HcfQw8wdQbtc2JJZ8nW76eup-_Cbb-L-Lfwj3R6rJ3g-28Qj2sH0M924IEB7A-nSnyNmzud2senYy5N59WbPOs1ieG2qDW1yxsqP4PPkcnmwQOmcfyAc2rGuHgUFKw3erhp0gXrPZ9z7cPbJRwfWKlTFvE5_AxXy2PF4kYxuGxGVG9gnK2pnUCt0UynPEXHIrVM6zVNWuaBAV2qyuZa7ptEDhuLOFsuT2aLtTNGbzp7Dfdi0-A2Z9w3VTU5Ai6fBwZAdojXTGamIZRHUmwLeoVG7UKA-tMlZVjFVSU0Ukq4BkNSI5gbe7OdeDQsc_Rx8EaHYjR1QmcLgFvxo38brKgnab4Uanz_8-6zXcWSzLs-rs9PzTC7gbvjPk-R3Cfv9tgy-Jr_T1q2imPwFyXeTK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Fault+Diagnosis+of+Multichannel+Motor%E2%80%93Rotor+System+Based+on+Multimanifold+Deep+Extreme+Learning+Machine&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Zhao%2C+Xiaoli&rft.au=Jia%2C+Minping&rft.au=Ding%2C+Peng&rft.au=Chen%2C+Yang&rft.date=2020-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=25&rft.issue=5&rft.spage=2177&rft_id=info:doi/10.1109%2FTMECH.2020.3004589&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon |