Intelligent Fault Diagnosis of Multichannel Motor-Rotor System Based on Multimanifold Deep Extreme Learning Machine

Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of mechatronics equipment. To implement the rapid fusion of multichannel data and intelligent diagnosis, a new fault diagnosis method for multichan...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ASME transactions on mechatronics Vol. 25; no. 5; pp. 2177 - 2187
Main Authors Zhao, Xiaoli, Jia, Minping, Ding, Peng, Yang, Chen, She, Daoming, Liu, Zheng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1083-4435
1941-014X
DOI10.1109/TMECH.2020.3004589

Cover

Abstract Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of mechatronics equipment. To implement the rapid fusion of multichannel data and intelligent diagnosis, a new fault diagnosis method for multichannel motor-rotor system via multimanifold deep extreme learning machine (MDELM) algorithm is first proposed in this article. Specifically, the designed MDELM algorithm is divided into two main components: 1) unsupervised self-taught feature extraction via the designed extreme learning machine based-modified sparse filtering feature extractor; 2) semisupervised fault classification via the designed MELM classifier with multimanifold constraints to mine the intraclass and interclass discriminant feature information. Experimental and industrial data from motor-rotor system demonstrates the superiority of the proposed method and algorithms. Compared with other fault diagnosis methods, the proposed MDELM algorithm has better learning efficiency, and it is more suitable for intelligent diagnosis of multichannel data fusion.
AbstractList Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of mechatronics equipment. To implement the rapid fusion of multichannel data and intelligent diagnosis, a new fault diagnosis method for multichannel motor–rotor system via multimanifold deep extreme learning machine (MDELM) algorithm is first proposed in this article. Specifically, the designed MDELM algorithm is divided into two main components: 1) unsupervised self-taught feature extraction via the designed extreme learning machine based-modified sparse filtering feature extractor; 2) semisupervised fault classification via the designed MELM classifier with multimanifold constraints to mine the intraclass and interclass discriminant feature information. Experimental and industrial data from motor–rotor system demonstrates the superiority of the proposed method and algorithms. Compared with other fault diagnosis methods, the proposed MDELM algorithm has better learning efficiency, and it is more suitable for intelligent diagnosis of multichannel data fusion.
Author Yang, Chen
She, Daoming
Zhao, Xiaoli
Ding, Peng
Jia, Minping
Liu, Zheng
Author_xml – sequence: 1
  givenname: Xiaoli
  orcidid: 0000-0002-9803-4158
  surname: Zhao
  fullname: Zhao, Xiaoli
  email: zhaoxiaoli5258@163.com
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
– sequence: 2
  givenname: Minping
  orcidid: 0000-0001-9010-2307
  surname: Jia
  fullname: Jia, Minping
  email: mpjia@163.com
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
– sequence: 3
  givenname: Peng
  orcidid: 0000-0003-4419-4858
  surname: Ding
  fullname: Ding, Peng
  email: dingdapeng1005@outlook.com
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
– sequence: 4
  givenname: Chen
  surname: Yang
  fullname: Yang, Chen
  email: yangcheng@seu.edu.cn
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
– sequence: 5
  givenname: Daoming
  orcidid: 0000-0002-4499-9851
  surname: She
  fullname: She, Daoming
  email: shedaoming@126.com
  organization: School of Mechanical Engineering, Southeast University, Nanjing, China
– sequence: 6
  givenname: Zheng
  orcidid: 0000-0002-7241-3483
  surname: Liu
  fullname: Liu, Zheng
  email: zheng.liu@ubc.ca
  organization: School of Engineering, University of British Columbia, Kelowna, Canada
BookMark eNp9kMtKAzEUQIMo-PwB3QRcT81NMq-l1tYWOghawd2QZu7UyDSpSQr6905tceHCTRLCOffCOSWH1lkk5BLYAICVN_NqNJwMOONsIBiTaVEekBMoJSQM5Oth_2aFSKQU6TE5DeGd9RAwOCFhaiN2nVmijXSsNl2k90YtrQsmUNfSqv8x-k1Zix2tXHQ-edqe9PkrRFzROxWwoc7uwJWypnVdQ-8R13T0GT2ukM5QeWvsklZKvxmL5-SoVV3Ai_19Rl7Go_lwksweH6bD21mieZnGBNOFLpmSeVNkLSCKFJTMBHCWLXTRIGao-GKRijwXDKUGrYpM8UKmwHLIlDgj17u5a-8-Nhhi_e423vYra95DUEKZs54qdpT2LgSPba1NVNE4G70yXQ2s3iaufxLX28T1PnGv8j_q2vcN_Nf_0tVOMoj4K5TAZZbl4hsWzYpx
CODEN IATEFW
CitedBy_id crossref_primary_10_1109_TII_2022_3161674
crossref_primary_10_1016_j_measurement_2022_111150
crossref_primary_10_1109_TIE_2021_3135520
crossref_primary_10_1109_TMECH_2022_3214505
crossref_primary_10_1002_int_22831
crossref_primary_10_1088_1361_6501_ac919b
crossref_primary_10_1007_s10462_020_09910_w
crossref_primary_10_1016_j_measurement_2024_116608
crossref_primary_10_1109_TIM_2021_3075017
crossref_primary_10_1080_21642583_2021_1992684
crossref_primary_10_1109_TIM_2024_3427866
crossref_primary_10_1109_TMECH_2021_3125767
crossref_primary_10_1088_1361_6501_ad4c87
crossref_primary_10_3390_machines10080610
crossref_primary_10_1016_j_inffus_2023_102186
crossref_primary_10_1016_j_isatra_2023_12_031
crossref_primary_10_1109_TIM_2020_3016045
crossref_primary_10_1109_TIM_2021_3124053
crossref_primary_10_1016_j_mechmachtheory_2023_105288
crossref_primary_10_1016_j_asoc_2023_110243
crossref_primary_10_1016_j_measurement_2020_108823
crossref_primary_10_1109_JSEN_2022_3160762
crossref_primary_10_3390_electronics11223741
crossref_primary_10_1109_TMECH_2023_3347631
crossref_primary_10_1016_j_isatra_2021_03_013
crossref_primary_10_1109_TMECH_2023_3314215
crossref_primary_10_1016_j_isatra_2023_09_027
crossref_primary_10_1109_TIM_2020_3042300
crossref_primary_10_1016_j_cie_2023_109286
crossref_primary_10_1109_TMECH_2022_3177174
crossref_primary_10_1109_TMECH_2021_3079409
crossref_primary_10_1177_09574565221139638
crossref_primary_10_1080_09544828_2023_2261095
crossref_primary_10_1093_ijlct_ctab100
crossref_primary_10_1007_s40313_021_00780_3
crossref_primary_10_1109_TII_2020_3034189
crossref_primary_10_3390_jmse11071385
crossref_primary_10_1016_j_aei_2022_101648
crossref_primary_10_1007_s11071_023_08877_x
crossref_primary_10_1109_JSEN_2022_3179165
crossref_primary_10_3390_electronics12030642
crossref_primary_10_1109_TMECH_2021_3124415
crossref_primary_10_3390_s22113997
crossref_primary_10_1109_TIM_2020_3041087
crossref_primary_10_1177_01423312211037621
crossref_primary_10_1371_journal_pone_0262883
crossref_primary_10_1109_TMECH_2022_3179289
crossref_primary_10_1109_TMECH_2020_3041768
crossref_primary_10_1109_TMECH_2020_3046277
crossref_primary_10_1016_j_ress_2022_108969
crossref_primary_10_1007_s11071_021_06827_z
crossref_primary_10_1109_TMECH_2022_3169143
crossref_primary_10_1109_TII_2021_3091143
crossref_primary_10_1088_1757_899X_1136_1_012059
crossref_primary_10_1016_j_knosys_2024_112952
crossref_primary_10_1088_1361_6501_ac1283
crossref_primary_10_3390_en14092509
crossref_primary_10_1109_TMECH_2021_3058061
crossref_primary_10_1016_j_knosys_2022_110172
crossref_primary_10_1109_JSEN_2022_3160183
Cites_doi 10.1016/j.neucom.2012.08.010
10.1109/TPAMI.2008.235
10.1109/TMECH.2013.2260865
10.1016/j.patcog.2015.09.014
10.1109/TII.2018.2881543
10.1109/TIE.2018.2873546
10.1016/j.neucom.2005.12.126
10.1016/j.neucom.2019.08.010
10.1016/j.neucom.2013.03.059
10.3390/s19061440
10.1016/j.ress.2013.02.022
10.1109/TII.2018.2851961
10.1109/TPAMI.2010.92
10.1109/TMECH.2017.2728371
10.1109/TIE.2017.2762639
10.1109/TMECH.2019.2951589
10.1016/j.neucom.2018.07.038
10.1007/s13042-011-0024-1
10.1016/j.measurement.2017.03.016
10.1109/TCYB.2014.2307349
10.1109/TMECH.2017.2759301
10.1109/ACCESS.2018.2888842
10.1109/ACCESS.2019.2894014
10.1109/TNNLS.2015.2424995
10.1016/j.ymssp.2013.06.004
10.1109/TSMC.2017.2691774
10.1109/TII.2018.2819674
10.1016/j.neucom.2019.03.084
10.1109/TIM.2019.2925247
10.1109/ICMLA.2017.0-177
10.1109/TIM.2019.2923829
10.1016/j.ymssp.2009.05.001
10.1016/j.jsv.2014.09.026
10.1109/TNN.2008.2005605
10.1186/1471-2105-7-91
10.1016/j.inffus.2005.07.003
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TMECH.2020.3004589
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-014X
EndPage 2187
ExternalDocumentID 10_1109_TMECH_2020_3004589
9124667
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51675098
  funderid: 10.13039/501100001809
– fundername: China Scholarship Council
  funderid: 10.13039/501100004543
– fundername: Postgraduate Research and Practice Innovation Program of Jiangsu Province, China
  grantid: SJKY190064
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACKIV
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
OCL
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-e5bc90a47d86f1ee351a4631206bc8dee6ea2bb537730e4c1ca86a284510716a3
IEDL.DBID RIE
ISSN 1083-4435
IngestDate Mon Jun 30 05:14:13 EDT 2025
Thu Apr 24 23:11:40 EDT 2025
Wed Oct 01 05:02:31 EDT 2025
Wed Aug 27 02:30:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e5bc90a47d86f1ee351a4631206bc8dee6ea2bb537730e4c1ca86a284510716a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4419-4858
0000-0001-9010-2307
0000-0002-4499-9851
0000-0002-7241-3483
0000-0002-9803-4158
PQID 2451191970
PQPubID 85420
PageCount 11
ParticipantIDs proquest_journals_2451191970
ieee_primary_9124667
crossref_citationtrail_10_1109_TMECH_2020_3004589
crossref_primary_10_1109_TMECH_2020_3004589
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Oct.
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-Oct.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ASME transactions on mechatronics
PublicationTitleAbbrev TMECH
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
Zhao (ref3) 2019
ref19
ref18
Kasun (ref29) 2013; 28
ref24
ref23
ref25
ref20
ref22
ref21
ref28
Ngiam (ref26) 2011
ref27
ref8
ref7
ref9
ref4
ref6
ref5
References_xml – ident: ref23
  doi: 10.1016/j.neucom.2012.08.010
– ident: ref34
  doi: 10.1109/TPAMI.2008.235
– ident: ref10
  doi: 10.1109/TMECH.2013.2260865
– ident: ref18
  doi: 10.1016/j.patcog.2015.09.014
– ident: ref11
  doi: 10.1109/TII.2018.2881543
– ident: ref16
  doi: 10.1109/TIE.2018.2873546
– ident: ref17
  doi: 10.1016/j.neucom.2005.12.126
– year: 2019
  ident: ref3
  article-title: A novel unsupervised deep learning network for intelligent fault diagnosis of rotating machinery
  publication-title: Struct. Health Monit.
– ident: ref8
  doi: 10.1016/j.neucom.2019.08.010
– ident: ref20
  doi: 10.1016/j.neucom.2013.03.059
– ident: ref14
  doi: 10.3390/s19061440
– ident: ref24
  doi: 10.1016/j.ress.2013.02.022
– ident: ref33
  doi: 10.1109/TII.2018.2851961
– ident: ref35
  doi: 10.1109/TPAMI.2010.92
– ident: ref9
  doi: 10.1109/TMECH.2017.2728371
– ident: ref6
  doi: 10.1109/TIE.2017.2762639
– ident: ref7
  doi: 10.1109/TMECH.2019.2951589
– ident: ref15
  doi: 10.1016/j.neucom.2018.07.038
– ident: ref19
  doi: 10.1007/s13042-011-0024-1
– ident: ref27
  doi: 10.1016/j.measurement.2017.03.016
– ident: ref22
  doi: 10.1109/TCYB.2014.2307349
– volume: 28
  start-page: 31
  issue: 6
  year: 2013
  ident: ref29
  article-title: Representational learning with extreme learning machine for Big Data
  publication-title: IEEE Intell. Syst.
– ident: ref4
  doi: 10.1109/TMECH.2017.2759301
– ident: ref25
  doi: 10.1109/ACCESS.2018.2888842
– ident: ref28
  doi: 10.1109/ACCESS.2019.2894014
– ident: ref30
  doi: 10.1109/TNNLS.2015.2424995
– ident: ref1
  doi: 10.1016/j.ymssp.2013.06.004
– ident: ref21
  doi: 10.1109/TSMC.2017.2691774
– ident: ref5
  doi: 10.1109/TII.2018.2819674
– ident: ref32
  doi: 10.1016/j.neucom.2019.03.084
– ident: ref13
  doi: 10.1109/TIM.2019.2925247
– start-page: 1125
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2011
  ident: ref26
  article-title: Sparse filtering
– ident: ref36
  doi: 10.1109/ICMLA.2017.0-177
– ident: ref2
  doi: 10.1109/TIM.2019.2923829
– ident: ref37
  doi: 10.1016/j.ymssp.2009.05.001
– ident: ref38
  doi: 10.1016/j.jsv.2014.09.026
– ident: ref31
  doi: 10.1109/TNN.2008.2005605
– ident: ref39
  doi: 10.1186/1471-2105-7-91
– ident: ref12
  doi: 10.1016/j.inffus.2005.07.003
SSID ssj0004101
Score 2.5590878
Snippet Nowadays, the measurement technology of multichannel information fusion provides a solid research foundation for digital and intelligent fault diagnosis of...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2177
SubjectTerms Algorithms
Artificial neural networks
Data integration
Data mining
Fault diagnosis
Feature extraction
IEEE transactions
information fusion
intraclass and interclass information
Machine learning
Manifolds
Mechatronics
Military helicopters
motor–rotor system
multimanifold deep extreme learning machine (MDELM)
Rotors
Title Intelligent Fault Diagnosis of Multichannel Motor-Rotor System Based on Multimanifold Deep Extreme Learning Machine
URI https://ieeexplore.ieee.org/document/9124667
https://www.proquest.com/docview/2451191970
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-014X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004101
  issn: 1083-4435
  databaseCode: RIE
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0tnODQUhbUbaHyoTeaJc6HHR8L7GqpFA4VSNwixxlXiFWy6malil_P2MkuCCrEJcrBjiy9seeNM_MG4LuM0BJNFUHGJQUokbWBCrEKyiRLYivRCp-MmV-J2U3y6za9HcCPTS0MIvrkMxy7V_8vv2rMyl2VnSpyRkLILdiSmehqtZ5qILlvdcyJUgQJcYB1gUyoTq_zyfmMQsGIIlRHYVxL92dOyHdVeXUUe_8y_Qj5emVdWsn9eNWWY_PwQrTxvUvfgw890WQ_O8v4BAOs92H3mfzgEJaXGz3Olk31at6yiy7z7m7JGst8ca6rDK5xzvKGovPgt3uyTuacnZEHrFhTdwOdkIZt5hW7QFywyb_W3TyyXr_1D8t91iYewM10cn0-C_omDIGJVNoGmJZGhTqRVSYsR4xTrhMR8ygUpckqRIE6Kss0lnRWYGK40ZnQ5PRos1MspuND2K6bGj8D07bisiopREnp6DBkBahVapSWxDGI6IyAr1EpTK9Q7hplzAsfqYSq8EgWDsmiR3IEJ5s5i06f483RQwfNZmSPygiO1uAX_RZeFpFTblNcyfDL_2d9hR337S6z7wi2278rPCaG0pbfvGk-AnxV4X0
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwEB2VcgAOfBXEQgEfuEG2ceKP-AjtrrbQ9IC2Um-R44wrxCqp2KyE-PWMnexSAUJcohxsxdIbe944M28A3ugMPdFUlRRcU4CSeZ-YFJukFoXIvUavYjJmea4WF-Ljpbzcg3e7WhhEjMlnOA2v8V9-07lNuCo7MuSMlNK34LYUQsihWutXFSSPzY45kYpEEAvYlsik5mhZzo4XFAxmFKMGEhOaut9wQ7Gvyh-HcfQw8wdQbtc2JJZ8nW76eup-_Cbb-L-Lfwj3R6rJ3g-28Qj2sH0M924IEB7A-nSnyNmzud2senYy5N59WbPOs1ieG2qDW1yxsqP4PPkcnmwQOmcfyAc2rGuHgUFKw3erhp0gXrPZ9z7cPbJRwfWKlTFvE5_AxXy2PF4kYxuGxGVG9gnK2pnUCt0UynPEXHIrVM6zVNWuaBAV2qyuZa7ptEDhuLOFsuT2aLtTNGbzp7Dfdi0-A2Z9w3VTU5Ai6fBwZAdojXTGamIZRHUmwLeoVG7UKA-tMlZVjFVSU0Ukq4BkNSI5gbe7OdeDQsc_Rx8EaHYjR1QmcLgFvxo38brKgnab4Uanz_8-6zXcWSzLs-rs9PzTC7gbvjPk-R3Cfv9tgy-Jr_T1q2imPwFyXeTK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+Fault+Diagnosis+of+Multichannel+Motor%E2%80%93Rotor+System+Based+on+Multimanifold+Deep+Extreme+Learning+Machine&rft.jtitle=IEEE%2FASME+transactions+on+mechatronics&rft.au=Zhao%2C+Xiaoli&rft.au=Jia%2C+Minping&rft.au=Ding%2C+Peng&rft.au=Chen%2C+Yang&rft.date=2020-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1083-4435&rft.eissn=1941-014X&rft.volume=25&rft.issue=5&rft.spage=2177&rft_id=info:doi/10.1109%2FTMECH.2020.3004589&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1083-4435&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1083-4435&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1083-4435&client=summon