Bayesian Channel Estimation Algorithms for Massive MIMO Systems With Hybrid Analog-Digital Processing and Low-Resolution ADCs

We address the problem of channel estimation in massive multiple-input multiple-output (Massive MIMO) systems where both hybrid analog-digital processing and low-resolution analog-to-digital converters (ADCs) are utilized. The hardware-efficient architecture is attractive from a power and cost point...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in signal processing Vol. 12; no. 3; pp. 499 - 513
Main Authors Ding, Yacong, Chiu, Sung-En, Rao, Bhaskar D.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-4553
1941-0484
DOI10.1109/JSTSP.2018.2814008

Cover

Abstract We address the problem of channel estimation in massive multiple-input multiple-output (Massive MIMO) systems where both hybrid analog-digital processing and low-resolution analog-to-digital converters (ADCs) are utilized. The hardware-efficient architecture is attractive from a power and cost point of view, but poses two significant channel estimation challenges. One is due to the smaller dimension of the measurement signal obtained from the limited number of radio frequency chains, and the other is the coarser measurements from the low-resolution ADCs. We address this problem by utilizing two sources of information. First, by exploiting the sparse nature of the channel in the angular domain, the channel estimate is enhanced and the required number of pilots is reduced. Second, by utilizing the transmitted data symbols as the "virtual pilots," the channel estimate is further improved without adding more pilot symbols. The constraints imposed by the architecture, the sparsity of the channel and the data aided channel estimation are treated in a unified manner by employing a Bayesian formulation. The quantized sparse channel estimation is formulated into a sparse Bayesian learning framework, and solved using the variational Bayesian method. Simulation results show that the proposed algorithm can efficiently estimate the channel even with the architectural constraints, and that significant improvements are enabled by leveraging the transmitted data symbols.
AbstractList We address the problem of channel estimation in massive multiple-input multiple-output (Massive MIMO) systems where both hybrid analog-digital processing and low-resolution analog-to-digital converters (ADCs) are utilized. The hardware-efficient architecture is attractive from a power and cost point of view, but poses two significant channel estimation challenges. One is due to the smaller dimension of the measurement signal obtained from the limited number of radio frequency chains, and the other is the coarser measurements from the low-resolution ADCs. We address this problem by utilizing two sources of information. First, by exploiting the sparse nature of the channel in the angular domain, the channel estimate is enhanced and the required number of pilots is reduced. Second, by utilizing the transmitted data symbols as the "virtual pilots," the channel estimate is further improved without adding more pilot symbols. The constraints imposed by the architecture, the sparsity of the channel and the data aided channel estimation are treated in a unified manner by employing a Bayesian formulation. The quantized sparse channel estimation is formulated into a sparse Bayesian learning framework, and solved using the variational Bayesian method. Simulation results show that the proposed algorithm can efficiently estimate the channel even with the architectural constraints, and that significant improvements are enabled by leveraging the transmitted data symbols.
Author Chiu, Sung-En
Rao, Bhaskar D.
Ding, Yacong
Author_xml – sequence: 1
  givenname: Yacong
  orcidid: 0000-0003-4792-617X
  surname: Ding
  fullname: Ding, Yacong
  email: yad003@ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
– sequence: 2
  givenname: Sung-En
  surname: Chiu
  fullname: Chiu, Sung-En
  email: suchiu@ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
– sequence: 3
  givenname: Bhaskar D.
  surname: Rao
  fullname: Rao, Bhaskar D.
  email: brao@ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA
BookMark eNp9kEtPAyEQgInRxOcf0AuJ562wC1041lpfaaOxGo8bCkPFrKCw1fTgf5da48GDp5lk5pvHt4s2ffCA0CElPUqJPLme3k9veyWholcKyggRG2iHSkYLwgTbXOVVWTDOq220m9IzIbzuU7aDPk_VEpJTHg-flPfQ4lHq3IvqXPB40M5DdN3TS8I2RDxRKbl3wJOryQ2eLlMHufCY6_hyOYvO4IFXbZgXZ27uOtXi2xg0ZMTPsfIGj8NHcQcptIv18LNh2kdbVrUJDn7iHno4H90PL4vxzcXVcDAudCl5V0Bpdc019MsZtUICZ8QYQ7jWfMZqwawGa4TgtbQGGDUVSFP169oaDTPCVbWHjtdzX2N4W0DqmuewiPna1JRZEO1LIWXuKtddOoaUItjmNWYVcdlQ0qw0N9-am5Xm5kdzhsQfSOfnVx92Ubn2f_RojToA-N0lKkq4rKov1hKPUA
CODEN IJSTGY
CitedBy_id crossref_primary_10_1007_s41745_020_00169_2
crossref_primary_10_1109_TSP_2018_2886168
crossref_primary_10_1109_JPROC_2021_3107494
crossref_primary_10_1109_TCOMM_2023_3322449
crossref_primary_10_1109_TWC_2023_3273284
crossref_primary_10_1109_TCOMM_2024_3435452
crossref_primary_10_1109_TWC_2019_2934846
crossref_primary_10_1109_TCOMM_2022_3179389
crossref_primary_10_1186_s13638_019_1623_x
crossref_primary_10_1145_3722220
crossref_primary_10_1109_TWC_2021_3054998
crossref_primary_10_1109_TVT_2020_2968637
crossref_primary_10_1109_TVT_2023_3252801
crossref_primary_10_1186_s13638_019_1353_0
crossref_primary_10_1109_TCOMM_2024_3383859
crossref_primary_10_1109_ACCESS_2024_3395170
crossref_primary_10_1109_JSAC_2019_2933967
crossref_primary_10_1109_TVT_2019_2909392
crossref_primary_10_1109_ACCESS_2018_2887297
crossref_primary_10_1109_TSP_2022_3161144
crossref_primary_10_1049_cmu2_12088
crossref_primary_10_1109_TCOMM_2020_2999624
crossref_primary_10_1109_TVT_2020_2999345
crossref_primary_10_1109_TWC_2018_2843786
crossref_primary_10_1109_TCOMM_2020_2995585
crossref_primary_10_1109_ACCESS_2022_3218032
crossref_primary_10_1109_TSP_2024_3368770
crossref_primary_10_1109_TWC_2021_3137354
crossref_primary_10_1109_ACCESS_2024_3397328
crossref_primary_10_1109_TVT_2022_3153966
crossref_primary_10_1016_j_dsp_2023_103984
crossref_primary_10_1016_j_sigpro_2019_107408
crossref_primary_10_1109_TWC_2020_3000610
crossref_primary_10_1109_TMC_2024_3351634
crossref_primary_10_1109_TVT_2022_3165125
crossref_primary_10_1109_LWC_2019_2933624
crossref_primary_10_1109_TWC_2021_3068484
crossref_primary_10_1109_TWC_2022_3205284
crossref_primary_10_3390_s22010309
crossref_primary_10_1109_TWC_2024_3498317
crossref_primary_10_1109_TVT_2021_3061699
Cites_doi 10.1109/TIT.2012.2207945
10.1109/JSTSP.2016.2538178
10.1109/TSP.2014.2324991
10.1109/ICCW.2015.7247358
10.1109/TSP.2017.2706179
10.1109/MCOM.2014.6736761
10.1109/JPROC.2010.2042415
10.1109/TSP.2007.914345
10.1109/TWC.2010.092810.091092
10.1109/TSP.2004.831016
10.1109/TSP.2015.2451071
10.1109/TSP.2014.2329272
10.1109/TIT.2012.2234823
10.1109/JSTSP.2011.2159773
10.1109/TIT.2013.2269476
10.1109/WSA.2010.5456454
10.1109/JSTSP.2014.2334278
10.1109/TSP.2014.2337840
10.1109/JSAC.2013.130214
10.1109/TSP.2015.2508786
10.1109/LSP.2009.2035667
10.1109/TWC.2016.2619343
10.1109/TWC.2014.011714.130846
10.1109/TIT.1972.1054840
10.1162/neco.1992.4.3.415
10.1109/TCOMM.2016.2558151
10.1109/LCOMM.2016.2555299
10.1137/080714488
10.1109/GlobalSIP.2015.7418182
10.1109/TWC.2017.2691318
10.1103/PhysRevE.52.4691
10.1109/ISIT.1998.708938
10.1109/COMST.2017.2664421
10.1017/CBO9780511807213
10.1109/TSP.2017.2764855
10.1109/TSP.2002.803324
10.1109/TSP.2015.2463260
10.1109/TSP.2013.2256901
10.1109/MSP.2007.914731
10.1109/ACSSC.2014.7094595
10.1109/JSAC.2017.2720856
10.1109/TSP.2012.2217334
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
H8D
L7M
DOI 10.1109/JSTSP.2018.2814008
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0484
EndPage 513
ExternalDocumentID 10_1109_JSTSP_2018_2814008
8310593
Genre orig-research
GrantInformation_xml – fundername: King Abdulaziz City for Science and Technology
– fundername: Center for Wireless Communications at University of California
– fundername: National Science Foundation
  grantid: CCF-1617365
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
7SP
8FD
H8D
L7M
RIG
ID FETCH-LOGICAL-c295t-e2fc75ce62b1f89e540ddd05cc5b4784fcefd88579fde41d3e9d3677fdceb05a3
IEDL.DBID RIE
ISSN 1932-4553
IngestDate Mon Jun 30 10:20:21 EDT 2025
Wed Oct 01 03:34:38 EDT 2025
Thu Apr 24 22:59:53 EDT 2025
Wed Aug 27 02:51:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-e2fc75ce62b1f89e540ddd05cc5b4784fcefd88579fde41d3e9d3677fdceb05a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4792-617X
PQID 2048169899
PQPubID 75721
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_JSTSP_2018_2814008
ieee_primary_8310593
crossref_primary_10_1109_JSTSP_2018_2814008
proquest_journals_2048169899
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in signal processing
PublicationTitleAbbrev JSTSP
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
bishop (ref40) 0
ref17
ref16
ref19
ref18
ref50
tipping (ref49) 0
ref46
ref47
ref44
ref43
beal (ref41) 2003
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref34
ref36
ref30
ref33
ref32
ref2
ref1
ref39
ref38
goldstein (ref48) 2014
(ref31) 2014
johnson (ref45) 1994
rao (ref29) 2014; 62
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
winn (ref42) 2005; 6
tipping (ref37) 2001; 1
References_xml – ident: ref18
  doi: 10.1109/TIT.2012.2207945
– ident: ref4
  doi: 10.1109/JSTSP.2016.2538178
– volume: 62
  start-page: 3261
  year: 2014
  ident: ref29
  article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2014.2324991
– ident: ref22
  doi: 10.1109/ICCW.2015.7247358
– ident: ref8
  doi: 10.1109/TSP.2017.2706179
– ident: ref2
  doi: 10.1109/MCOM.2014.6736761
– ident: ref27
  doi: 10.1109/JPROC.2010.2042415
– ident: ref39
  doi: 10.1109/TSP.2007.914345
– year: 1994
  ident: ref45
  publication-title: Continuous Univariate Distributions
– ident: ref1
  doi: 10.1109/TWC.2010.092810.091092
– ident: ref38
  doi: 10.1109/TSP.2004.831016
– ident: ref21
  doi: 10.1109/TSP.2015.2451071
– ident: ref20
  doi: 10.1109/TSP.2014.2329272
– year: 2003
  ident: ref41
  publication-title: Variational algorithms for approximate Bayesian inference
– ident: ref17
  doi: 10.1109/TIT.2012.2234823
– ident: ref44
  doi: 10.1109/JSTSP.2011.2159773
– ident: ref24
  doi: 10.1109/TIT.2013.2269476
– ident: ref11
  doi: 10.1109/WSA.2010.5456454
– ident: ref3
  doi: 10.1109/JSTSP.2014.2334278
– ident: ref25
  doi: 10.1109/TSP.2014.2337840
– ident: ref28
  doi: 10.1109/JSAC.2013.130214
– ident: ref16
  doi: 10.1109/TSP.2015.2508786
– ident: ref14
  doi: 10.1109/LSP.2009.2035667
– ident: ref7
  doi: 10.1109/TWC.2016.2619343
– ident: ref26
  doi: 10.1109/TWC.2014.011714.130846
– volume: 1
  start-page: 211
  year: 2001
  ident: ref37
  article-title: Sparse Bayesian learning and the relevance vector machine
  publication-title: J Mach Learn Res
– ident: ref23
  doi: 10.1109/TIT.1972.1054840
– ident: ref43
  doi: 10.1162/neco.1992.4.3.415
– ident: ref13
  doi: 10.1109/TCOMM.2016.2558151
– ident: ref5
  doi: 10.1109/LCOMM.2016.2555299
– ident: ref47
  doi: 10.1137/080714488
– ident: ref34
  doi: 10.1109/GlobalSIP.2015.7418182
– start-page: 3
  year: 0
  ident: ref49
  article-title: Fast marginal likelihood maximisation for sparse Bayesian models
  publication-title: Proc 9th Int Workshop Artif Intell Statist
– year: 2014
  ident: ref48
  article-title: A field guide to forward-backward splitting with a FASTA implementation
  publication-title: arXiv 1411 3406
– ident: ref9
  doi: 10.1109/TWC.2017.2691318
– ident: ref46
  doi: 10.1103/PhysRevE.52.4691
– ident: ref10
  doi: 10.1109/ISIT.1998.708938
– ident: ref36
  doi: 10.1109/COMST.2017.2664421
– start-page: 46
  year: 0
  ident: ref40
  article-title: Variational relevance vector machines
  publication-title: Proc 16th Conf Uncertainty Artif Intell
– ident: ref33
  doi: 10.1017/CBO9780511807213
– ident: ref50
  doi: 10.1109/TSP.2017.2764855
– year: 2014
  ident: ref31
  article-title: Spatial channel model for multiple input multiple output (MIMO) simulations
– ident: ref32
  doi: 10.1109/TSP.2002.803324
– ident: ref30
  doi: 10.1109/TSP.2015.2463260
– ident: ref19
  doi: 10.1109/TSP.2013.2256901
– ident: ref35
  doi: 10.1109/MSP.2007.914731
– volume: 6
  start-page: 661
  year: 2005
  ident: ref42
  article-title: Variational message passing
  publication-title: J Mach Learn Res
– ident: ref12
  doi: 10.1109/ACSSC.2014.7094595
– ident: ref6
  doi: 10.1109/JSAC.2017.2720856
– ident: ref15
  doi: 10.1109/TSP.2012.2217334
SSID ssj0057614
Score 2.4792264
Snippet We address the problem of channel estimation in massive multiple-input multiple-output (Massive MIMO) systems where both hybrid analog-digital processing and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 499
SubjectTerms Algorithms
Analog to digital conversion
Analog to digital converters
Antennas
Bayes methods
Bayesian analysis
Channel estimation
Computer architecture
Computer simulation
hybrid analog-digital processing
Hybrid systems
low-resolution ADCs
Machine learning
Massive MIMO
MIMO (control systems)
MIMO communication
Pilots
Radio frequency
Signal processing algorithms
sparse Bayesian learning
Symbols
Uplink
Title Bayesian Channel Estimation Algorithms for Massive MIMO Systems With Hybrid Analog-Digital Processing and Low-Resolution ADCs
URI https://ieeexplore.ieee.org/document/8310593
https://www.proquest.com/docview/2048169899
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0057614
  issn: 1932-4553
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXansoBaAtiS6l86A28TWI7jo9LP7RFDVQqFb1FiT1eKrYJ6maFisR_x5M4q6ogxC1S7MTSzNgvmXlvCDkAiGMb2YRpEJoJCxXLrE2Z82dphZEJFjO6-cd0eiU-XMvrNfJuxYUBgK74DMZ42eXybWOW-KvsEJtiSc3XybpSuudqDbuuh81xyCAnTEjJB4JMpA-9i19eYBVXNk5Q4AlbST44hLquKn9sxd35cvqM5MPK-rKSb-NlW43Nz0eijf-79OfkaQCadNJ7xhZZg3qbPHkgP7hDfr0v7wFJlBQ5BjXM6YkP-J7LSCfzWXN30369XVCPa2nuQbbfGGl-ln-iQeacfvH36fQeSV8U1U2aGTu-mWEbEhoICP49tKwtPW9-MMwU9H5OJ8dHixfk6vTk89GUhXYMzCRatgwSZ5Q0kCZV7DINHutZayNpjKyEyoQz4GyWSaWdBRFbDtryVClnDVSRLPlLslE3NbwiVKhScu8MQjkPEUpeKlllJXDuUm6NlCMSD_YpTNAqx5YZ86L7Zol00dm0QJsWwaYj8nY153uv1PHP0TtopNXIYJ8R2RvcoAjBvChQ2zjGRpt69--zXpNNfHZfQbZHNtq7JbzxWKWt9jsn_Q3CC-dO
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOQAHvkrFQgEfuIG3SWzH8XHph7awKUi0orcoscdLxTapulmhIvHf8STOqgKEuEWyLVuasT3OzHuPkNcAcWwjmzANQjNhoWKZtSlz_i6tcGeCxYxufpxOT8X7M3m2Qd6usTAA0BWfwRg_u1y-bcwKf5XtoiiW1PwWuS39q0L1aK3h3PWBcxxyyAkTUvIBIhPpXe_knz9hHVc2TpDiCcUkb1xDna7KH4dxd8McPiD5sLa-sOTbeNVWY_PjN9rG_138Q3I_hJp00vvGI7IB9WNy7wYB4Rb5-a68BoRRUkQZ1LCgB37L92hGOlnMm6vz9uvFkvrIluY-zPZHI82P8o80EJ3TL76dTq8R9kWR36SZs_3zOQqR0ABB8PPQsrZ01nxnmCvoPZ1O9veWT8jp4cHJ3pQFQQZmEi1bBokzShpIkyp2mQYf7VlrI2mMrITKhDPgbJZJpZ0FEVsO2vJUKWcNVJEs-TbZrJsanhIqVCm5dwehnA8SSl4qWWUlcO5Sbo2UIxIP9ilMYCtH0YxF0b1aIl10Ni3QpkWw6Yi8WY-57Lk6_tl7C4207hnsMyI7gxsUYTsvC2Q3jlFqUz_7-6hX5M70JJ8Vs6PjD8_JXZynryfbIZvt1Qpe-MilrV52DvsLDWfqnw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Channel+Estimation+Algorithms+for+Massive+MIMO+Systems+With+Hybrid+Analog-Digital+Processing+and+Low-Resolution+ADCs&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Ding%2C+Yacong&rft.au=Sung-En+Chiu&rft.au=Rao%2C+Bhaskar+D&rft.date=2018-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=12&rft.issue=3&rft.spage=499&rft_id=info:doi/10.1109%2FJSTSP.2018.2814008&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon