Bayesian Channel Estimation Algorithms for Massive MIMO Systems With Hybrid Analog-Digital Processing and Low-Resolution ADCs
We address the problem of channel estimation in massive multiple-input multiple-output (Massive MIMO) systems where both hybrid analog-digital processing and low-resolution analog-to-digital converters (ADCs) are utilized. The hardware-efficient architecture is attractive from a power and cost point...
Saved in:
Published in | IEEE journal of selected topics in signal processing Vol. 12; no. 3; pp. 499 - 513 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.06.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1932-4553 1941-0484 |
DOI | 10.1109/JSTSP.2018.2814008 |
Cover
Abstract | We address the problem of channel estimation in massive multiple-input multiple-output (Massive MIMO) systems where both hybrid analog-digital processing and low-resolution analog-to-digital converters (ADCs) are utilized. The hardware-efficient architecture is attractive from a power and cost point of view, but poses two significant channel estimation challenges. One is due to the smaller dimension of the measurement signal obtained from the limited number of radio frequency chains, and the other is the coarser measurements from the low-resolution ADCs. We address this problem by utilizing two sources of information. First, by exploiting the sparse nature of the channel in the angular domain, the channel estimate is enhanced and the required number of pilots is reduced. Second, by utilizing the transmitted data symbols as the "virtual pilots," the channel estimate is further improved without adding more pilot symbols. The constraints imposed by the architecture, the sparsity of the channel and the data aided channel estimation are treated in a unified manner by employing a Bayesian formulation. The quantized sparse channel estimation is formulated into a sparse Bayesian learning framework, and solved using the variational Bayesian method. Simulation results show that the proposed algorithm can efficiently estimate the channel even with the architectural constraints, and that significant improvements are enabled by leveraging the transmitted data symbols. |
---|---|
AbstractList | We address the problem of channel estimation in massive multiple-input multiple-output (Massive MIMO) systems where both hybrid analog-digital processing and low-resolution analog-to-digital converters (ADCs) are utilized. The hardware-efficient architecture is attractive from a power and cost point of view, but poses two significant channel estimation challenges. One is due to the smaller dimension of the measurement signal obtained from the limited number of radio frequency chains, and the other is the coarser measurements from the low-resolution ADCs. We address this problem by utilizing two sources of information. First, by exploiting the sparse nature of the channel in the angular domain, the channel estimate is enhanced and the required number of pilots is reduced. Second, by utilizing the transmitted data symbols as the "virtual pilots," the channel estimate is further improved without adding more pilot symbols. The constraints imposed by the architecture, the sparsity of the channel and the data aided channel estimation are treated in a unified manner by employing a Bayesian formulation. The quantized sparse channel estimation is formulated into a sparse Bayesian learning framework, and solved using the variational Bayesian method. Simulation results show that the proposed algorithm can efficiently estimate the channel even with the architectural constraints, and that significant improvements are enabled by leveraging the transmitted data symbols. |
Author | Chiu, Sung-En Rao, Bhaskar D. Ding, Yacong |
Author_xml | – sequence: 1 givenname: Yacong orcidid: 0000-0003-4792-617X surname: Ding fullname: Ding, Yacong email: yad003@ucsd.edu organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA – sequence: 2 givenname: Sung-En surname: Chiu fullname: Chiu, Sung-En email: suchiu@ucsd.edu organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA – sequence: 3 givenname: Bhaskar D. surname: Rao fullname: Rao, Bhaskar D. email: brao@ucsd.edu organization: Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, CA, USA |
BookMark | eNp9kEtPAyEQgInRxOcf0AuJ562wC1041lpfaaOxGo8bCkPFrKCw1fTgf5da48GDp5lk5pvHt4s2ffCA0CElPUqJPLme3k9veyWholcKyggRG2iHSkYLwgTbXOVVWTDOq220m9IzIbzuU7aDPk_VEpJTHg-flPfQ4lHq3IvqXPB40M5DdN3TS8I2RDxRKbl3wJOryQ2eLlMHufCY6_hyOYvO4IFXbZgXZ27uOtXi2xg0ZMTPsfIGj8NHcQcptIv18LNh2kdbVrUJDn7iHno4H90PL4vxzcXVcDAudCl5V0Bpdc019MsZtUICZ8QYQ7jWfMZqwawGa4TgtbQGGDUVSFP169oaDTPCVbWHjtdzX2N4W0DqmuewiPna1JRZEO1LIWXuKtddOoaUItjmNWYVcdlQ0qw0N9-am5Xm5kdzhsQfSOfnVx92Ubn2f_RojToA-N0lKkq4rKov1hKPUA |
CODEN | IJSTGY |
CitedBy_id | crossref_primary_10_1007_s41745_020_00169_2 crossref_primary_10_1109_TSP_2018_2886168 crossref_primary_10_1109_JPROC_2021_3107494 crossref_primary_10_1109_TCOMM_2023_3322449 crossref_primary_10_1109_TWC_2023_3273284 crossref_primary_10_1109_TCOMM_2024_3435452 crossref_primary_10_1109_TWC_2019_2934846 crossref_primary_10_1109_TCOMM_2022_3179389 crossref_primary_10_1186_s13638_019_1623_x crossref_primary_10_1145_3722220 crossref_primary_10_1109_TWC_2021_3054998 crossref_primary_10_1109_TVT_2020_2968637 crossref_primary_10_1109_TVT_2023_3252801 crossref_primary_10_1186_s13638_019_1353_0 crossref_primary_10_1109_TCOMM_2024_3383859 crossref_primary_10_1109_ACCESS_2024_3395170 crossref_primary_10_1109_JSAC_2019_2933967 crossref_primary_10_1109_TVT_2019_2909392 crossref_primary_10_1109_ACCESS_2018_2887297 crossref_primary_10_1109_TSP_2022_3161144 crossref_primary_10_1049_cmu2_12088 crossref_primary_10_1109_TCOMM_2020_2999624 crossref_primary_10_1109_TVT_2020_2999345 crossref_primary_10_1109_TWC_2018_2843786 crossref_primary_10_1109_TCOMM_2020_2995585 crossref_primary_10_1109_ACCESS_2022_3218032 crossref_primary_10_1109_TSP_2024_3368770 crossref_primary_10_1109_TWC_2021_3137354 crossref_primary_10_1109_ACCESS_2024_3397328 crossref_primary_10_1109_TVT_2022_3153966 crossref_primary_10_1016_j_dsp_2023_103984 crossref_primary_10_1016_j_sigpro_2019_107408 crossref_primary_10_1109_TWC_2020_3000610 crossref_primary_10_1109_TMC_2024_3351634 crossref_primary_10_1109_TVT_2022_3165125 crossref_primary_10_1109_LWC_2019_2933624 crossref_primary_10_1109_TWC_2021_3068484 crossref_primary_10_1109_TWC_2022_3205284 crossref_primary_10_3390_s22010309 crossref_primary_10_1109_TWC_2024_3498317 crossref_primary_10_1109_TVT_2021_3061699 |
Cites_doi | 10.1109/TIT.2012.2207945 10.1109/JSTSP.2016.2538178 10.1109/TSP.2014.2324991 10.1109/ICCW.2015.7247358 10.1109/TSP.2017.2706179 10.1109/MCOM.2014.6736761 10.1109/JPROC.2010.2042415 10.1109/TSP.2007.914345 10.1109/TWC.2010.092810.091092 10.1109/TSP.2004.831016 10.1109/TSP.2015.2451071 10.1109/TSP.2014.2329272 10.1109/TIT.2012.2234823 10.1109/JSTSP.2011.2159773 10.1109/TIT.2013.2269476 10.1109/WSA.2010.5456454 10.1109/JSTSP.2014.2334278 10.1109/TSP.2014.2337840 10.1109/JSAC.2013.130214 10.1109/TSP.2015.2508786 10.1109/LSP.2009.2035667 10.1109/TWC.2016.2619343 10.1109/TWC.2014.011714.130846 10.1109/TIT.1972.1054840 10.1162/neco.1992.4.3.415 10.1109/TCOMM.2016.2558151 10.1109/LCOMM.2016.2555299 10.1137/080714488 10.1109/GlobalSIP.2015.7418182 10.1109/TWC.2017.2691318 10.1103/PhysRevE.52.4691 10.1109/ISIT.1998.708938 10.1109/COMST.2017.2664421 10.1017/CBO9780511807213 10.1109/TSP.2017.2764855 10.1109/TSP.2002.803324 10.1109/TSP.2015.2463260 10.1109/TSP.2013.2256901 10.1109/MSP.2007.914731 10.1109/ACSSC.2014.7094595 10.1109/JSAC.2017.2720856 10.1109/TSP.2012.2217334 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD H8D L7M |
DOI | 10.1109/JSTSP.2018.2814008 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Aerospace Database |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-0484 |
EndPage | 513 |
ExternalDocumentID | 10_1109_JSTSP_2018_2814008 8310593 |
Genre | orig-research |
GrantInformation_xml | – fundername: King Abdulaziz City for Science and Technology – fundername: Center for Wireless Communications at University of California – fundername: National Science Foundation grantid: CCF-1617365 |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION 7SP 8FD H8D L7M RIG |
ID | FETCH-LOGICAL-c295t-e2fc75ce62b1f89e540ddd05cc5b4784fcefd88579fde41d3e9d3677fdceb05a3 |
IEDL.DBID | RIE |
ISSN | 1932-4553 |
IngestDate | Mon Jun 30 10:20:21 EDT 2025 Wed Oct 01 03:34:38 EDT 2025 Thu Apr 24 22:59:53 EDT 2025 Wed Aug 27 02:51:07 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-e2fc75ce62b1f89e540ddd05cc5b4784fcefd88579fde41d3e9d3677fdceb05a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4792-617X |
PQID | 2048169899 |
PQPubID | 75721 |
PageCount | 15 |
ParticipantIDs | crossref_citationtrail_10_1109_JSTSP_2018_2814008 ieee_primary_8310593 crossref_primary_10_1109_JSTSP_2018_2814008 proquest_journals_2048169899 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of selected topics in signal processing |
PublicationTitleAbbrev | JSTSP |
PublicationYear | 2018 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 bishop (ref40) 0 ref17 ref16 ref19 ref18 ref50 tipping (ref49) 0 ref46 ref47 ref44 ref43 beal (ref41) 2003 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref34 ref36 ref30 ref33 ref32 ref2 ref1 ref39 ref38 goldstein (ref48) 2014 (ref31) 2014 johnson (ref45) 1994 rao (ref29) 2014; 62 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 winn (ref42) 2005; 6 tipping (ref37) 2001; 1 |
References_xml | – ident: ref18 doi: 10.1109/TIT.2012.2207945 – ident: ref4 doi: 10.1109/JSTSP.2016.2538178 – volume: 62 start-page: 3261 year: 2014 ident: ref29 article-title: Distributed compressive CSIT estimation and feedback for FDD multi-user massive MIMO systems publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2014.2324991 – ident: ref22 doi: 10.1109/ICCW.2015.7247358 – ident: ref8 doi: 10.1109/TSP.2017.2706179 – ident: ref2 doi: 10.1109/MCOM.2014.6736761 – ident: ref27 doi: 10.1109/JPROC.2010.2042415 – ident: ref39 doi: 10.1109/TSP.2007.914345 – year: 1994 ident: ref45 publication-title: Continuous Univariate Distributions – ident: ref1 doi: 10.1109/TWC.2010.092810.091092 – ident: ref38 doi: 10.1109/TSP.2004.831016 – ident: ref21 doi: 10.1109/TSP.2015.2451071 – ident: ref20 doi: 10.1109/TSP.2014.2329272 – year: 2003 ident: ref41 publication-title: Variational algorithms for approximate Bayesian inference – ident: ref17 doi: 10.1109/TIT.2012.2234823 – ident: ref44 doi: 10.1109/JSTSP.2011.2159773 – ident: ref24 doi: 10.1109/TIT.2013.2269476 – ident: ref11 doi: 10.1109/WSA.2010.5456454 – ident: ref3 doi: 10.1109/JSTSP.2014.2334278 – ident: ref25 doi: 10.1109/TSP.2014.2337840 – ident: ref28 doi: 10.1109/JSAC.2013.130214 – ident: ref16 doi: 10.1109/TSP.2015.2508786 – ident: ref14 doi: 10.1109/LSP.2009.2035667 – ident: ref7 doi: 10.1109/TWC.2016.2619343 – ident: ref26 doi: 10.1109/TWC.2014.011714.130846 – volume: 1 start-page: 211 year: 2001 ident: ref37 article-title: Sparse Bayesian learning and the relevance vector machine publication-title: J Mach Learn Res – ident: ref23 doi: 10.1109/TIT.1972.1054840 – ident: ref43 doi: 10.1162/neco.1992.4.3.415 – ident: ref13 doi: 10.1109/TCOMM.2016.2558151 – ident: ref5 doi: 10.1109/LCOMM.2016.2555299 – ident: ref47 doi: 10.1137/080714488 – ident: ref34 doi: 10.1109/GlobalSIP.2015.7418182 – start-page: 3 year: 0 ident: ref49 article-title: Fast marginal likelihood maximisation for sparse Bayesian models publication-title: Proc 9th Int Workshop Artif Intell Statist – year: 2014 ident: ref48 article-title: A field guide to forward-backward splitting with a FASTA implementation publication-title: arXiv 1411 3406 – ident: ref9 doi: 10.1109/TWC.2017.2691318 – ident: ref46 doi: 10.1103/PhysRevE.52.4691 – ident: ref10 doi: 10.1109/ISIT.1998.708938 – ident: ref36 doi: 10.1109/COMST.2017.2664421 – start-page: 46 year: 0 ident: ref40 article-title: Variational relevance vector machines publication-title: Proc 16th Conf Uncertainty Artif Intell – ident: ref33 doi: 10.1017/CBO9780511807213 – ident: ref50 doi: 10.1109/TSP.2017.2764855 – year: 2014 ident: ref31 article-title: Spatial channel model for multiple input multiple output (MIMO) simulations – ident: ref32 doi: 10.1109/TSP.2002.803324 – ident: ref30 doi: 10.1109/TSP.2015.2463260 – ident: ref19 doi: 10.1109/TSP.2013.2256901 – ident: ref35 doi: 10.1109/MSP.2007.914731 – volume: 6 start-page: 661 year: 2005 ident: ref42 article-title: Variational message passing publication-title: J Mach Learn Res – ident: ref12 doi: 10.1109/ACSSC.2014.7094595 – ident: ref6 doi: 10.1109/JSAC.2017.2720856 – ident: ref15 doi: 10.1109/TSP.2012.2217334 |
SSID | ssj0057614 |
Score | 2.4792264 |
Snippet | We address the problem of channel estimation in massive multiple-input multiple-output (Massive MIMO) systems where both hybrid analog-digital processing and... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 499 |
SubjectTerms | Algorithms Analog to digital conversion Analog to digital converters Antennas Bayes methods Bayesian analysis Channel estimation Computer architecture Computer simulation hybrid analog-digital processing Hybrid systems low-resolution ADCs Machine learning Massive MIMO MIMO (control systems) MIMO communication Pilots Radio frequency Signal processing algorithms sparse Bayesian learning Symbols Uplink |
Title | Bayesian Channel Estimation Algorithms for Massive MIMO Systems With Hybrid Analog-Digital Processing and Low-Resolution ADCs |
URI | https://ieeexplore.ieee.org/document/8310593 https://www.proquest.com/docview/2048169899 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0057614 issn: 1932-4553 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELXansoBaAtiS6l86A28TWI7jo9LP7RFDVQqFb1FiT1eKrYJ6maFisR_x5M4q6ogxC1S7MTSzNgvmXlvCDkAiGMb2YRpEJoJCxXLrE2Z82dphZEJFjO6-cd0eiU-XMvrNfJuxYUBgK74DMZ42eXybWOW-KvsEJtiSc3XybpSuudqDbuuh81xyCAnTEjJB4JMpA-9i19eYBVXNk5Q4AlbST44hLquKn9sxd35cvqM5MPK-rKSb-NlW43Nz0eijf-79OfkaQCadNJ7xhZZg3qbPHkgP7hDfr0v7wFJlBQ5BjXM6YkP-J7LSCfzWXN30369XVCPa2nuQbbfGGl-ln-iQeacfvH36fQeSV8U1U2aGTu-mWEbEhoICP49tKwtPW9-MMwU9H5OJ8dHixfk6vTk89GUhXYMzCRatgwSZ5Q0kCZV7DINHutZayNpjKyEyoQz4GyWSaWdBRFbDtryVClnDVSRLPlLslE3NbwiVKhScu8MQjkPEUpeKlllJXDuUm6NlCMSD_YpTNAqx5YZ86L7Zol00dm0QJsWwaYj8nY153uv1PHP0TtopNXIYJ8R2RvcoAjBvChQ2zjGRpt69--zXpNNfHZfQbZHNtq7JbzxWKWt9jsn_Q3CC-dO |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVKOQAHvkrFQgEfuIG3SWzH8XHph7awKUi0orcoscdLxTapulmhIvHf8STOqgKEuEWyLVuasT3OzHuPkNcAcWwjmzANQjNhoWKZtSlz_i6tcGeCxYxufpxOT8X7M3m2Qd6usTAA0BWfwRg_u1y-bcwKf5XtoiiW1PwWuS39q0L1aK3h3PWBcxxyyAkTUvIBIhPpXe_knz9hHVc2TpDiCcUkb1xDna7KH4dxd8McPiD5sLa-sOTbeNVWY_PjN9rG_138Q3I_hJp00vvGI7IB9WNy7wYB4Rb5-a68BoRRUkQZ1LCgB37L92hGOlnMm6vz9uvFkvrIluY-zPZHI82P8o80EJ3TL76dTq8R9kWR36SZs_3zOQqR0ABB8PPQsrZ01nxnmCvoPZ1O9veWT8jp4cHJ3pQFQQZmEi1bBokzShpIkyp2mQYf7VlrI2mMrITKhDPgbJZJpZ0FEVsO2vJUKWcNVJEs-TbZrJsanhIqVCm5dwehnA8SSl4qWWUlcO5Sbo2UIxIP9ilMYCtH0YxF0b1aIl10Ni3QpkWw6Yi8WY-57Lk6_tl7C4207hnsMyI7gxsUYTsvC2Q3jlFqUz_7-6hX5M70JJ8Vs6PjD8_JXZynryfbIZvt1Qpe-MilrV52DvsLDWfqnw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Channel+Estimation+Algorithms+for+Massive+MIMO+Systems+With+Hybrid+Analog-Digital+Processing+and+Low-Resolution+ADCs&rft.jtitle=IEEE+journal+of+selected+topics+in+signal+processing&rft.au=Ding%2C+Yacong&rft.au=Sung-En+Chiu&rft.au=Rao%2C+Bhaskar+D&rft.date=2018-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1932-4553&rft.eissn=1941-0484&rft.volume=12&rft.issue=3&rft.spage=499&rft_id=info:doi/10.1109%2FJSTSP.2018.2814008&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-4553&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-4553&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-4553&client=summon |