Machine Learning-Based Hybrid Precoding With Low-Resolution Analog Phase Shifters
In this letter, inspired by the cross-entropy (CE) optimization in machine learning, we propose a CE-based algorithm for hybrid precoding with low-resolution analog phase shifters in millimeter wave (mmWave) multi-input multi-output (MIMO) systems. The main idea is to generate some candidate analog...
Saved in:
| Published in | IEEE communications letters Vol. 25; no. 1; pp. 186 - 190 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1089-7798 1558-2558 |
| DOI | 10.1109/LCOMM.2020.3025025 |
Cover
| Abstract | In this letter, inspired by the cross-entropy (CE) optimization in machine learning, we propose a CE-based algorithm for hybrid precoding with low-resolution analog phase shifters in millimeter wave (mmWave) multi-input multi-output (MIMO) systems. The main idea is to generate some candidate analog precoders according to a series of pre-defined probability distributions and select partial analog precoders as elites to update the probability distributions. Through iteration, the probability distributions will converge to a stable state and the optimal precoders can be obtained with a sufficiently high probability. Furthermore, we extend the proposed algorithm to multi-user hybrid precoding. The simulation results demonstrate that the proposed algorithm can achieve near-optimal performance of the fully-digital precoding with lower computational complexity than other near-optimal algorithms. |
|---|---|
| AbstractList | In this letter, inspired by the cross-entropy (CE) optimization in machine learning, we propose a CE-based algorithm for hybrid precoding with low-resolution analog phase shifters in millimeter wave (mmWave) multi-input multi-output (MIMO) systems. The main idea is to generate some candidate analog precoders according to a series of pre-defined probability distributions and select partial analog precoders as elites to update the probability distributions. Through iteration, the probability distributions will converge to a stable state and the optimal precoders can be obtained with a sufficiently high probability. Furthermore, we extend the proposed algorithm to multi-user hybrid precoding. The simulation results demonstrate that the proposed algorithm can achieve near-optimal performance of the fully-digital precoding with lower computational complexity than other near-optimal algorithms. |
| Author | Zhang, Yu Zhang, Zhi Dong, Xiaodai |
| Author_xml | – sequence: 1 givenname: Yu orcidid: 0000-0002-8208-3537 surname: Zhang fullname: Zhang, Yu email: bzzhy@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China – sequence: 2 givenname: Xiaodai orcidid: 0000-0001-7126-5602 surname: Dong fullname: Dong, Xiaodai email: xdong@ece.uvic.ca organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, Canada – sequence: 3 givenname: Zhi orcidid: 0000-0001-8672-6766 surname: Zhang fullname: Zhang, Zhi email: zhangzhi@bupt.edu.cn organization: State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China |
| BookMark | eNp9kE9LAzEQxYNUsK1-Ab0seN46yW42u8da1ApbWv_hMaRJtpuybmqyRfrtTW3x4EEYZobh_YbHG6Bea1uN0CWGEcZQ3JST-Ww2IkBglAChoU5QH1OaxyS0XtghL2LGivwMDbxfA0BOKO6jp5mQtWl1VGrhWtOu4lvhtYqmu6UzKlo4La0K5-jddHVU2q_4WXvbbDtj22jcisauokUdkOilNlWnnT9Hp5VovL44ziF6u797nUzjcv7wOBmXsSQF7WKllKiqlAiZEZlCBVTnmGosKiIgoSphVcIyzFKJlcxAZ1QtBQWxhEQwBiIZouvD342zn1vtO762WxcceU5SxkiapzQLqvygks5673TFpenE3n3nhGk4Br4PkP8EyPcB8mOAASV_0I0zH8Lt_oeuDpDRWv8CBQEMjCTfNwt9_Q |
| CODEN | ICLEF6 |
| CitedBy_id | crossref_primary_10_1109_LCOMM_2021_3061884 crossref_primary_10_1109_TVT_2022_3185091 crossref_primary_10_23919_ICN_2023_0019 crossref_primary_10_1109_LCOMM_2022_3211514 crossref_primary_10_1109_TCOMM_2024_3405308 crossref_primary_10_1109_TGCN_2024_3384554 crossref_primary_10_1109_TVT_2023_3245091 crossref_primary_10_3390_s21093019 crossref_primary_10_1109_ACCESS_2021_3078434 crossref_primary_10_1109_TCOMM_2023_3247768 |
| Cites_doi | 10.1109/LWC.2019.2960691 10.1109/JSTSP.2016.2523924 10.1109/ICC.2017.7997065 10.1109/JSTSP.2016.2523903 10.1109/TSP.2017.2699643 10.1109/TCOMM.2016.2549517 10.1109/LCOMM.2018.2878712 10.1109/TVT.2017.2670638 10.1109/MCOM.2017.1600400 10.1109/SiPS.2015.7345017 10.1109/JSTSP.2018.2819129 10.1109/TWC.2014.011714.130846 10.1109/TWC.2015.2455980 10.1109/TCOMM.2015.2502954 10.1007/s11009-006-9753-0 10.1109/JSTSP.2016.2520912 10.1109/ICC.2016.7510844 10.1109/JSAC.2017.2698958 10.1109/TSP.2014.2370947 10.1109/COMST.2015.2504600 10.1109/ACCESS.2019.2916883 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/LCOMM.2020.3025025 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2558 |
| EndPage | 190 |
| ExternalDocumentID | 10_1109_LCOMM_2020_3025025 9201072 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: RGPIN-2018-03778 funderid: 10.13039/501100000038 – fundername: Beijing Municipal Science and Technology Project grantid: Z181100003218015 funderid: 10.13039/501100009592 – fundername: Key Project of State Key Laboratory of Networking and Switching Technology grantid: NST20180105 funderid: 10.13039/501100011532 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-dddaff42ac62c40f05e815e1af2a035d37f376174c1dc60e65dba50ab03a770a3 |
| IEDL.DBID | RIE |
| ISSN | 1089-7798 |
| IngestDate | Mon Jun 30 10:16:21 EDT 2025 Thu Apr 24 22:55:07 EDT 2025 Wed Oct 01 05:59:14 EDT 2025 Wed Aug 27 01:38:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-dddaff42ac62c40f05e815e1af2a035d37f376174c1dc60e65dba50ab03a770a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8208-3537 0000-0001-7126-5602 0000-0001-8672-6766 |
| PQID | 2477248456 |
| PQPubID | 85419 |
| PageCount | 5 |
| ParticipantIDs | proquest_journals_2477248456 crossref_primary_10_1109_LCOMM_2020_3025025 ieee_primary_9201072 crossref_citationtrail_10_1109_LCOMM_2020_3025025 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-Jan. 2021-1-00 20210101 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE communications letters |
| PublicationTitleAbbrev | LCOMM |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref20 ref11 ref10 ref21 ref2 ref1 ref17 ref16 ref19 ref18 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref9 doi: 10.1109/LWC.2019.2960691 – ident: ref3 doi: 10.1109/JSTSP.2016.2523924 – ident: ref19 doi: 10.1109/ICC.2017.7997065 – ident: ref7 doi: 10.1109/JSTSP.2016.2523903 – ident: ref8 doi: 10.1109/TSP.2017.2699643 – ident: ref11 doi: 10.1109/TCOMM.2016.2549517 – ident: ref10 doi: 10.1109/LCOMM.2018.2878712 – ident: ref14 doi: 10.1109/TVT.2017.2670638 – ident: ref2 doi: 10.1109/MCOM.2017.1600400 – ident: ref6 doi: 10.1109/SiPS.2015.7345017 – ident: ref15 doi: 10.1109/JSTSP.2018.2819129 – ident: ref4 doi: 10.1109/TWC.2014.011714.130846 – ident: ref16 doi: 10.1109/TWC.2015.2455980 – ident: ref18 doi: 10.1109/TCOMM.2015.2502954 – ident: ref21 doi: 10.1007/s11009-006-9753-0 – ident: ref12 doi: 10.1109/JSTSP.2016.2520912 – ident: ref17 doi: 10.1109/ICC.2016.7510844 – ident: ref13 doi: 10.1109/JSAC.2017.2698958 – ident: ref5 doi: 10.1109/TSP.2014.2370947 – ident: ref1 doi: 10.1109/COMST.2015.2504600 – ident: ref20 doi: 10.1109/ACCESS.2019.2916883 |
| SSID | ssj0008251 |
| Score | 2.4361873 |
| Snippet | In this letter, inspired by the cross-entropy (CE) optimization in machine learning, we propose a CE-based algorithm for hybrid precoding with low-resolution... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 186 |
| SubjectTerms | Algorithms cross-entropy Entropy (Information theory) Hybrid power systems hybrid precoding Iterative methods Machine learning Matching pursuit algorithms Millimeter waves MIMO MIMO (control systems) MIMO communication mmWave communications Optimization Optimized production technology Phase shifters Precoding Probability distribution Radio frequency |
| Title | Machine Learning-Based Hybrid Precoding With Low-Resolution Analog Phase Shifters |
| URI | https://ieeexplore.ieee.org/document/9201072 https://www.proquest.com/docview/2477248456 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2558 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008251 issn: 1089-7798 databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4GJzjwRgwGyoEbdEvTJk2OMDFNiPIQIHar0iRlCLQh6ITg1xOn3YQAIW49xFIUu_bnxP6M0H6uJRcOeQaRKCJoyTGBUKwImFCRJrmRsafMT895_zY-HbBBAx3OemGstb74zLbh07_lm7GewFVZR8LTbeIc7lwieNWrNfO60IJZFdNLhxilmDbIENk5616kqUsFqctQIeTDWOwvQchPVfnhin186S2jdLqzqqzksT0p87b--Eba-N-tr6ClGmjio8oyVlHDjtbQ4hf6wXV0lfpKSotrktX74NjFNIP779DGhS8hWYbQhu8eyiE-G78FcNlfmSoGNpPxPb4cOhF8PXyAWeOvG-i2d3LT7Qf1iIVAU8nKwBijiiKmSnOqY1IQZkXIbKgKqkjETJQUzgO5rEWHRnNiOTO5YkTlJFJJQlS0ieZH45HdQphrB8VCokwkbEwLI0KSS8NpzHXuYKRponB65pmu-cdhDMZT5vMQIjOvpwz0lNV6aqKDmcxzxb7x5-p1OPjZyvrMm6g1VW1W_6CvGY1dWhELBx-3f5faQQsUylf8bUsLzZcvE7vr8EeZ73nD-wQQ99UU |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB4hOMAeeO6KLi8f9gYpjmOn9hEQqLANDwGCW-TYDkWs2tWSCsGvx-OkFQKE9paDR7I8k5lv7JlvAH4VRqXSI88okWWCLTk2klqUkZA6MbSwigfK_Ow07V7zk1txOwU7k14Y51woPnNt_Axv-XZoRnhVtqvw6bbjHe6M4JyLultr4nexCbMup1ceMyo5bpGhard3cJZlPhlkPkfFoI-Dsd-EoTBX5YMzDhHmaAGy8d7qwpKH9qgq2ublHW3j_25-EeYbqEn2attYgik3WIZvbwgIV-AiC7WUjjQ0q3fRvo9qlnSfsZGLnGO6jMGN3NxXfdIbPkV43V8bK0E-k-EdOe97EXLZv8dp44_f4fro8OqgGzVDFiLDlKgia60uS860SZnhtKTCyVi4WJdM00TYpFN6H-TzFhNbk1KXCltoQXVBE93pUJ38gOnBcOBWgaTGg7GYaptIx1lpZUwLZVPGU1N4IGlbEI_PPDcNAzkOwviTh0yEqjzoKUc95Y2eWrA9kflb8298uXoFD36ysjnzFqyPVZs3v-hjzrhPLLj0APLn51JbMNu9ynp57_j09xrMMSxmCXcv6zBd_Ru5DY9GqmIzGOErZJjYYQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Hybrid+Precoding+With+Low-Resolution+Analog+Phase+Shifters&rft.jtitle=IEEE+communications+letters&rft.au=Zhang%2C+Yu&rft.au=Dong%2C+Xiaodai&rft.au=Zhang%2C+Zhi&rft.date=2021-01-01&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=25&rft.issue=1&rft.spage=186&rft.epage=190&rft_id=info:doi/10.1109%2FLCOMM.2020.3025025&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCOMM_2020_3025025 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon |