Typical Characteristic-Based Type-2 Fuzzy C-Means Algorithm
Type-2 fuzzy sets provide an efficient vehicle for handling uncertainties of real-world problems, including noisy observations. Bringing type-2 fuzzy sets to clustering algorithms offers more flexibility to handle uncertainties associated with membership concepts caused by a noisy environment. Howev...
        Saved in:
      
    
          | Published in | IEEE transactions on fuzzy systems Vol. 29; no. 5; pp. 1173 - 1187 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.05.2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1063-6706 1941-0034  | 
| DOI | 10.1109/TFUZZ.2020.2969907 | 
Cover
| Abstract | Type-2 fuzzy sets provide an efficient vehicle for handling uncertainties of real-world problems, including noisy observations. Bringing type-2 fuzzy sets to clustering algorithms offers more flexibility to handle uncertainties associated with membership concepts caused by a noisy environment. However, the existing type-2 fuzzy clustering algorithms suffer from a time-consuming type-reduction process, which not only hampers the clustering performance but also increases the burden of understanding the clustering results. In order to alleviate the problem, this article introduces a set of typical characteristics of type-2 fuzzy sets and establishes a characteristic-based type-2 fuzzy clustering algorithm. Being different from the objective function used in the fuzzy C-means (FCM) algorithm that produces cluster centers and type-1 memberships, the objective function in the proposed algorithm contains additional characteristics of type-2 membership grades, namely, centers of gravity and cardinalities of the secondary fuzzy sets. The derived iterative formulas used for these parameters are much more efficient than the interval type-2 FCM algorithm. The experiments carried out in this study show that the proposed typical characteristic-based type-2 FCM algorithm has an ability of detecting noise as well as assigning suitable membership degrees to the individual data. | 
    
|---|---|
| AbstractList | Type-2 fuzzy sets provide an efficient vehicle for handling uncertainties of real-world problems, including noisy observations. Bringing type-2 fuzzy sets to clustering algorithms offers more flexibility to handle uncertainties associated with membership concepts caused by a noisy environment. However, the existing type-2 fuzzy clustering algorithms suffer from a time-consuming type-reduction process, which not only hampers the clustering performance but also increases the burden of understanding the clustering results. In order to alleviate the problem, this article introduces a set of typical characteristics of type-2 fuzzy sets and establishes a characteristic-based type-2 fuzzy clustering algorithm. Being different from the objective function used in the fuzzy C-means (FCM) algorithm that produces cluster centers and type-1 memberships, the objective function in the proposed algorithm contains additional characteristics of type-2 membership grades, namely, centers of gravity and cardinalities of the secondary fuzzy sets. The derived iterative formulas used for these parameters are much more efficient than the interval type-2 FCM algorithm. The experiments carried out in this study show that the proposed typical characteristic-based type-2 FCM algorithm has an ability of detecting noise as well as assigning suitable membership degrees to the individual data. | 
    
| Author | Yang, Xiyang Pedrycz, Witold Yu, Fusheng  | 
    
| Author_xml | – sequence: 1 givenname: Xiyang orcidid: 0000-0002-9790-8992 surname: Yang fullname: Yang, Xiyang email: yangxiyang@139.com organization: Key Laboratory of Intelligent Computing and Information Processing of Fujian Province, Quanzhou Normal University, Quanzhou, China – sequence: 2 givenname: Fusheng orcidid: 0000-0001-9144-9150 surname: Yu fullname: Yu, Fusheng email: yufusheng@bnu.edu.cn organization: School of Mathematical Sciences, Beijing Normal University, Beijing, China – sequence: 3 givenname: Witold orcidid: 0000-0002-9335-9930 surname: Pedrycz fullname: Pedrycz, Witold email: wpedrycz@ualberta.ca organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada  | 
    
| BookMark | eNp9kLFOwzAQhi1UJNrCC8ASiTnlbMdxTkwlooBUxNIuXSzXcairNCl2OrRPT0orBgamO-n-737pG5Be3dSWkFsKI0oBH2aT-WIxYsBgxDBFBHlB-hQTGgPwpNftkPI4lZBekUEIawCaCJr1yeNsv3VGV1G-0l6b1noXWmfiJx1sEXVHG7Nosjsc9lEev1tdh2hcfTbetavNNbksdRXszXkOyXzyPMtf4-nHy1s-nsaGoWjjYimFNEaUaAGgKNNSSJokssiSVJa45DylBguWZJQjRbTCJJBRLAEEK5nmQ3J_-rv1zdfOhlatm52vu0rFBGNIBU1ll2KnlPFNCN6WauvdRvu9oqCOktSPJHWUpM6SOij7AxnX6tY1deu1q_5H706os9b-dmUoGceMfwOB9HTp | 
    
| CODEN | IEFSEV | 
    
| CitedBy_id | crossref_primary_10_1016_j_isci_2023_108660 crossref_primary_10_3390_app10249037 crossref_primary_10_1007_s00521_023_08811_7 crossref_primary_10_1061_JCCEE5_CPENG_6209 crossref_primary_10_1016_j_ins_2020_10_003 crossref_primary_10_1007_s40815_024_01700_8 crossref_primary_10_1016_j_ins_2024_121710 crossref_primary_10_1016_j_rser_2023_113978 crossref_primary_10_1093_tse_tdac037 crossref_primary_10_1016_j_engappai_2024_108648 crossref_primary_10_1109_ACCESS_2020_3005666 crossref_primary_10_1007_s13369_024_09716_w  | 
    
| Cites_doi | 10.1016/0898-1221(88)90124-1 10.1109/TFUZZ.2015.2486806 10.1109/NaBIC.2013.6617847 10.1016/0165-0114(80)90031-7 10.1109/TFUZZ.2006.889763 10.1109/TFUZZ.2016.2543752 10.1016/j.asoc.2016.01.040 10.1109/91.227387 10.2307/2346830 10.1016/j.fss.2013.05.009 10.1109/FUZZY.1997.616338 10.1109/TFUZZ.2012.2187453 10.1016/j.patcog.2015.04.010 10.1016/j.procs.2011.08.038 10.1016/0020-0255(75)90036-5 10.1109/FOCI.2007.371499 10.1109/SoCPaR.2011.6089094 10.1109/FSKD.2011.6019569 10.1007/978-3-319-05170-3_3 10.1155/2017/7094046 10.1016/S0165-0114(97)00337-0 10.1016/j.ins.2017.09.062 10.1109/NAFIPS.2001.944361 10.1016/S0020-0255(01)00069-X 10.1016/j.ins.2014.02.066 10.1016/j.fss.2013.02.009 10.1016/j.patcog.2018.04.006 10.1109/FUZZ-IEEE.2012.6251233 10.1109/ICASSP.2014.6854165 10.1016/j.cageo.2019.06.008 10.1007/s00500-007-0231-6 10.1109/NAFIPS.2007.383835 10.1109/T2FUZZ.2011.5949546 10.1007/978-1-4757-0450-1 10.1002/9780470061190 10.1109/IWISA.2010.5473283 10.4186/ej.2012.16.5.115 10.1109/TFUZZ.2004.840099 10.1109/TFUZZ.2006.882463 10.1016/j.ijar.2019.09.004 10.1016/j.ins.2011.10.015 10.1109/RAICS.2011.6069361 10.1016/j.asoc.2017.12.024  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TFUZZ.2020.2969907 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 1941-0034 | 
    
| EndPage | 1187 | 
    
| ExternalDocumentID | 10_1109_TFUZZ_2020_2969907 8972398  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Fujian Provincial Big Data Research Institute of Intelligent Manufacturing funderid: 10.13039/501100016306 – fundername: Fujian Provincial Key Laboratory of Data Intensive Computing – fundername: National Natural Science Foundation of China grantid: 11971065; 11571001; 11701338 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c295t-db757cc5f9e000df6f571447d8467f9b3361c9d248139199e5c40819f0052f2a3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1063-6706 | 
    
| IngestDate | Mon Jun 30 06:16:47 EDT 2025 Thu Apr 24 23:05:36 EDT 2025 Wed Oct 01 02:37:25 EDT 2025 Wed Aug 27 02:30:24 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c295t-db757cc5f9e000df6f571447d8467f9b3361c9d248139199e5c40819f0052f2a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-9335-9930 0000-0002-9790-8992 0000-0001-9144-9150  | 
    
| PQID | 2522915167 | 
    
| PQPubID | 85428 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | ieee_primary_8972398 crossref_primary_10_1109_TFUZZ_2020_2969907 proquest_journals_2522915167 crossref_citationtrail_10_1109_TFUZZ_2020_2969907  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-05-01 | 
    
| PublicationDateYYYYMMDD | 2021-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on fuzzy systems | 
    
| PublicationTitleAbbrev | TFUZZ | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref12 ref15 ref14 ref52 ref11 ref10 ref17 ref19 bezdek (ref6) 1981 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 mendel (ref40) 2001 ref8 martin (ref4) 1996 ref7 ref9 ref5 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 tao (ref53) 2002; 22 timm (ref16) 2001 ref39 ref38 krishnan (ref18) 2012; 2 hu (ref43) 2010; 25 bonissone (ref49) 1980 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 press (ref3) 2007  | 
    
| References_xml | – start-page: 843 year: 2007 ident: ref3 publication-title: The Art of Scientific Computing – ident: ref52 doi: 10.1016/0898-1221(88)90124-1 – ident: ref13 doi: 10.1109/TFUZZ.2015.2486806 – ident: ref29 doi: 10.1109/NaBIC.2013.6617847 – ident: ref48 doi: 10.1016/0165-0114(80)90031-7 – volume: 22 start-page: 58 year: 2002 ident: ref53 article-title: Set operations about type 2 fuzzy set publication-title: Journal of Liaoning Institute of Technology – ident: ref23 doi: 10.1109/TFUZZ.2006.889763 – ident: ref14 doi: 10.1109/TFUZZ.2016.2543752 – ident: ref20 doi: 10.1016/j.asoc.2016.01.040 – ident: ref7 doi: 10.1109/91.227387 – ident: ref2 doi: 10.2307/2346830 – ident: ref50 doi: 10.1016/j.fss.2013.05.009 – ident: ref17 doi: 10.1109/FUZZY.1997.616338 – ident: ref22 doi: 10.1109/TFUZZ.2012.2187453 – ident: ref9 doi: 10.1016/j.patcog.2015.04.010 – ident: ref33 doi: 10.1016/j.procs.2011.08.038 – ident: ref36 doi: 10.1016/0020-0255(75)90036-5 – volume: 2 start-page: 1106 year: 2012 ident: ref18 article-title: An efficient modified fuzzy possibilistic C-means algorithm for MRI brain image segmentation publication-title: Int J Appl Eng Res – ident: ref47 doi: 10.1109/FOCI.2007.371499 – ident: ref35 doi: 10.1109/SoCPaR.2011.6089094 – ident: ref32 doi: 10.1109/FSKD.2011.6019569 – ident: ref34 doi: 10.1007/978-3-319-05170-3_3 – ident: ref27 doi: 10.1155/2017/7094046 – ident: ref51 doi: 10.1016/S0165-0114(97)00337-0 – ident: ref39 doi: 10.1016/j.ins.2017.09.062 – ident: ref46 doi: 10.1109/NAFIPS.2001.944361 – ident: ref44 doi: 10.1016/S0020-0255(01)00069-X – ident: ref28 doi: 10.1016/j.ins.2014.02.066 – ident: ref38 doi: 10.1016/j.fss.2013.02.009 – ident: ref30 doi: 10.1016/j.patcog.2018.04.006 – ident: ref26 doi: 10.1109/FUZZ-IEEE.2012.6251233 – year: 1981 ident: ref6 publication-title: Pattern Recognition with Fuzzy Performance Index Algorithms – ident: ref15 doi: 10.1109/ICASSP.2014.6854165 – ident: ref21 doi: 10.1016/j.cageo.2019.06.008 – ident: ref11 doi: 10.1007/s00500-007-0231-6 – volume: 25 start-page: 637 year: 2010 ident: ref43 article-title: Fast algorithm to calculate generalized centroid of interval type-2 fuzzy set publication-title: Control Decis – ident: ref41 doi: 10.1109/NAFIPS.2007.383835 – ident: ref42 doi: 10.1109/T2FUZZ.2011.5949546 – start-page: 99 year: 1980 ident: ref49 article-title: A fuzzy sets based linguistic approach: Theory and applications publication-title: Proc 12th Winter Simul Conf – ident: ref5 doi: 10.1007/978-1-4757-0450-1 – year: 2001 ident: ref16 article-title: Fuzzy cluster analysis with cluster repulsion publication-title: Proc Eur Symp Intell Technol Hybrid Syst Their Implementation Smart Adaptive Syst – ident: ref10 doi: 10.1002/9780470061190 – ident: ref12 doi: 10.1109/IWISA.2010.5473283 – ident: ref31 doi: 10.4186/ej.2012.16.5.115 – ident: ref37 doi: 10.1016/S0020-0255(01)00069-X – ident: ref19 doi: 10.1109/TFUZZ.2004.840099 – ident: ref45 doi: 10.1109/TFUZZ.2006.882463 – year: 2001 ident: ref40 publication-title: Uncertain rule-based fuzzy logic systems introduction and New Directions Upper Saddle River – ident: ref1 doi: 10.1016/j.ijar.2019.09.004 – ident: ref25 doi: 10.1016/j.ins.2011.10.015 – ident: ref24 doi: 10.1109/RAICS.2011.6069361 – ident: ref8 doi: 10.1016/j.asoc.2017.12.024 – start-page: 226 year: 1996 ident: ref4 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining  | 
    
| SSID | ssj0014518 | 
    
| Score | 2.4305942 | 
    
| Snippet | Type-2 fuzzy sets provide an efficient vehicle for handling uncertainties of real-world problems, including noisy observations. Bringing type-2 fuzzy sets to... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1173 | 
    
| SubjectTerms | Algorithms Cardinality center of gravity (COG) characteristics Clustering Clustering algorithms fuzzy clustering Fuzzy sets Linear programming Noise measurement Partitioning algorithms Phase change materials type-2 fuzzy sets (T2FS) Uncertainty  | 
    
| Title | Typical Characteristic-Based Type-2 Fuzzy C-Means Algorithm | 
    
| URI | https://ieeexplore.ieee.org/document/8972398 https://www.proquest.com/docview/2522915167  | 
    
| Volume | 29 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BTnoQBY0omh28acfWbu0aT0hciAmeICFclq3r1IhgcBzkr7ftNiJqjLce2qTpa9_7vr5fAJexzChPPIJILBRBCTBHMdGeQiKY8dzEpoDp8IEOxt79xJ_U4HqTCyOlNMFn0tZD48tPF2Klv8q6gW6RxYMd2GEBLXK1Nh4Dz3eLtDdKEGUOrRJkHN4dhePpVFFB7NiYU6V-2ZYRMl1VfqhiY1_CBgyrnRVhJS_2Kk9ssf5WtPG_Wz-A_RJoWr3iZhxCTc6b0KiaOFjlm27C3peKhC24UbxUi83qbxVyRrfK2KWWJq0IW-Fqvf6w-mgolZ2zerPHxfI5f3o9gnF4N-oPUNlfAQnM_RylCfOZEH7GpVKMaUYznyl-xVKNSTKeEEJdwVPsBQomupxLX3gaQWT6LznDMTmG-nwxlydgpY7gcaroiRtLjyQ4SYTCnVKnrYqAY9oGtzrwSJTFx3UPjFlkSIjDIyOkSAspKoXUhqvNmrei9Mafs1v61DczywNvQ6eSa1S-zvcIK9DJFdSh7PT3VWewi3Xsigls7EA9X67kuQIfeXJhbt0n-KbSmg | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCB8hSFAhnYwCXxK7GYSkVVHmVqJcQSJY4DiNKikg7012M7SUUBITYPtmT57Lvv870AjiOVchFTgkgkNUEJsEARMZ5CIn3ruYlsAdPuHe_06fU9u1-A01kujFLKBp-phhlaX34ykhPzVXYWmBZZIliEJUYpZXm21sxnQJmXJ75xgrjv8jJFxhVnvXb_4UGTQew2sOBaAftzZsj2VfmhjK2FaVehW-4tDyx5aUyyuCGn38o2_nfz67BWQE2nmd-NDVhQw02olm0cnOJVb8Lql5qEW3CumakRnNOaK-WMLrS5SxxDWxF22pPp9MNpoa7Sls5pDh5H4-fs6XUb-u3LXquDig4LSGLBMpTEPvOlZKlQWjUmKU-ZrxmWnxhUkoqYEO5JkWAaaKDoCaGYpAZDpOY3OcUR2YHKcDRUu-AkrhRRogmKFylKYhzHUiNPZRJXZSAwr4FXHngoi_LjpgvGILQ0xBWhFVJohBQWQqrByWzNW15848_ZW-bUZzOLA69BvZRrWLzP9xBr2Ck02OH-3u-rjmC50-vehrdXdzf7sIJNJIsNc6xDJRtP1IGGIll8aG_gJyz11ec | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Typical+Characteristic-Based+Type-2+Fuzzy+C-Means+Algorithm&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Yang%2C+Xiyang&rft.au=Yu%2C+Fusheng&rft.au=Pedrycz%2C+Witold&rft.date=2021-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=29&rft.issue=5&rft.spage=1173&rft_id=info:doi/10.1109%2FTFUZZ.2020.2969907&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |