Typical Characteristic-Based Type-2 Fuzzy C-Means Algorithm

Type-2 fuzzy sets provide an efficient vehicle for handling uncertainties of real-world problems, including noisy observations. Bringing type-2 fuzzy sets to clustering algorithms offers more flexibility to handle uncertainties associated with membership concepts caused by a noisy environment. Howev...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 29; no. 5; pp. 1173 - 1187
Main Authors Yang, Xiyang, Yu, Fusheng, Pedrycz, Witold
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2020.2969907

Cover

Abstract Type-2 fuzzy sets provide an efficient vehicle for handling uncertainties of real-world problems, including noisy observations. Bringing type-2 fuzzy sets to clustering algorithms offers more flexibility to handle uncertainties associated with membership concepts caused by a noisy environment. However, the existing type-2 fuzzy clustering algorithms suffer from a time-consuming type-reduction process, which not only hampers the clustering performance but also increases the burden of understanding the clustering results. In order to alleviate the problem, this article introduces a set of typical characteristics of type-2 fuzzy sets and establishes a characteristic-based type-2 fuzzy clustering algorithm. Being different from the objective function used in the fuzzy C-means (FCM) algorithm that produces cluster centers and type-1 memberships, the objective function in the proposed algorithm contains additional characteristics of type-2 membership grades, namely, centers of gravity and cardinalities of the secondary fuzzy sets. The derived iterative formulas used for these parameters are much more efficient than the interval type-2 FCM algorithm. The experiments carried out in this study show that the proposed typical characteristic-based type-2 FCM algorithm has an ability of detecting noise as well as assigning suitable membership degrees to the individual data.
AbstractList Type-2 fuzzy sets provide an efficient vehicle for handling uncertainties of real-world problems, including noisy observations. Bringing type-2 fuzzy sets to clustering algorithms offers more flexibility to handle uncertainties associated with membership concepts caused by a noisy environment. However, the existing type-2 fuzzy clustering algorithms suffer from a time-consuming type-reduction process, which not only hampers the clustering performance but also increases the burden of understanding the clustering results. In order to alleviate the problem, this article introduces a set of typical characteristics of type-2 fuzzy sets and establishes a characteristic-based type-2 fuzzy clustering algorithm. Being different from the objective function used in the fuzzy C-means (FCM) algorithm that produces cluster centers and type-1 memberships, the objective function in the proposed algorithm contains additional characteristics of type-2 membership grades, namely, centers of gravity and cardinalities of the secondary fuzzy sets. The derived iterative formulas used for these parameters are much more efficient than the interval type-2 FCM algorithm. The experiments carried out in this study show that the proposed typical characteristic-based type-2 FCM algorithm has an ability of detecting noise as well as assigning suitable membership degrees to the individual data.
Author Yang, Xiyang
Pedrycz, Witold
Yu, Fusheng
Author_xml – sequence: 1
  givenname: Xiyang
  orcidid: 0000-0002-9790-8992
  surname: Yang
  fullname: Yang, Xiyang
  email: yangxiyang@139.com
  organization: Key Laboratory of Intelligent Computing and Information Processing of Fujian Province, Quanzhou Normal University, Quanzhou, China
– sequence: 2
  givenname: Fusheng
  orcidid: 0000-0001-9144-9150
  surname: Yu
  fullname: Yu, Fusheng
  email: yufusheng@bnu.edu.cn
  organization: School of Mathematical Sciences, Beijing Normal University, Beijing, China
– sequence: 3
  givenname: Witold
  orcidid: 0000-0002-9335-9930
  surname: Pedrycz
  fullname: Pedrycz, Witold
  email: wpedrycz@ualberta.ca
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
BookMark eNp9kLFOwzAQhi1UJNrCC8ASiTnlbMdxTkwlooBUxNIuXSzXcairNCl2OrRPT0orBgamO-n-737pG5Be3dSWkFsKI0oBH2aT-WIxYsBgxDBFBHlB-hQTGgPwpNftkPI4lZBekUEIawCaCJr1yeNsv3VGV1G-0l6b1noXWmfiJx1sEXVHG7Nosjsc9lEev1tdh2hcfTbetavNNbksdRXszXkOyXzyPMtf4-nHy1s-nsaGoWjjYimFNEaUaAGgKNNSSJokssiSVJa45DylBguWZJQjRbTCJJBRLAEEK5nmQ3J_-rv1zdfOhlatm52vu0rFBGNIBU1ll2KnlPFNCN6WauvdRvu9oqCOktSPJHWUpM6SOij7AxnX6tY1deu1q_5H706os9b-dmUoGceMfwOB9HTp
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_isci_2023_108660
crossref_primary_10_3390_app10249037
crossref_primary_10_1007_s00521_023_08811_7
crossref_primary_10_1061_JCCEE5_CPENG_6209
crossref_primary_10_1016_j_ins_2020_10_003
crossref_primary_10_1007_s40815_024_01700_8
crossref_primary_10_1016_j_ins_2024_121710
crossref_primary_10_1016_j_rser_2023_113978
crossref_primary_10_1093_tse_tdac037
crossref_primary_10_1016_j_engappai_2024_108648
crossref_primary_10_1109_ACCESS_2020_3005666
crossref_primary_10_1007_s13369_024_09716_w
Cites_doi 10.1016/0898-1221(88)90124-1
10.1109/TFUZZ.2015.2486806
10.1109/NaBIC.2013.6617847
10.1016/0165-0114(80)90031-7
10.1109/TFUZZ.2006.889763
10.1109/TFUZZ.2016.2543752
10.1016/j.asoc.2016.01.040
10.1109/91.227387
10.2307/2346830
10.1016/j.fss.2013.05.009
10.1109/FUZZY.1997.616338
10.1109/TFUZZ.2012.2187453
10.1016/j.patcog.2015.04.010
10.1016/j.procs.2011.08.038
10.1016/0020-0255(75)90036-5
10.1109/FOCI.2007.371499
10.1109/SoCPaR.2011.6089094
10.1109/FSKD.2011.6019569
10.1007/978-3-319-05170-3_3
10.1155/2017/7094046
10.1016/S0165-0114(97)00337-0
10.1016/j.ins.2017.09.062
10.1109/NAFIPS.2001.944361
10.1016/S0020-0255(01)00069-X
10.1016/j.ins.2014.02.066
10.1016/j.fss.2013.02.009
10.1016/j.patcog.2018.04.006
10.1109/FUZZ-IEEE.2012.6251233
10.1109/ICASSP.2014.6854165
10.1016/j.cageo.2019.06.008
10.1007/s00500-007-0231-6
10.1109/NAFIPS.2007.383835
10.1109/T2FUZZ.2011.5949546
10.1007/978-1-4757-0450-1
10.1002/9780470061190
10.1109/IWISA.2010.5473283
10.4186/ej.2012.16.5.115
10.1109/TFUZZ.2004.840099
10.1109/TFUZZ.2006.882463
10.1016/j.ijar.2019.09.004
10.1016/j.ins.2011.10.015
10.1109/RAICS.2011.6069361
10.1016/j.asoc.2017.12.024
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2020.2969907
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1187
ExternalDocumentID 10_1109_TFUZZ_2020_2969907
8972398
Genre orig-research
GrantInformation_xml – fundername: Fujian Provincial Big Data Research Institute of Intelligent Manufacturing
  funderid: 10.13039/501100016306
– fundername: Fujian Provincial Key Laboratory of Data Intensive Computing
– fundername: National Natural Science Foundation of China
  grantid: 11971065; 11571001; 11701338
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-db757cc5f9e000df6f571447d8467f9b3361c9d248139199e5c40819f0052f2a3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Mon Jun 30 06:16:47 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Wed Oct 01 02:37:25 EDT 2025
Wed Aug 27 02:30:24 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-db757cc5f9e000df6f571447d8467f9b3361c9d248139199e5c40819f0052f2a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9335-9930
0000-0002-9790-8992
0000-0001-9144-9150
PQID 2522915167
PQPubID 85428
PageCount 15
ParticipantIDs ieee_primary_8972398
crossref_primary_10_1109_TFUZZ_2020_2969907
proquest_journals_2522915167
crossref_citationtrail_10_1109_TFUZZ_2020_2969907
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-05-01
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: 2021-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref19
bezdek (ref6) 1981
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
mendel (ref40) 2001
ref8
martin (ref4) 1996
ref7
ref9
ref5
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
tao (ref53) 2002; 22
timm (ref16) 2001
ref39
ref38
krishnan (ref18) 2012; 2
hu (ref43) 2010; 25
bonissone (ref49) 1980
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
press (ref3) 2007
References_xml – start-page: 843
  year: 2007
  ident: ref3
  publication-title: The Art of Scientific Computing
– ident: ref52
  doi: 10.1016/0898-1221(88)90124-1
– ident: ref13
  doi: 10.1109/TFUZZ.2015.2486806
– ident: ref29
  doi: 10.1109/NaBIC.2013.6617847
– ident: ref48
  doi: 10.1016/0165-0114(80)90031-7
– volume: 22
  start-page: 58
  year: 2002
  ident: ref53
  article-title: Set operations about type 2 fuzzy set
  publication-title: Journal of Liaoning Institute of Technology
– ident: ref23
  doi: 10.1109/TFUZZ.2006.889763
– ident: ref14
  doi: 10.1109/TFUZZ.2016.2543752
– ident: ref20
  doi: 10.1016/j.asoc.2016.01.040
– ident: ref7
  doi: 10.1109/91.227387
– ident: ref2
  doi: 10.2307/2346830
– ident: ref50
  doi: 10.1016/j.fss.2013.05.009
– ident: ref17
  doi: 10.1109/FUZZY.1997.616338
– ident: ref22
  doi: 10.1109/TFUZZ.2012.2187453
– ident: ref9
  doi: 10.1016/j.patcog.2015.04.010
– ident: ref33
  doi: 10.1016/j.procs.2011.08.038
– ident: ref36
  doi: 10.1016/0020-0255(75)90036-5
– volume: 2
  start-page: 1106
  year: 2012
  ident: ref18
  article-title: An efficient modified fuzzy possibilistic C-means algorithm for MRI brain image segmentation
  publication-title: Int J Appl Eng Res
– ident: ref47
  doi: 10.1109/FOCI.2007.371499
– ident: ref35
  doi: 10.1109/SoCPaR.2011.6089094
– ident: ref32
  doi: 10.1109/FSKD.2011.6019569
– ident: ref34
  doi: 10.1007/978-3-319-05170-3_3
– ident: ref27
  doi: 10.1155/2017/7094046
– ident: ref51
  doi: 10.1016/S0165-0114(97)00337-0
– ident: ref39
  doi: 10.1016/j.ins.2017.09.062
– ident: ref46
  doi: 10.1109/NAFIPS.2001.944361
– ident: ref44
  doi: 10.1016/S0020-0255(01)00069-X
– ident: ref28
  doi: 10.1016/j.ins.2014.02.066
– ident: ref38
  doi: 10.1016/j.fss.2013.02.009
– ident: ref30
  doi: 10.1016/j.patcog.2018.04.006
– ident: ref26
  doi: 10.1109/FUZZ-IEEE.2012.6251233
– year: 1981
  ident: ref6
  publication-title: Pattern Recognition with Fuzzy Performance Index Algorithms
– ident: ref15
  doi: 10.1109/ICASSP.2014.6854165
– ident: ref21
  doi: 10.1016/j.cageo.2019.06.008
– ident: ref11
  doi: 10.1007/s00500-007-0231-6
– volume: 25
  start-page: 637
  year: 2010
  ident: ref43
  article-title: Fast algorithm to calculate generalized centroid of interval type-2 fuzzy set
  publication-title: Control Decis
– ident: ref41
  doi: 10.1109/NAFIPS.2007.383835
– ident: ref42
  doi: 10.1109/T2FUZZ.2011.5949546
– start-page: 99
  year: 1980
  ident: ref49
  article-title: A fuzzy sets based linguistic approach: Theory and applications
  publication-title: Proc 12th Winter Simul Conf
– ident: ref5
  doi: 10.1007/978-1-4757-0450-1
– year: 2001
  ident: ref16
  article-title: Fuzzy cluster analysis with cluster repulsion
  publication-title: Proc Eur Symp Intell Technol Hybrid Syst Their Implementation Smart Adaptive Syst
– ident: ref10
  doi: 10.1002/9780470061190
– ident: ref12
  doi: 10.1109/IWISA.2010.5473283
– ident: ref31
  doi: 10.4186/ej.2012.16.5.115
– ident: ref37
  doi: 10.1016/S0020-0255(01)00069-X
– ident: ref19
  doi: 10.1109/TFUZZ.2004.840099
– ident: ref45
  doi: 10.1109/TFUZZ.2006.882463
– year: 2001
  ident: ref40
  publication-title: Uncertain rule-based fuzzy logic systems introduction and New Directions Upper Saddle River
– ident: ref1
  doi: 10.1016/j.ijar.2019.09.004
– ident: ref25
  doi: 10.1016/j.ins.2011.10.015
– ident: ref24
  doi: 10.1109/RAICS.2011.6069361
– ident: ref8
  doi: 10.1016/j.asoc.2017.12.024
– start-page: 226
  year: 1996
  ident: ref4
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proc Int'l Conf Knowledge Discovery and Data Mining
SSID ssj0014518
Score 2.4305942
Snippet Type-2 fuzzy sets provide an efficient vehicle for handling uncertainties of real-world problems, including noisy observations. Bringing type-2 fuzzy sets to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1173
SubjectTerms Algorithms
Cardinality
center of gravity (COG)
characteristics
Clustering
Clustering algorithms
fuzzy clustering
Fuzzy sets
Linear programming
Noise measurement
Partitioning algorithms
Phase change materials
type-2 fuzzy sets (T2FS)
Uncertainty
Title Typical Characteristic-Based Type-2 Fuzzy C-Means Algorithm
URI https://ieeexplore.ieee.org/document/8972398
https://www.proquest.com/docview/2522915167
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT8IwFH5BTnoQBY0omh28acfWbu0aT0hciAmeICFclq3r1IhgcBzkr7ftNiJqjLce2qTpa9_7vr5fAJexzChPPIJILBRBCTBHMdGeQiKY8dzEpoDp8IEOxt79xJ_U4HqTCyOlNMFn0tZD48tPF2Klv8q6gW6RxYMd2GEBLXK1Nh4Dz3eLtDdKEGUOrRJkHN4dhePpVFFB7NiYU6V-2ZYRMl1VfqhiY1_CBgyrnRVhJS_2Kk9ssf5WtPG_Wz-A_RJoWr3iZhxCTc6b0KiaOFjlm27C3peKhC24UbxUi83qbxVyRrfK2KWWJq0IW-Fqvf6w-mgolZ2zerPHxfI5f3o9gnF4N-oPUNlfAQnM_RylCfOZEH7GpVKMaUYznyl-xVKNSTKeEEJdwVPsBQomupxLX3gaQWT6LznDMTmG-nwxlydgpY7gcaroiRtLjyQ4SYTCnVKnrYqAY9oGtzrwSJTFx3UPjFlkSIjDIyOkSAspKoXUhqvNmrei9Mafs1v61DczywNvQ6eSa1S-zvcIK9DJFdSh7PT3VWewi3Xsigls7EA9X67kuQIfeXJhbt0n-KbSmg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BGYCB8hSFAhnYwCXxK7GYSkVVHmVqJcQSJY4DiNKikg7012M7SUUBITYPtmT57Lvv870AjiOVchFTgkgkNUEJsEARMZ5CIn3ruYlsAdPuHe_06fU9u1-A01kujFLKBp-phhlaX34ykhPzVXYWmBZZIliEJUYpZXm21sxnQJmXJ75xgrjv8jJFxhVnvXb_4UGTQew2sOBaAftzZsj2VfmhjK2FaVehW-4tDyx5aUyyuCGn38o2_nfz67BWQE2nmd-NDVhQw02olm0cnOJVb8Lql5qEW3CumakRnNOaK-WMLrS5SxxDWxF22pPp9MNpoa7Sls5pDh5H4-fs6XUb-u3LXquDig4LSGLBMpTEPvOlZKlQWjUmKU-ZrxmWnxhUkoqYEO5JkWAaaKDoCaGYpAZDpOY3OcUR2YHKcDRUu-AkrhRRogmKFylKYhzHUiNPZRJXZSAwr4FXHngoi_LjpgvGILQ0xBWhFVJohBQWQqrByWzNW15848_ZW-bUZzOLA69BvZRrWLzP9xBr2Ck02OH-3u-rjmC50-vehrdXdzf7sIJNJIsNc6xDJRtP1IGGIll8aG_gJyz11ec
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Typical+Characteristic-Based+Type-2+Fuzzy+C-Means+Algorithm&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Yang%2C+Xiyang&rft.au=Yu%2C+Fusheng&rft.au=Pedrycz%2C+Witold&rft.date=2021-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=29&rft.issue=5&rft.spage=1173&rft_id=info:doi/10.1109%2FTFUZZ.2020.2969907&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon