A New Membership Scaling Fuzzy C-Means Clustering Algorithm
Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a large amount of calculation because all samples are involved in updating the solutions per iteration without considering the current cluster...
Saved in:
| Published in | IEEE transactions on fuzzy systems Vol. 29; no. 9; pp. 2810 - 2818 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6706 1941-0034 |
| DOI | 10.1109/TFUZZ.2020.3003441 |
Cover
| Abstract | Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a large amount of calculation because all samples are involved in updating the solutions per iteration without considering the current clustering results. In this article, a new membership scaling FCM (MSFCM) is proposed, based on the observation that the samples, whose nearest cluster center is <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>, aid the convergence of <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>, whereas the remaining samples prevent the convergence of <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>. In the new algorithm, many samples whose nearest cluster centers do not change in the next iteration are chosen by using the triangle inequality. A new scheme for scaling the membership degrees of the chosen samples is suggested to boost the effect of the in-cluster samples and to weaken the effect of the out-of-cluster samples in the clustering process. The new scheme not only accelerates the convergence of the algorithm but also maintains the high clustering quality. Many experimental results on synthetic and real-world data sets have verified the effectiveness of the proposed algorithm in improving the speed of the convergence of the fuzzy clustering. In particular, compared with FCM, MSFCM saves at least two thirds of the total rounds of iterations without significantly increasing the cost per iteration. |
|---|---|
| AbstractList | Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a large amount of calculation because all samples are involved in updating the solutions per iteration without considering the current clustering results. In this article, a new membership scaling FCM (MSFCM) is proposed, based on the observation that the samples, whose nearest cluster center is [Formula Omitted], aid the convergence of [Formula Omitted], whereas the remaining samples prevent the convergence of [Formula Omitted]. In the new algorithm, many samples whose nearest cluster centers do not change in the next iteration are chosen by using the triangle inequality. A new scheme for scaling the membership degrees of the chosen samples is suggested to boost the effect of the in-cluster samples and to weaken the effect of the out-of-cluster samples in the clustering process. The new scheme not only accelerates the convergence of the algorithm but also maintains the high clustering quality. Many experimental results on synthetic and real-world data sets have verified the effectiveness of the proposed algorithm in improving the speed of the convergence of the fuzzy clustering. In particular, compared with FCM, MSFCM saves at least two thirds of the total rounds of iterations without significantly increasing the cost per iteration. Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a large amount of calculation because all samples are involved in updating the solutions per iteration without considering the current clustering results. In this article, a new membership scaling FCM (MSFCM) is proposed, based on the observation that the samples, whose nearest cluster center is <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>, aid the convergence of <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>, whereas the remaining samples prevent the convergence of <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>. In the new algorithm, many samples whose nearest cluster centers do not change in the next iteration are chosen by using the triangle inequality. A new scheme for scaling the membership degrees of the chosen samples is suggested to boost the effect of the in-cluster samples and to weaken the effect of the out-of-cluster samples in the clustering process. The new scheme not only accelerates the convergence of the algorithm but also maintains the high clustering quality. Many experimental results on synthetic and real-world data sets have verified the effectiveness of the proposed algorithm in improving the speed of the convergence of the fuzzy clustering. In particular, compared with FCM, MSFCM saves at least two thirds of the total rounds of iterations without significantly increasing the cost per iteration. |
| Author | Zhou, Shuisheng Ping, Rui Li, Dong Zhang, Zhuan |
| Author_xml | – sequence: 1 givenname: Shuisheng orcidid: 0000-0003-4764-9483 surname: Zhou fullname: Zhou, Shuisheng email: sszhou@mail.xidian.edu.cn organization: School of Mathematics and Statistics, Xidian University, Xi'an, China – sequence: 2 givenname: Dong surname: Li fullname: Li, Dong email: lidong_xidian@foxmail.com organization: School of Mathematics and Statistics, Xidian University, Xi'an, China – sequence: 3 givenname: Zhuan surname: Zhang fullname: Zhang, Zhuan email: zhangzhuan10@163.com organization: School of Mathematics and Statistics, Xidian University, Xi'an, China – sequence: 4 givenname: Rui surname: Ping fullname: Ping, Rui email: 1246187617@qq.com organization: School of Mathematics and Statistics, Xidian University, Xi'an, China |
| BookMark | eNp9kEFPwkAQhTcGEwH9A3pp4rk4091uu_FEGlET0INw4dJsyxRKSou7bQz8elshHjx4mpm8981k3oD1yqokxm4RRoigHuaTxXI58sCDEQfgQuAF66MS6HZTr-1BclcGIK_YwNotAAofwz57HDtv9OXMaJeQsZt873ykusjLtTNpjseDE7kz0qV1oqKxNZlOGBfryuT1ZnfNLjNdWLo51yFbTJ7m0Ys7fX9-jcZTN_WUX7srUB4JDFMNKtAoZLhKfCWlUCFyjoqEVByTViWdcAIM0ixTxHlCfqDA40N2f9q7N9VnQ7aOt1VjyvZk7PkyBCkCJVtXeHKlprLWUBanea3rvCpro_MiRoi7qOKfqOIuqvgcVYt6f9C9yXfaHP6H7k5QTkS_gEIPsP3rG3BxdL0 |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2023_110736 crossref_primary_10_3390_math12111639 crossref_primary_10_1109_TFUZZ_2021_3099560 crossref_primary_10_1109_TFUZZ_2023_3287834 crossref_primary_10_1080_1206212X_2024_2380975 crossref_primary_10_1016_j_engappai_2024_109854 crossref_primary_10_1109_TFUZZ_2022_3218371 crossref_primary_10_1109_TFUZZ_2023_3247912 crossref_primary_10_1109_ACCESS_2020_3015270 crossref_primary_10_3233_JIFS_232999 crossref_primary_10_1109_TIM_2025_3527611 crossref_primary_10_1109_TKDE_2022_3200685 crossref_primary_10_1016_j_ins_2023_119880 crossref_primary_10_1007_s00530_024_01343_7 crossref_primary_10_3233_JIFS_222912 crossref_primary_10_1007_s10489_024_05297_1 crossref_primary_10_1109_TFUZZ_2023_3283261 crossref_primary_10_3390_app13010032 crossref_primary_10_1016_j_knosys_2022_109937 crossref_primary_10_1109_TFUZZ_2023_3286910 crossref_primary_10_1016_j_patcog_2023_109611 crossref_primary_10_3233_JIFS_231515 crossref_primary_10_1007_s00170_022_09616_z crossref_primary_10_1109_TFUZZ_2022_3220925 crossref_primary_10_1109_TKDE_2023_3273274 crossref_primary_10_1016_j_patrec_2022_03_017 crossref_primary_10_1109_TFUZZ_2024_3421576 crossref_primary_10_1109_TFUZZ_2024_3419144 crossref_primary_10_1109_TKDE_2023_3329821 crossref_primary_10_1016_j_jksuci_2024_102002 crossref_primary_10_1016_j_eswa_2023_122231 |
| Cites_doi | 10.1109/TPAMI.2002.1033218 10.1109/ISTEL.2016.7881809 10.1007/BF01908075 10.1016/0098-3004(84)90020-7 10.1016/j.csda.2006.04.030 10.1016/j.patrec.2009.09.011 10.1109/TFUZZ.2016.2604009 10.1109/91.413225 10.1006/cgip.1993.1001 10.1109/TFUZZ.2008.2009458 10.1109/TFUZZ.2018.2796074 10.1109/83.847836 10.1109/34.192473 10.1109/ICNN.1994.374399 10.1109/TFUZZ.2012.2201485 10.1016/j.patrec.2017.02.015 10.1016/j.ijar.2017.08.008 10.1109/TFUZZ.2013.2286993 10.1109/FUZZ-IEEE.2014.6891755 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2020.3003441 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 2818 |
| ExternalDocumentID | 10_1109_TFUZZ_2020_3003441 9120181 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61772020 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-d092e418ca097a1468db596649813319e46931ba09eab3e017cff9e33be579023 |
| IEDL.DBID | RIE |
| ISSN | 1063-6706 |
| IngestDate | Mon Jun 30 05:52:54 EDT 2025 Thu Apr 24 22:54:15 EDT 2025 Wed Oct 01 02:37:26 EDT 2025 Wed Aug 27 02:22:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-d092e418ca097a1468db596649813319e46931ba09eab3e017cff9e33be579023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-4764-9483 |
| PQID | 2568064796 |
| PQPubID | 85428 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_2568064796 ieee_primary_9120181 crossref_citationtrail_10_1109_TFUZZ_2020_3003441 crossref_primary_10_1109_TFUZZ_2020_3003441 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-09-01 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 parizi (ref21) 2015; 121 ref15 ref14 ref11 ref10 bezdek (ref1) 2013 ref2 ref17 ref16 ref19 ref18 johnson (ref23) 0 ref25 ref20 ref22 elkan (ref7) 0 ref9 ref4 ref3 ref6 yu (ref24) 2015; 13 ref5 ding (ref8) 0 |
| References_xml | – start-page: 315 year: 0 ident: ref23 article-title: Accelerating stochastic gradient descent using predictive variance reduction publication-title: Proc Adv Neural Inf Process Syst – ident: ref20 doi: 10.1109/TPAMI.2002.1033218 – ident: ref18 doi: 10.1109/ISTEL.2016.7881809 – ident: ref22 doi: 10.1007/BF01908075 – ident: ref10 doi: 10.1016/0098-3004(84)90020-7 – start-page: 579 year: 0 ident: ref8 article-title: Yinyang k-means: A drop-in replacement of the classic k-means with consistent speedup publication-title: Proc Int Conf Mach Learn – ident: ref9 doi: 10.1016/j.csda.2006.04.030 – ident: ref6 doi: 10.1016/j.patrec.2009.09.011 – start-page: 147 year: 0 ident: ref7 article-title: Using the triangle inequality to accelerate k-means publication-title: Proc 20th Int Conf Mach Learn – ident: ref19 doi: 10.1109/TFUZZ.2016.2604009 – ident: ref25 doi: 10.1109/91.413225 – ident: ref4 doi: 10.1006/cgip.1993.1001 – ident: ref11 doi: 10.1109/TFUZZ.2008.2009458 – ident: ref14 doi: 10.1109/TFUZZ.2018.2796074 – volume: 13 start-page: 164 year: 2015 ident: ref24 article-title: Optimality test for generalized FCM and its application to parameter selection publication-title: IEEE Trans Fuzzy Syst – year: 2013 ident: ref1 publication-title: Pattern Recognition with Fuzzy Objective Function Algorithms – ident: ref2 doi: 10.1109/83.847836 – volume: 121 start-page: 95 year: 2015 ident: ref21 article-title: Generalized majorization-minimization publication-title: Comput Sci – ident: ref5 doi: 10.1109/34.192473 – ident: ref15 doi: 10.1109/ICNN.1994.374399 – ident: ref17 doi: 10.1109/TFUZZ.2012.2201485 – ident: ref13 doi: 10.1016/j.patrec.2017.02.015 – ident: ref3 doi: 10.1016/j.ijar.2017.08.008 – ident: ref12 doi: 10.1109/TFUZZ.2013.2286993 – ident: ref16 doi: 10.1109/FUZZ-IEEE.2014.6891755 |
| SSID | ssj0014518 |
| Score | 2.5300393 |
| Snippet | Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2810 |
| SubjectTerms | Acceleration Algorithms Automobile customizing Clustering Clustering algorithms Convergence Fuzzy c-means (FCM) Fuzzy systems Indexes Iterative methods membership degree membership scaling (MS) Robustness Scaling Trajectory triangular inequality |
| Title | A New Membership Scaling Fuzzy C-Means Clustering Algorithm |
| URI | https://ieeexplore.ieee.org/document/9120181 https://www.proquest.com/docview/2568064796 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeWlDGzgNo7zspiqiqpCKlMrVSxR7FwAUVoEyUB_PT4nqXgJsUXyWbJ8ts9ffN93AOdKZJhxoRiBC-Z7uWBxlntMywC1kjrVkrjDw9twMPZvJsFkBS6XXBhEtMln2KZP-5afzXVJv8o6knukL7UKq1EcVlyt5YuBH_CK9hYKFkZu2BBkXNkZ9cd3dwYKegahWok7_iUI2aoqP45iG1_6WzBsRlallTy1y0K19eKbaON_h74Nm_VF0-lWK2MHVnC2C1tNEQen3tO7sPFJkXAPrrqOOfacIVKdEErkMoYpMdadfrlYvDs9NkQT3JzetCSFBWroTu_nr4_Fw_M-jPvXo96A1fUVmPZkULDMlR76PNapK6OUOFiZCgz88WVskCuXaKCz4Mq0YqoEmr2r81yiEAqDSJpgfwBrs_kMD8ExZoFw48xAc-mHuTknoiDKleCplxLCbAFvJjzRtfg41cCYJhaEuDKxTkrISUntpBZcLPu8VNIbf1rv0awvLesJb8FJ49ek3p1vibnmxUSyleHR772OYd2j3BWbS3YCa8Vriafm8lGoM7vqPgAsO9La |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1Remh7gBaKupTSHHprvcSxncTqabXqaqGE066EuESxM2lRt7sIkgP76_E4yapfqrhF8liyPLbHL573BuCDESWWXBhG4ILJqBIsLauIWa3QGm0Lq4k7nF3E07k8u1SXW_Bpw4VBRJ98hkP69G_55co29KvsRPOI9KWewFMlpVQtW2vzZiAVb4lvsWBxEsY9RSbUJ7PJ_OrKgcHIYVQvcsd_C0O-rspfh7GPMJNdyPqxtYklP4ZNbYZ2_Yds42MH_xJ2uqtmMGrXxivYwuUe7PZlHIJuV-_Bi180Cffh8yhwB1-QIVUKoVQuZ1gQZz2YNOv1fTBmGbrwFowXDWksUMNo8W11e11___ka5pMvs_GUdRUWmI20qlkZ6gglT20R6qQgFlZplANAUqcOu3KNDjwLblwrFkag2722qjQKYVAl2oX7A9herpb4BgJnpkSYlg6caxlX7qRIVFIZwYuoIIw5AN5PeG47-XGqgrHIPQwJde6dlJOT8s5JA_i46XPTim_813qfZn1j2U34AI56v-bd_rzL3UUvJZqtjg__3es9PJvOsvP8_PTi61t4HlEmi88sO4Lt-rbBd-4qUptjvwIfAGWj1ic |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Membership+Scaling+Fuzzy+C-Means+Clustering+Algorithm&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhou%2C+Shuisheng&rft.au=Li%2C+Dong&rft.au=Zhang%2C+Zhuan&rft.au=Ping%2C+Rui&rft.date=2021-09-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=29&rft.issue=9&rft.spage=2810&rft.epage=2818&rft_id=info:doi/10.1109%2FTFUZZ.2020.3003441&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2020_3003441 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |