A New Membership Scaling Fuzzy C-Means Clustering Algorithm

Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a large amount of calculation because all samples are involved in updating the solutions per iteration without considering the current cluster...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 29; no. 9; pp. 2810 - 2818
Main Authors Zhou, Shuisheng, Li, Dong, Zhang, Zhuan, Ping, Rui
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2020.3003441

Cover

Abstract Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a large amount of calculation because all samples are involved in updating the solutions per iteration without considering the current clustering results. In this article, a new membership scaling FCM (MSFCM) is proposed, based on the observation that the samples, whose nearest cluster center is <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>, aid the convergence of <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>, whereas the remaining samples prevent the convergence of <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>. In the new algorithm, many samples whose nearest cluster centers do not change in the next iteration are chosen by using the triangle inequality. A new scheme for scaling the membership degrees of the chosen samples is suggested to boost the effect of the in-cluster samples and to weaken the effect of the out-of-cluster samples in the clustering process. The new scheme not only accelerates the convergence of the algorithm but also maintains the high clustering quality. Many experimental results on synthetic and real-world data sets have verified the effectiveness of the proposed algorithm in improving the speed of the convergence of the fuzzy clustering. In particular, compared with FCM, MSFCM saves at least two thirds of the total rounds of iterations without significantly increasing the cost per iteration.
AbstractList Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a large amount of calculation because all samples are involved in updating the solutions per iteration without considering the current clustering results. In this article, a new membership scaling FCM (MSFCM) is proposed, based on the observation that the samples, whose nearest cluster center is [Formula Omitted], aid the convergence of [Formula Omitted], whereas the remaining samples prevent the convergence of [Formula Omitted]. In the new algorithm, many samples whose nearest cluster centers do not change in the next iteration are chosen by using the triangle inequality. A new scheme for scaling the membership degrees of the chosen samples is suggested to boost the effect of the in-cluster samples and to weaken the effect of the out-of-cluster samples in the clustering process. The new scheme not only accelerates the convergence of the algorithm but also maintains the high clustering quality. Many experimental results on synthetic and real-world data sets have verified the effectiveness of the proposed algorithm in improving the speed of the convergence of the fuzzy clustering. In particular, compared with FCM, MSFCM saves at least two thirds of the total rounds of iterations without significantly increasing the cost per iteration.
Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a large amount of calculation because all samples are involved in updating the solutions per iteration without considering the current clustering results. In this article, a new membership scaling FCM (MSFCM) is proposed, based on the observation that the samples, whose nearest cluster center is <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>, aid the convergence of <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>, whereas the remaining samples prevent the convergence of <inline-formula><tex-math notation="LaTeX">\mathbf {v}</tex-math></inline-formula>. In the new algorithm, many samples whose nearest cluster centers do not change in the next iteration are chosen by using the triangle inequality. A new scheme for scaling the membership degrees of the chosen samples is suggested to boost the effect of the in-cluster samples and to weaken the effect of the out-of-cluster samples in the clustering process. The new scheme not only accelerates the convergence of the algorithm but also maintains the high clustering quality. Many experimental results on synthetic and real-world data sets have verified the effectiveness of the proposed algorithm in improving the speed of the convergence of the fuzzy clustering. In particular, compared with FCM, MSFCM saves at least two thirds of the total rounds of iterations without significantly increasing the cost per iteration.
Author Zhou, Shuisheng
Ping, Rui
Li, Dong
Zhang, Zhuan
Author_xml – sequence: 1
  givenname: Shuisheng
  orcidid: 0000-0003-4764-9483
  surname: Zhou
  fullname: Zhou, Shuisheng
  email: sszhou@mail.xidian.edu.cn
  organization: School of Mathematics and Statistics, Xidian University, Xi'an, China
– sequence: 2
  givenname: Dong
  surname: Li
  fullname: Li, Dong
  email: lidong_xidian@foxmail.com
  organization: School of Mathematics and Statistics, Xidian University, Xi'an, China
– sequence: 3
  givenname: Zhuan
  surname: Zhang
  fullname: Zhang, Zhuan
  email: zhangzhuan10@163.com
  organization: School of Mathematics and Statistics, Xidian University, Xi'an, China
– sequence: 4
  givenname: Rui
  surname: Ping
  fullname: Ping, Rui
  email: 1246187617@qq.com
  organization: School of Mathematics and Statistics, Xidian University, Xi'an, China
BookMark eNp9kEFPwkAQhTcGEwH9A3pp4rk4091uu_FEGlET0INw4dJsyxRKSou7bQz8elshHjx4mpm8981k3oD1yqokxm4RRoigHuaTxXI58sCDEQfgQuAF66MS6HZTr-1BclcGIK_YwNotAAofwz57HDtv9OXMaJeQsZt873ykusjLtTNpjseDE7kz0qV1oqKxNZlOGBfryuT1ZnfNLjNdWLo51yFbTJ7m0Ys7fX9-jcZTN_WUX7srUB4JDFMNKtAoZLhKfCWlUCFyjoqEVByTViWdcAIM0ixTxHlCfqDA40N2f9q7N9VnQ7aOt1VjyvZk7PkyBCkCJVtXeHKlprLWUBanea3rvCpro_MiRoi7qOKfqOIuqvgcVYt6f9C9yXfaHP6H7k5QTkS_gEIPsP3rG3BxdL0
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_knosys_2023_110736
crossref_primary_10_3390_math12111639
crossref_primary_10_1109_TFUZZ_2021_3099560
crossref_primary_10_1109_TFUZZ_2023_3287834
crossref_primary_10_1080_1206212X_2024_2380975
crossref_primary_10_1016_j_engappai_2024_109854
crossref_primary_10_1109_TFUZZ_2022_3218371
crossref_primary_10_1109_TFUZZ_2023_3247912
crossref_primary_10_1109_ACCESS_2020_3015270
crossref_primary_10_3233_JIFS_232999
crossref_primary_10_1109_TIM_2025_3527611
crossref_primary_10_1109_TKDE_2022_3200685
crossref_primary_10_1016_j_ins_2023_119880
crossref_primary_10_1007_s00530_024_01343_7
crossref_primary_10_3233_JIFS_222912
crossref_primary_10_1007_s10489_024_05297_1
crossref_primary_10_1109_TFUZZ_2023_3283261
crossref_primary_10_3390_app13010032
crossref_primary_10_1016_j_knosys_2022_109937
crossref_primary_10_1109_TFUZZ_2023_3286910
crossref_primary_10_1016_j_patcog_2023_109611
crossref_primary_10_3233_JIFS_231515
crossref_primary_10_1007_s00170_022_09616_z
crossref_primary_10_1109_TFUZZ_2022_3220925
crossref_primary_10_1109_TKDE_2023_3273274
crossref_primary_10_1016_j_patrec_2022_03_017
crossref_primary_10_1109_TFUZZ_2024_3421576
crossref_primary_10_1109_TFUZZ_2024_3419144
crossref_primary_10_1109_TKDE_2023_3329821
crossref_primary_10_1016_j_jksuci_2024_102002
crossref_primary_10_1016_j_eswa_2023_122231
Cites_doi 10.1109/TPAMI.2002.1033218
10.1109/ISTEL.2016.7881809
10.1007/BF01908075
10.1016/0098-3004(84)90020-7
10.1016/j.csda.2006.04.030
10.1016/j.patrec.2009.09.011
10.1109/TFUZZ.2016.2604009
10.1109/91.413225
10.1006/cgip.1993.1001
10.1109/TFUZZ.2008.2009458
10.1109/TFUZZ.2018.2796074
10.1109/83.847836
10.1109/34.192473
10.1109/ICNN.1994.374399
10.1109/TFUZZ.2012.2201485
10.1016/j.patrec.2017.02.015
10.1016/j.ijar.2017.08.008
10.1109/TFUZZ.2013.2286993
10.1109/FUZZ-IEEE.2014.6891755
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2020.3003441
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 2818
ExternalDocumentID 10_1109_TFUZZ_2020_3003441
9120181
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61772020
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-d092e418ca097a1468db596649813319e46931ba09eab3e017cff9e33be579023
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Mon Jun 30 05:52:54 EDT 2025
Thu Apr 24 22:54:15 EDT 2025
Wed Oct 01 02:37:26 EDT 2025
Wed Aug 27 02:22:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-d092e418ca097a1468db596649813319e46931ba09eab3e017cff9e33be579023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4764-9483
PQID 2568064796
PQPubID 85428
PageCount 9
ParticipantIDs proquest_journals_2568064796
ieee_primary_9120181
crossref_citationtrail_10_1109_TFUZZ_2020_3003441
crossref_primary_10_1109_TFUZZ_2020_3003441
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
parizi (ref21) 2015; 121
ref15
ref14
ref11
ref10
bezdek (ref1) 2013
ref2
ref17
ref16
ref19
ref18
johnson (ref23) 0
ref25
ref20
ref22
elkan (ref7) 0
ref9
ref4
ref3
ref6
yu (ref24) 2015; 13
ref5
ding (ref8) 0
References_xml – start-page: 315
  year: 0
  ident: ref23
  article-title: Accelerating stochastic gradient descent using predictive variance reduction
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/TPAMI.2002.1033218
– ident: ref18
  doi: 10.1109/ISTEL.2016.7881809
– ident: ref22
  doi: 10.1007/BF01908075
– ident: ref10
  doi: 10.1016/0098-3004(84)90020-7
– start-page: 579
  year: 0
  ident: ref8
  article-title: Yinyang k-means: A drop-in replacement of the classic k-means with consistent speedup
  publication-title: Proc Int Conf Mach Learn
– ident: ref9
  doi: 10.1016/j.csda.2006.04.030
– ident: ref6
  doi: 10.1016/j.patrec.2009.09.011
– start-page: 147
  year: 0
  ident: ref7
  article-title: Using the triangle inequality to accelerate k-means
  publication-title: Proc 20th Int Conf Mach Learn
– ident: ref19
  doi: 10.1109/TFUZZ.2016.2604009
– ident: ref25
  doi: 10.1109/91.413225
– ident: ref4
  doi: 10.1006/cgip.1993.1001
– ident: ref11
  doi: 10.1109/TFUZZ.2008.2009458
– ident: ref14
  doi: 10.1109/TFUZZ.2018.2796074
– volume: 13
  start-page: 164
  year: 2015
  ident: ref24
  article-title: Optimality test for generalized FCM and its application to parameter selection
  publication-title: IEEE Trans Fuzzy Syst
– year: 2013
  ident: ref1
  publication-title: Pattern Recognition with Fuzzy Objective Function Algorithms
– ident: ref2
  doi: 10.1109/83.847836
– volume: 121
  start-page: 95
  year: 2015
  ident: ref21
  article-title: Generalized majorization-minimization
  publication-title: Comput Sci
– ident: ref5
  doi: 10.1109/34.192473
– ident: ref15
  doi: 10.1109/ICNN.1994.374399
– ident: ref17
  doi: 10.1109/TFUZZ.2012.2201485
– ident: ref13
  doi: 10.1016/j.patrec.2017.02.015
– ident: ref3
  doi: 10.1016/j.ijar.2017.08.008
– ident: ref12
  doi: 10.1109/TFUZZ.2013.2286993
– ident: ref16
  doi: 10.1109/FUZZ-IEEE.2014.6891755
SSID ssj0014518
Score 2.5300393
Snippet Fuzzy c-means (FCM) is one of the most frequently used methods for clustering. However, with increasing amount of data, FCM suffers from slow convergence and a...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2810
SubjectTerms Acceleration
Algorithms
Automobile customizing
Clustering
Clustering algorithms
Convergence
Fuzzy c-means (FCM)
Fuzzy systems
Indexes
Iterative methods
membership degree
membership scaling (MS)
Robustness
Scaling
Trajectory
triangular inequality
Title A New Membership Scaling Fuzzy C-Means Clustering Algorithm
URI https://ieeexplore.ieee.org/document/9120181
https://www.proquest.com/docview/2568064796
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeWlDGzgNo7zspiqiqpCKlMrVSxR7FwAUVoEyUB_PT4nqXgJsUXyWbJ8ts9ffN93AOdKZJhxoRiBC-Z7uWBxlntMywC1kjrVkrjDw9twMPZvJsFkBS6XXBhEtMln2KZP-5afzXVJv8o6knukL7UKq1EcVlyt5YuBH_CK9hYKFkZu2BBkXNkZ9cd3dwYKegahWok7_iUI2aoqP45iG1_6WzBsRlallTy1y0K19eKbaON_h74Nm_VF0-lWK2MHVnC2C1tNEQen3tO7sPFJkXAPrrqOOfacIVKdEErkMoYpMdadfrlYvDs9NkQT3JzetCSFBWroTu_nr4_Fw_M-jPvXo96A1fUVmPZkULDMlR76PNapK6OUOFiZCgz88WVskCuXaKCz4Mq0YqoEmr2r81yiEAqDSJpgfwBrs_kMD8ExZoFw48xAc-mHuTknoiDKleCplxLCbAFvJjzRtfg41cCYJhaEuDKxTkrISUntpBZcLPu8VNIbf1rv0awvLesJb8FJ49ek3p1vibnmxUSyleHR772OYd2j3BWbS3YCa8Vriafm8lGoM7vqPgAsO9La
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB1Remh7gBaKupTSHHprvcSxncTqabXqaqGE066EuESxM2lRt7sIkgP76_E4yapfqrhF8liyPLbHL573BuCDESWWXBhG4ILJqBIsLauIWa3QGm0Lq4k7nF3E07k8u1SXW_Bpw4VBRJ98hkP69G_55co29KvsRPOI9KWewFMlpVQtW2vzZiAVb4lvsWBxEsY9RSbUJ7PJ_OrKgcHIYVQvcsd_C0O-rspfh7GPMJNdyPqxtYklP4ZNbYZ2_Yds42MH_xJ2uqtmMGrXxivYwuUe7PZlHIJuV-_Bi180Cffh8yhwB1-QIVUKoVQuZ1gQZz2YNOv1fTBmGbrwFowXDWksUMNo8W11e11___ka5pMvs_GUdRUWmI20qlkZ6gglT20R6qQgFlZplANAUqcOu3KNDjwLblwrFkag2722qjQKYVAl2oX7A9herpb4BgJnpkSYlg6caxlX7qRIVFIZwYuoIIw5AN5PeG47-XGqgrHIPQwJde6dlJOT8s5JA_i46XPTim_813qfZn1j2U34AI56v-bd_rzL3UUvJZqtjg__3es9PJvOsvP8_PTi61t4HlEmi88sO4Lt-rbBd-4qUptjvwIfAGWj1ic
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Membership+Scaling+Fuzzy+C-Means+Clustering+Algorithm&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Zhou%2C+Shuisheng&rft.au=Li%2C+Dong&rft.au=Zhang%2C+Zhuan&rft.au=Ping%2C+Rui&rft.date=2021-09-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=29&rft.issue=9&rft.spage=2810&rft.epage=2818&rft_id=info:doi/10.1109%2FTFUZZ.2020.3003441&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2020_3003441
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon