Electricity Theft Detection in AMI With Low False Positive Rate Based on Deep Learning and Evolutionary Algorithm
Due to the diversity of power consumption patterns, the false positive rate (FPR) of data-driven electricity theft detection (ETD) methods is too high to meet practical needs, which severely restricts the engineering application of data-based methods. To reduce FPR of ETD methods based on advanced m...
Saved in:
| Published in | IEEE transactions on power systems Vol. 37; no. 6; pp. 4568 - 4578 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0885-8950 1558-0679 |
| DOI | 10.1109/TPWRS.2022.3150050 |
Cover
| Abstract | Due to the diversity of power consumption patterns, the false positive rate (FPR) of data-driven electricity theft detection (ETD) methods is too high to meet practical needs, which severely restricts the engineering application of data-based methods. To reduce FPR of ETD methods based on advanced metering infrastructure (AMI), a deep neural network with low FPR (LFPR-DNN) is proposed in this paper. First, a deep model is constructed based on one-dimensional convolution and residual network, which can automatically extract features from consumption data. Then, a two-stage training scheme is used to train the network. In the first stage, the conventional gradient descent algorithm is used to update the network weights. To minimize the impact of data imbalance on detection performance, focal loss is used. Besides, grid search is used to optimize the hyper-parameters of the model. In the second stage, with FPR as the optimization objective, the particle swarm optimization (PSO) algorithm is used to train the network. Finally, the proposed LFPR-DNN is verified by using the open Irish data set. Compared to other state-of-the-art classifiers, LFPR-DNN has the lowest FPR with 0.29% and the highest AUC with 99.42%. The FPR is reduced by an order of magnitude, which verifies the effectiveness of the proposed method. |
|---|---|
| AbstractList | Due to the diversity of power consumption patterns, the false positive rate (FPR) of data-driven electricity theft detection (ETD) methods is too high to meet practical needs, which severely restricts the engineering application of data-based methods. To reduce FPR of ETD methods based on advanced metering infrastructure (AMI), a deep neural network with low FPR (LFPR-DNN) is proposed in this paper. First, a deep model is constructed based on one-dimensional convolution and residual network, which can automatically extract features from consumption data. Then, a two-stage training scheme is used to train the network. In the first stage, the conventional gradient descent algorithm is used to update the network weights. To minimize the impact of data imbalance on detection performance, focal loss is used. Besides, grid search is used to optimize the hyper-parameters of the model. In the second stage, with FPR as the optimization objective, the particle swarm optimization (PSO) algorithm is used to train the network. Finally, the proposed LFPR-DNN is verified by using the open Irish data set. Compared to other state-of-the-art classifiers, LFPR-DNN has the lowest FPR with 0.29% and the highest AUC with 99.42%. The FPR is reduced by an order of magnitude, which verifies the effectiveness of the proposed method. |
| Author | Cao, Yijia Shi, Junhao Gu, Dexi Chen, Kang Li, Yunfeng Gao, Yunpeng |
| Author_xml | – sequence: 1 givenname: Dexi orcidid: 0000-0003-2218-3744 surname: Gu fullname: Gu, Dexi email: dexigu@hnu.edu.cn organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Yunpeng orcidid: 0000-0001-9932-5822 surname: Gao fullname: Gao, Yunpeng email: gaoyp@hnu.edu.cn organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Kang surname: Chen fullname: Chen, Kang email: chenkang85@hnu.edu.cn organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 4 givenname: Junhao surname: Shi fullname: Shi, Junhao email: sjh2020@hnu.edu.cn organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 5 givenname: Yunfeng orcidid: 0000-0002-2750-444X surname: Li fullname: Li, Yunfeng email: yfli613@hnu.edu.cn organization: College of Electrical and Information Engineering, Hunan University, Changsha, China – sequence: 6 givenname: Yijia surname: Cao fullname: Cao, Yijia email: yjcao@hnu.edu.cn organization: School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, China |
| BookMark | eNp9kE1P4zAQhq0VSJTCH4CLpT2nO3YSfxy70C5IXYGgqMfIdSbFKMTFcVn13-Ns0R447GUsjed5xn5PyVHnOyTkgsGEMdA_lverh8cJB84nOSsBSvhGRqwsVQZC6iMyAqXKTOkSTshp378AgEgXI_I2a9HG4KyLe7p8xibSa4yp5XxHXUenv2_pysVnuvB_6Ny0PdJ737vo3pE-mIj0p-mxpmn4GnFLF2hC57oNNV1NZ---3Q0iE_Z02m58SKLXM3LcDJ7zz3NMnuaz5dVNtrj7dXs1XWSW6zJmVhuhm6Joai6kUjwXRapiLQVby5pJjrZGVa-LxgiBlgngjCmuMV_bwhZFPibfD95t8G877GP14nehSysrLrmEQupkHRN1mLLB933ApkpJmOHRMRjXVgyqIeDqb8DVEHD1GXBC-Rd0G9xr-uv_ocsD5BDxH6AlaCEh_wBO3ojW |
| CODEN | ITPSEG |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2022_3222883 crossref_primary_10_1109_TIM_2024_3352696 crossref_primary_10_1049_gtd2_13056 crossref_primary_10_3390_su15076170 crossref_primary_10_1016_j_segan_2023_101219 crossref_primary_10_1109_ACCESS_2022_3215532 crossref_primary_10_3390_s22207818 crossref_primary_10_1016_j_ijepes_2025_110461 crossref_primary_10_1186_s44147_024_00428_4 crossref_primary_10_1007_s00170_023_12613_5 crossref_primary_10_1016_j_apenergy_2023_121399 crossref_primary_10_1016_j_apenergy_2024_122847 crossref_primary_10_1016_j_eswa_2024_124182 crossref_primary_10_1109_TPWRS_2022_3196403 crossref_primary_10_3390_en17071562 crossref_primary_10_1109_TSG_2023_3263219 crossref_primary_10_1109_TII_2023_3297588 crossref_primary_10_1109_TIFS_2023_3265884 crossref_primary_10_1002_ese3_1541 crossref_primary_10_1016_j_prime_2024_100452 crossref_primary_10_1109_TII_2024_3485813 crossref_primary_10_1016_j_ecmx_2025_100965 crossref_primary_10_1109_TPWRS_2024_3375939 crossref_primary_10_1016_j_apenergy_2024_123228 crossref_primary_10_1109_ACCESS_2023_3312376 crossref_primary_10_1109_ACCESS_2023_3284681 crossref_primary_10_1109_TII_2023_3331131 crossref_primary_10_1016_j_ijepes_2023_109570 |
| Cites_doi | 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00175 10.1109/TSG.2017.2753738 10.1109/TPWRD.2011.2161621 10.1109/TII.2016.2543145 10.1109/TPWRS.2010.2051823 10.1109/TSG.2015.2425222 10.1109/TSG.2020.2973681 10.1109/TPWRD.2011.2170182 10.1126/science.1242072 10.1109/TIM.2020.3048784 10.1109/TII.2018.2873814 10.1109/TSG.2016.2560801 10.1109/TII.2017.2785963 10.1016/j.epsr.2018.01.005 10.1109/TPWRD.2020.2974132 10.1109/TPWRS.2015.2406311 10.1145/2939672.2939785 10.1109/TPWRS.2017.2721435 10.1109/TPWRS.2013.2282931 10.1109/TPWRS.2018.2853162 10.1109/TPWRS.2019.2943115 10.1109/TSG.2019.2892595 10.1109/TPWRD.2009.2030890 10.1109/CVPR.2016.90 10.1016/j.epsr.2016.05.036 10.1109/TPWRS.2019.2928276 10.1109/ICCV.2017.324 10.1109/TPWRS.2008.926431 10.1109/ICMLA.2016.0052 10.1109/TNNLS.2018.2890663 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1109/TPWRS.2022.3150050 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0679 |
| EndPage | 4578 |
| ExternalDocumentID | 10_1109_TPWRS_2022_3150050 9709670 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51777061 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c295t-c9a69f44fd2678823648826b761b7d172ecde8db4fa66ec160211829e3bc4c443 |
| IEDL.DBID | RIE |
| ISSN | 0885-8950 |
| IngestDate | Fri Jul 25 09:23:32 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 Wed Oct 01 02:20:54 EDT 2025 Wed Aug 27 02:29:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-c9a69f44fd2678823648826b761b7d172ecde8db4fa66ec160211829e3bc4c443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9932-5822 0000-0003-2218-3744 0000-0002-2750-444X |
| PQID | 2727047982 |
| PQPubID | 85441 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2727047982 crossref_citationtrail_10_1109_TPWRS_2022_3150050 crossref_primary_10_1109_TPWRS_2022_3150050 ieee_primary_9709670 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Nov. 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-Nov. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on power systems |
| PublicationTitleAbbrev | TPWRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref34 ref15 ref14 ref31 Kingma (ref30) 2015 ref11 ref33 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Pedregosa (ref32) 2011; 12 Srivastava (ref29) 2014; 15 |
| References_xml | – ident: ref26 doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00175 – volume: 15 start-page: 1929 year: 2014 ident: ref29 article-title: Dropout: A simple way to prevent neural networks from overfitting publication-title: J. Mach. Learn. Res. – ident: ref27 doi: 10.1109/TSG.2017.2753738 – start-page: 12 ident: ref31 article-title: Commission for Energy Regulation – ident: ref8 doi: 10.1109/TPWRD.2011.2161621 – ident: ref12 doi: 10.1109/TII.2016.2543145 – ident: ref15 doi: 10.1109/TPWRS.2010.2051823 – ident: ref11 doi: 10.1109/TSG.2015.2425222 – ident: ref22 doi: 10.1109/TSG.2020.2973681 – volume: 12 start-page: 2825 year: 2011 ident: ref32 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. – ident: ref16 doi: 10.1109/TPWRD.2011.2170182 – ident: ref14 doi: 10.1126/science.1242072 – ident: ref34 doi: 10.1109/TIM.2020.3048784 – ident: ref9 doi: 10.1109/TII.2018.2873814 – ident: ref17 doi: 10.1109/TSG.2016.2560801 – ident: ref19 doi: 10.1109/TII.2017.2785963 – ident: ref4 doi: 10.1016/j.epsr.2018.01.005 – ident: ref6 doi: 10.1109/TPWRD.2020.2974132 – ident: ref5 doi: 10.1109/TPWRS.2015.2406311 – ident: ref33 doi: 10.1145/2939672.2939785 – ident: ref2 doi: 10.1109/TPWRS.2017.2721435 – ident: ref7 doi: 10.1109/TPWRS.2013.2282931 – ident: ref3 doi: 10.1109/TPWRS.2018.2853162 – ident: ref21 doi: 10.1109/TPWRS.2019.2943115 – ident: ref25 doi: 10.1109/TSG.2019.2892595 – ident: ref1 doi: 10.1109/TPWRD.2009.2030890 – volume-title: Proc. 2015 Int. Conf. Learn. Representations (ICLR) year: 2015 ident: ref30 article-title: Adam: A method for stochastic optimization – ident: ref28 doi: 10.1109/CVPR.2016.90 – ident: ref10 doi: 10.1016/j.epsr.2016.05.036 – ident: ref24 doi: 10.1109/TPWRS.2019.2928276 – ident: ref23 doi: 10.1109/ICCV.2017.324 – ident: ref13 doi: 10.1109/TPWRS.2008.926431 – ident: ref18 doi: 10.1109/ICMLA.2016.0052 – ident: ref20 doi: 10.1109/TNNLS.2018.2890663 |
| SSID | ssj0006679 |
| Score | 2.5633404 |
| Snippet | Due to the diversity of power consumption patterns, the false positive rate (FPR) of data-driven electricity theft detection (ETD) methods is too high to meet... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4568 |
| SubjectTerms | Advanced metering infrastructure Algorithms Artificial neural networks Convolutional neural networks Convolutional neural networks (CNN) Deep learning Deep Learning (DL) Electricity Electricity Theft Detection (ETD) Evolutionary algorithms Feature extraction Low False Positive Rate Machine learning Meters Particle swarm optimization Particle Swarm Optimization (PSO) Power consumption Power demand Theft |
| Title | Electricity Theft Detection in AMI With Low False Positive Rate Based on Deep Learning and Evolutionary Algorithm |
| URI | https://ieeexplore.ieee.org/document/9709670 https://www.proquest.com/docview/2727047982 |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 0885-8950 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYop3JoaaHqFlrNobc2S-J1_DgusCuouhXiIbhFiT2BVWkWlixV-fWMneyqPFT1loNjWfnGnm_imW8Y--ycItaR9CKuZRwJLZIop0AjUjaOraXdZ8KN6eiH3DsR387SsyX2dVELg4gh-Qy7_jHc5buJnflfZVtGEeFWFKC_UFo2tVqLU1fKRldP6zTSJo3nBTKx2To-OD08olCQc4pQU6948sAJha4qT47i4F-Gr9lovrImreRnd1YXXXv3SLTxf5e-yl61RBP6jWW8YUtYvWUrf8kPrrHrQeiBM7bExIHspaxhF-uQm1XBuIL-aB9Ox_UFfJ_8hiHZKcJByPG6RTgkjgrb5AId0OBdxCtopVrPIa8cDG5bm86nf6B_eT6Z0kS_1tnJcHC8sxe1LRgiy01aR9bk0pRClI6TV_PN0WnDc1komRTKEflB61C7QpS5lGgTSZSBIhaDvcIKK0TvHVuuJhW-Z9BTMS-dzblwShRC5FboVAr6KogxWUSHJXNMMtvqk_s2GZdZiFNikwUcM49j1uLYYV8W71w16hz_HL3mgVmMbDHpsM059Fm7gW8yTrzOq-9r_uH5tzbYSz93U5a4yZbr6Qw_Ej-pi0_BMO8Bu2TfPg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1V5QAc-CqooQXmwA2c2pvx2nsMbaIUkqoqqdqbZe-OS0RxSuoUwa_v7NqJ-BLi5sPaXvnN7rzxzrwR4rW1CbOOqBfIVIUBphgFOQcaQWLC0BhefdqfmE6O1OgU35_H5xvi7boWhoh88hl13aU_y7dzs3S_yvZ0woQ74QD9ToyIcVOttd53lWqU9dI0DlIdh6sSmVDvTY_PTj5yMCglx6ix0zz5xQ35vip_bMbewwwfislqbk1iyefusi665sdvso3_O_lH4kFLNaHf2MZjsUHVE3H_JwHCLfF14LvgzAxzcWCLKWs4oNpnZ1Uwq6A_OYSzWf0JxvNvMGRLJTj2WV43BCfMUuEdO0ELPPiA6ApasdYLyCsLg5vWqvPFd-hfXswX_KAvT8XpcDDdHwVtE4bASB3XgdG50iViaSX7NdcenZe8VEWioiKxTH_IWEptgWWuFJlIMWngmEVTrzBoEHvPxGY1r2hbQC8JZWlNLtEmWCDmBtNYIX8VopBtoiOiFSaZaRXKXaOMy8xHKqHOPI6ZwzFrceyIN-t7rhp9jn-O3nLArEe2mHTE7gr6rF3C15lkZuf091P5_O93vRJ3R9PJOBsfHn3YEffce5oixV2xWS-W9ILZSl289EZ6C5Pm4os |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+Theft+Detection+in+AMI+With+Low+False+Positive+Rate+Based+on+Deep+Learning+and+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Gu%2C+Dexi&rft.au=Gao%2C+Yunpeng&rft.au=Chen%2C+Kang&rft.au=Shi%2C+Junhao&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=37&rft.issue=6&rft.spage=4568&rft_id=info:doi/10.1109%2FTPWRS.2022.3150050&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |