Electricity Theft Detection in AMI With Low False Positive Rate Based on Deep Learning and Evolutionary Algorithm

Due to the diversity of power consumption patterns, the false positive rate (FPR) of data-driven electricity theft detection (ETD) methods is too high to meet practical needs, which severely restricts the engineering application of data-based methods. To reduce FPR of ETD methods based on advanced m...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power systems Vol. 37; no. 6; pp. 4568 - 4578
Main Authors Gu, Dexi, Gao, Yunpeng, Chen, Kang, Shi, Junhao, Li, Yunfeng, Cao, Yijia
Format Journal Article
LanguageEnglish
Published New York IEEE 01.11.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0885-8950
1558-0679
DOI10.1109/TPWRS.2022.3150050

Cover

Abstract Due to the diversity of power consumption patterns, the false positive rate (FPR) of data-driven electricity theft detection (ETD) methods is too high to meet practical needs, which severely restricts the engineering application of data-based methods. To reduce FPR of ETD methods based on advanced metering infrastructure (AMI), a deep neural network with low FPR (LFPR-DNN) is proposed in this paper. First, a deep model is constructed based on one-dimensional convolution and residual network, which can automatically extract features from consumption data. Then, a two-stage training scheme is used to train the network. In the first stage, the conventional gradient descent algorithm is used to update the network weights. To minimize the impact of data imbalance on detection performance, focal loss is used. Besides, grid search is used to optimize the hyper-parameters of the model. In the second stage, with FPR as the optimization objective, the particle swarm optimization (PSO) algorithm is used to train the network. Finally, the proposed LFPR-DNN is verified by using the open Irish data set. Compared to other state-of-the-art classifiers, LFPR-DNN has the lowest FPR with 0.29% and the highest AUC with 99.42%. The FPR is reduced by an order of magnitude, which verifies the effectiveness of the proposed method.
AbstractList Due to the diversity of power consumption patterns, the false positive rate (FPR) of data-driven electricity theft detection (ETD) methods is too high to meet practical needs, which severely restricts the engineering application of data-based methods. To reduce FPR of ETD methods based on advanced metering infrastructure (AMI), a deep neural network with low FPR (LFPR-DNN) is proposed in this paper. First, a deep model is constructed based on one-dimensional convolution and residual network, which can automatically extract features from consumption data. Then, a two-stage training scheme is used to train the network. In the first stage, the conventional gradient descent algorithm is used to update the network weights. To minimize the impact of data imbalance on detection performance, focal loss is used. Besides, grid search is used to optimize the hyper-parameters of the model. In the second stage, with FPR as the optimization objective, the particle swarm optimization (PSO) algorithm is used to train the network. Finally, the proposed LFPR-DNN is verified by using the open Irish data set. Compared to other state-of-the-art classifiers, LFPR-DNN has the lowest FPR with 0.29% and the highest AUC with 99.42%. The FPR is reduced by an order of magnitude, which verifies the effectiveness of the proposed method.
Author Cao, Yijia
Shi, Junhao
Gu, Dexi
Chen, Kang
Li, Yunfeng
Gao, Yunpeng
Author_xml – sequence: 1
  givenname: Dexi
  orcidid: 0000-0003-2218-3744
  surname: Gu
  fullname: Gu, Dexi
  email: dexigu@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Yunpeng
  orcidid: 0000-0001-9932-5822
  surname: Gao
  fullname: Gao, Yunpeng
  email: gaoyp@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Kang
  surname: Chen
  fullname: Chen, Kang
  email: chenkang85@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 4
  givenname: Junhao
  surname: Shi
  fullname: Shi, Junhao
  email: sjh2020@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 5
  givenname: Yunfeng
  orcidid: 0000-0002-2750-444X
  surname: Li
  fullname: Li, Yunfeng
  email: yfli613@hnu.edu.cn
  organization: College of Electrical and Information Engineering, Hunan University, Changsha, China
– sequence: 6
  givenname: Yijia
  surname: Cao
  fullname: Cao, Yijia
  email: yjcao@hnu.edu.cn
  organization: School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, China
BookMark eNp9kE1P4zAQhq0VSJTCH4CLpT2nO3YSfxy70C5IXYGgqMfIdSbFKMTFcVn13-Ns0R447GUsjed5xn5PyVHnOyTkgsGEMdA_lverh8cJB84nOSsBSvhGRqwsVQZC6iMyAqXKTOkSTshp378AgEgXI_I2a9HG4KyLe7p8xibSa4yp5XxHXUenv2_pysVnuvB_6Ny0PdJ737vo3pE-mIj0p-mxpmn4GnFLF2hC57oNNV1NZ---3Q0iE_Z02m58SKLXM3LcDJ7zz3NMnuaz5dVNtrj7dXs1XWSW6zJmVhuhm6Joai6kUjwXRapiLQVby5pJjrZGVa-LxgiBlgngjCmuMV_bwhZFPibfD95t8G877GP14nehSysrLrmEQupkHRN1mLLB933ApkpJmOHRMRjXVgyqIeDqb8DVEHD1GXBC-Rd0G9xr-uv_ocsD5BDxH6AlaCEh_wBO3ojW
CODEN ITPSEG
CitedBy_id crossref_primary_10_1109_ACCESS_2022_3222883
crossref_primary_10_1109_TIM_2024_3352696
crossref_primary_10_1049_gtd2_13056
crossref_primary_10_3390_su15076170
crossref_primary_10_1016_j_segan_2023_101219
crossref_primary_10_1109_ACCESS_2022_3215532
crossref_primary_10_3390_s22207818
crossref_primary_10_1016_j_ijepes_2025_110461
crossref_primary_10_1186_s44147_024_00428_4
crossref_primary_10_1007_s00170_023_12613_5
crossref_primary_10_1016_j_apenergy_2023_121399
crossref_primary_10_1016_j_apenergy_2024_122847
crossref_primary_10_1016_j_eswa_2024_124182
crossref_primary_10_1109_TPWRS_2022_3196403
crossref_primary_10_3390_en17071562
crossref_primary_10_1109_TSG_2023_3263219
crossref_primary_10_1109_TII_2023_3297588
crossref_primary_10_1109_TIFS_2023_3265884
crossref_primary_10_1002_ese3_1541
crossref_primary_10_1016_j_prime_2024_100452
crossref_primary_10_1109_TII_2024_3485813
crossref_primary_10_1016_j_ecmx_2025_100965
crossref_primary_10_1109_TPWRS_2024_3375939
crossref_primary_10_1016_j_apenergy_2024_123228
crossref_primary_10_1109_ACCESS_2023_3312376
crossref_primary_10_1109_ACCESS_2023_3284681
crossref_primary_10_1109_TII_2023_3331131
crossref_primary_10_1016_j_ijepes_2023_109570
Cites_doi 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00175
10.1109/TSG.2017.2753738
10.1109/TPWRD.2011.2161621
10.1109/TII.2016.2543145
10.1109/TPWRS.2010.2051823
10.1109/TSG.2015.2425222
10.1109/TSG.2020.2973681
10.1109/TPWRD.2011.2170182
10.1126/science.1242072
10.1109/TIM.2020.3048784
10.1109/TII.2018.2873814
10.1109/TSG.2016.2560801
10.1109/TII.2017.2785963
10.1016/j.epsr.2018.01.005
10.1109/TPWRD.2020.2974132
10.1109/TPWRS.2015.2406311
10.1145/2939672.2939785
10.1109/TPWRS.2017.2721435
10.1109/TPWRS.2013.2282931
10.1109/TPWRS.2018.2853162
10.1109/TPWRS.2019.2943115
10.1109/TSG.2019.2892595
10.1109/TPWRD.2009.2030890
10.1109/CVPR.2016.90
10.1016/j.epsr.2016.05.036
10.1109/TPWRS.2019.2928276
10.1109/ICCV.2017.324
10.1109/TPWRS.2008.926431
10.1109/ICMLA.2016.0052
10.1109/TNNLS.2018.2890663
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1109/TPWRS.2022.3150050
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 4578
ExternalDocumentID 10_1109_TPWRS_2022_3150050
9709670
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51777061
  funderid: 10.13039/501100001809
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c295t-c9a69f44fd2678823648826b761b7d172ecde8db4fa66ec160211829e3bc4c443
IEDL.DBID RIE
ISSN 0885-8950
IngestDate Fri Jul 25 09:23:32 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
Wed Oct 01 02:20:54 EDT 2025
Wed Aug 27 02:29:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-c9a69f44fd2678823648826b761b7d172ecde8db4fa66ec160211829e3bc4c443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9932-5822
0000-0003-2218-3744
0000-0002-2750-444X
PQID 2727047982
PQPubID 85441
PageCount 11
ParticipantIDs proquest_journals_2727047982
crossref_citationtrail_10_1109_TPWRS_2022_3150050
crossref_primary_10_1109_TPWRS_2022_3150050
ieee_primary_9709670
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Nov.
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-Nov.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref14
ref31
Kingma (ref30) 2015
ref11
ref33
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Pedregosa (ref32) 2011; 12
Srivastava (ref29) 2014; 15
References_xml – ident: ref26
  doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00175
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref29
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref27
  doi: 10.1109/TSG.2017.2753738
– start-page: 12
  ident: ref31
  article-title: Commission for Energy Regulation
– ident: ref8
  doi: 10.1109/TPWRD.2011.2161621
– ident: ref12
  doi: 10.1109/TII.2016.2543145
– ident: ref15
  doi: 10.1109/TPWRS.2010.2051823
– ident: ref11
  doi: 10.1109/TSG.2015.2425222
– ident: ref22
  doi: 10.1109/TSG.2020.2973681
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref32
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– ident: ref16
  doi: 10.1109/TPWRD.2011.2170182
– ident: ref14
  doi: 10.1126/science.1242072
– ident: ref34
  doi: 10.1109/TIM.2020.3048784
– ident: ref9
  doi: 10.1109/TII.2018.2873814
– ident: ref17
  doi: 10.1109/TSG.2016.2560801
– ident: ref19
  doi: 10.1109/TII.2017.2785963
– ident: ref4
  doi: 10.1016/j.epsr.2018.01.005
– ident: ref6
  doi: 10.1109/TPWRD.2020.2974132
– ident: ref5
  doi: 10.1109/TPWRS.2015.2406311
– ident: ref33
  doi: 10.1145/2939672.2939785
– ident: ref2
  doi: 10.1109/TPWRS.2017.2721435
– ident: ref7
  doi: 10.1109/TPWRS.2013.2282931
– ident: ref3
  doi: 10.1109/TPWRS.2018.2853162
– ident: ref21
  doi: 10.1109/TPWRS.2019.2943115
– ident: ref25
  doi: 10.1109/TSG.2019.2892595
– ident: ref1
  doi: 10.1109/TPWRD.2009.2030890
– volume-title: Proc. 2015 Int. Conf. Learn. Representations (ICLR)
  year: 2015
  ident: ref30
  article-title: Adam: A method for stochastic optimization
– ident: ref28
  doi: 10.1109/CVPR.2016.90
– ident: ref10
  doi: 10.1016/j.epsr.2016.05.036
– ident: ref24
  doi: 10.1109/TPWRS.2019.2928276
– ident: ref23
  doi: 10.1109/ICCV.2017.324
– ident: ref13
  doi: 10.1109/TPWRS.2008.926431
– ident: ref18
  doi: 10.1109/ICMLA.2016.0052
– ident: ref20
  doi: 10.1109/TNNLS.2018.2890663
SSID ssj0006679
Score 2.5633404
Snippet Due to the diversity of power consumption patterns, the false positive rate (FPR) of data-driven electricity theft detection (ETD) methods is too high to meet...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4568
SubjectTerms Advanced metering infrastructure
Algorithms
Artificial neural networks
Convolutional neural networks
Convolutional neural networks (CNN)
Deep learning
Deep Learning (DL)
Electricity
Electricity Theft Detection (ETD)
Evolutionary algorithms
Feature extraction
Low False Positive Rate
Machine learning
Meters
Particle swarm optimization
Particle Swarm Optimization (PSO)
Power consumption
Power demand
Theft
Title Electricity Theft Detection in AMI With Low False Positive Rate Based on Deep Learning and Evolutionary Algorithm
URI https://ieeexplore.ieee.org/document/9709670
https://www.proquest.com/docview/2727047982
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELYop3JoaaHqFlrNobc2S-J1_DgusCuouhXiIbhFiT2BVWkWlixV-fWMneyqPFT1loNjWfnGnm_imW8Y--ycItaR9CKuZRwJLZIop0AjUjaOraXdZ8KN6eiH3DsR387SsyX2dVELg4gh-Qy7_jHc5buJnflfZVtGEeFWFKC_UFo2tVqLU1fKRldP6zTSJo3nBTKx2To-OD08olCQc4pQU6948sAJha4qT47i4F-Gr9lovrImreRnd1YXXXv3SLTxf5e-yl61RBP6jWW8YUtYvWUrf8kPrrHrQeiBM7bExIHspaxhF-uQm1XBuIL-aB9Ox_UFfJ_8hiHZKcJByPG6RTgkjgrb5AId0OBdxCtopVrPIa8cDG5bm86nf6B_eT6Z0kS_1tnJcHC8sxe1LRgiy01aR9bk0pRClI6TV_PN0WnDc1komRTKEflB61C7QpS5lGgTSZSBIhaDvcIKK0TvHVuuJhW-Z9BTMS-dzblwShRC5FboVAr6KogxWUSHJXNMMtvqk_s2GZdZiFNikwUcM49j1uLYYV8W71w16hz_HL3mgVmMbDHpsM059Fm7gW8yTrzOq-9r_uH5tzbYSz93U5a4yZbr6Qw_Ej-pi0_BMO8Bu2TfPg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEF1V5QAc-CqooQXmwA2c2pvx2nsMbaIUkqoqqdqbZe-OS0RxSuoUwa_v7NqJ-BLi5sPaXvnN7rzxzrwR4rW1CbOOqBfIVIUBphgFOQcaQWLC0BhefdqfmE6O1OgU35_H5xvi7boWhoh88hl13aU_y7dzs3S_yvZ0woQ74QD9ToyIcVOttd53lWqU9dI0DlIdh6sSmVDvTY_PTj5yMCglx6ix0zz5xQ35vip_bMbewwwfislqbk1iyefusi665sdvso3_O_lH4kFLNaHf2MZjsUHVE3H_JwHCLfF14LvgzAxzcWCLKWs4oNpnZ1Uwq6A_OYSzWf0JxvNvMGRLJTj2WV43BCfMUuEdO0ELPPiA6ApasdYLyCsLg5vWqvPFd-hfXswX_KAvT8XpcDDdHwVtE4bASB3XgdG50iViaSX7NdcenZe8VEWioiKxTH_IWEptgWWuFJlIMWngmEVTrzBoEHvPxGY1r2hbQC8JZWlNLtEmWCDmBtNYIX8VopBtoiOiFSaZaRXKXaOMy8xHKqHOPI6ZwzFrceyIN-t7rhp9jn-O3nLArEe2mHTE7gr6rF3C15lkZuf091P5_O93vRJ3R9PJOBsfHn3YEffce5oixV2xWS-W9ILZSl289EZ6C5Pm4os
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electricity+Theft+Detection+in+AMI+With+Low+False+Positive+Rate+Based+on+Deep+Learning+and+Evolutionary+Algorithm&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Gu%2C+Dexi&rft.au=Gao%2C+Yunpeng&rft.au=Chen%2C+Kang&rft.au=Shi%2C+Junhao&rft.date=2022-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=37&rft.issue=6&rft.spage=4568&rft_id=info:doi/10.1109%2FTPWRS.2022.3150050&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon