Data-Adaptive Censoring for Short-Term Wind Speed Predictors Based on MLP, RNN, and SVM
This study introduces novel short-term wind speed predictors based on multilayer perceptron (MLP), recurrent neural network (RNN), and support vector machine (SVM) by combining them with the data-adaptive censoring (DAC) strategy. Taking into account the multistep ahead prediction mode, we design a...
Saved in:
| Published in | IEEE systems journal Vol. 16; no. 3; pp. 3625 - 3634 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1932-8184 1937-9234 |
| DOI | 10.1109/JSYST.2022.3150749 |
Cover
| Abstract | This study introduces novel short-term wind speed predictors based on multilayer perceptron (MLP), recurrent neural network (RNN), and support vector machine (SVM) by combining them with the data-adaptive censoring (DAC) strategy. Taking into account the multistep ahead prediction mode, we design a DAC strategy based on the least mean square (LMS) algorithm, which iteratively obtains a new training dataset consisting of the most informative input-output wind data from all training set for MLP, RNN, and SVM structures. This enables us to censor less informative training data with high accuracy and thereby the training costs of the MLP, RNN, and SVM are reduced without a considerably adverse effect on their prediction performances in testing processes. The conducted simulation results on real-life large-scale short-term wind speed data verify the mentioned attractive features of the proposed predictors. |
|---|---|
| AbstractList | This study introduces novel short-term wind speed predictors based on multilayer perceptron (MLP), recurrent neural network (RNN), and support vector machine (SVM) by combining them with the data-adaptive censoring (DAC) strategy. Taking into account the multistep ahead prediction mode, we design a DAC strategy based on the least mean square (LMS) algorithm, which iteratively obtains a new training dataset consisting of the most informative input-output wind data from all training set for MLP, RNN, and SVM structures. This enables us to censor less informative training data with high accuracy and thereby the training costs of the MLP, RNN, and SVM are reduced without a considerably adverse effect on their prediction performances in testing processes. The conducted simulation results on real-life large-scale short-term wind speed data verify the mentioned attractive features of the proposed predictors. |
| Author | Peker, Murat Sarp, Ali Ogun Guvenc, Buket Colak Menguc, Engin Cemal |
| Author_xml | – sequence: 1 givenname: Ali Ogun surname: Sarp fullname: Sarp, Ali Ogun email: aliogunsarp@gmail.com organization: Department of Electrical and Electronics Engineering, Nigde Ömer Halisdemir University, Nigde, Turkey – sequence: 2 givenname: Engin Cemal orcidid: 0000-0002-0619-549X surname: Menguc fullname: Menguc, Engin Cemal email: enginmenguc@kayseri.edu.tr organization: Department of Electrical and Electronics Engineering, Kayseri University, Talas, Turkey – sequence: 3 givenname: Murat orcidid: 0000-0001-9877-5493 surname: Peker fullname: Peker, Murat email: murat.peker@btu.edu.tr organization: Department of Mechatronics Engineering, Bursa Technical University, Bursa, Turkey – sequence: 4 givenname: Buket Colak orcidid: 0000-0003-0805-5885 surname: Guvenc fullname: Guvenc, Buket Colak email: buketguvenc@kayseri.edu.tr organization: Department of Electrical and Electronics Engineering, Kayseri University, Talas, Turkey |
| BookMark | eNp9kctOAjEUhhuDiYi-gG6auGWwlxnaLhHvASSCEleT0na0BKZjW0x8e4dLXLhw1ZPm_845-c4xaJSuNACcYdTBGInLx8nbZNohiJAOxRliqTgATSwoSwShaWNbk4Rjnh6B4xAWCGU8Y6IJZtcyyqSnZRXtl4F9UwbnbfkOC-fh5MP5mEyNX8GZLTWcVMZoOPZGWxWdD_BKhvrDlXA4GLfh82jUhnKTex2egMNCLoM53b8t8HJ7M-3fJ4Onu4d-b5AoIrKYzFXGGJYEK63VHKE5F4IUlFKONcGUo4xwwZU0gghdr2wQNoXqMo000WyOaAtc7PpW3n2uTYj5wq19WY_MCUNdLlKBNym-SynvQvCmyJWNMlpXRi_tMsco32jMtxrzjcZ8r7FGyR-08nYl_ff_0PkOssaYX0AwktZ3oD8beX4H |
| CODEN | ISJEB2 |
| CitedBy_id | crossref_primary_10_1016_j_sigpro_2022_108638 crossref_primary_10_1016_j_engappai_2024_107906 crossref_primary_10_3390_app132011455 crossref_primary_10_1007_s11760_023_02786_7 crossref_primary_10_1109_LSP_2023_3255000 crossref_primary_10_1109_TASLP_2024_3389644 crossref_primary_10_1007_s11356_022_22957_2 crossref_primary_10_1016_j_enconman_2025_119673 crossref_primary_10_1007_s11356_023_25759_2 crossref_primary_10_1016_j_sigpro_2023_109302 crossref_primary_10_1016_j_conengprac_2024_106226 crossref_primary_10_1007_s00024_024_03522_z crossref_primary_10_1016_j_ultras_2023_107014 crossref_primary_10_3390_en17061270 crossref_primary_10_1080_15599612_2023_2225573 crossref_primary_10_1007_s12555_022_0698_z crossref_primary_10_1016_j_egyr_2025_01_060 crossref_primary_10_1016_j_neucom_2025_129412 crossref_primary_10_3390_app13010051 crossref_primary_10_61435_ijred_2024_60387 crossref_primary_10_1016_j_energy_2023_129536 crossref_primary_10_1016_j_energy_2023_129714 crossref_primary_10_1007_s00034_023_02410_6 |
| Cites_doi | 10.1016/j.neucom.2008.09.010 10.1016/j.jclepro.2019.02.015 10.1002/ep.13278 10.1109/TII.2018.2854549 10.1016/j.asoc.2017.01.033 10.1016/j.renene.2015.07.004 10.1016/j.apenergy.2013.08.025 10.1016/j.rser.2018.02.039 10.1016/j.sigpro.2019.01.026 10.1016/j.renene.2018.07.060 10.1109/TSP.2018.2847657 10.1109/TPWRS.2018.2848207 10.1371/journal.pone.0182937 10.1016/j.renene.2016.09.069 10.3390/en11092292 10.1016/j.compag.2018.10.023 10.1016/j.rser.2016.10.038 10.1109/TSP.2018.2795594 10.1016/j.renene.2018.04.033 10.1016/j.egyr.2021.02.002 10.1002/we.411 10.1016/j.seta.2019.07.003 10.1177/0309524X17737337 10.1016/j.enconman.2018.04.099 10.1016/j.rser.2016.01.114 10.1016/j.jweia.2017.04.007 10.1016/j.neunet.2007.09.015 10.1016/j.dsp.2019.05.004 10.1016/0960-1481(94)00053-9 10.1016/j.apenergy.2010.10.031 10.1016/j.engappai.2020.103573 10.1109/LSP.2021.3097279 10.1016/j.apenergy.2015.07.043 10.1016/j.sigpro.2017.01.031 10.1109/TNNLS.2018.2826442 10.1016/j.enconman.2019.02.045 10.1016/j.renene.2016.12.071 10.1109/TIM.2017.2751878 10.1016/j.renene.2003.11.009 10.1109/JSYST.2019.2961172 10.1109/TSP.2016.2546225 10.1016/j.engappai.2018.10.003 10.1109/TSP.2018.2802446 10.1016/j.sigpro.2016.11.025 10.1016/j.renene.2019.11.070 10.1016/j.enconman.2014.02.017 10.1109/97.668945 10.1016/j.apenergy.2015.10.145 10.1109/LSP.2018.2815006 10.1016/j.apenergy.2012.04.001 10.1109/97.935739 10.1016/j.apenergy.2019.04.047 10.1016/j.apenergy.2019.114243 10.3390/en9020109 10.1016/j.apenergy.2018.12.076 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/JSYST.2022.3150749 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1937-9234 |
| EndPage | 3634 |
| ExternalDocumentID | 10_1109_JSYST_2022_3150749 9724193 |
| Genre | orig-research |
| GroupedDBID | 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL RIA RIE RNS AAYXX CITATION |
| ID | FETCH-LOGICAL-c295t-bc5771a21cddcb00b8992f33381d2138052898cae929d585e01efc67d0d2d7b03 |
| IEDL.DBID | RIE |
| ISSN | 1932-8184 |
| IngestDate | Mon Jun 30 03:22:03 EDT 2025 Thu Apr 24 23:11:41 EDT 2025 Wed Oct 01 02:25:54 EDT 2025 Wed Aug 27 02:28:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-bc5771a21cddcb00b8992f33381d2138052898cae929d585e01efc67d0d2d7b03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0619-549X 0000-0001-9877-5493 0000-0003-0805-5885 |
| PQID | 2706894910 |
| PQPubID | 85494 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_9724193 proquest_journals_2706894910 crossref_primary_10_1109_JSYST_2022_3150749 crossref_citationtrail_10_1109_JSYST_2022_3150749 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Sept. 2022-9-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: 2022-Sept. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE systems journal |
| PublicationTitleAbbrev | JSYST |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref57 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Haykin (ref55) 1996 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 (ref58) 2021 ref37 ref36 ref31 Khalil (ref56) 2002 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref35 doi: 10.1016/j.neucom.2008.09.010 – ident: ref1 doi: 10.1016/j.jclepro.2019.02.015 – ident: ref11 doi: 10.1002/ep.13278 – ident: ref29 doi: 10.1109/TII.2018.2854549 – ident: ref27 doi: 10.1016/j.asoc.2017.01.033 – ident: ref19 doi: 10.1016/j.renene.2015.07.004 – ident: ref14 doi: 10.1016/j.apenergy.2013.08.025 – ident: ref2 doi: 10.1016/j.rser.2018.02.039 – volume-title: Adaptive Filter Theory year: 1996 ident: ref55 – ident: ref52 doi: 10.1016/j.sigpro.2019.01.026 – ident: ref30 doi: 10.1016/j.renene.2018.07.060 – ident: ref48 doi: 10.1109/TSP.2018.2847657 – ident: ref21 doi: 10.1109/TPWRS.2018.2848207 – ident: ref24 doi: 10.1371/journal.pone.0182937 – ident: ref18 doi: 10.1016/j.renene.2016.09.069 – ident: ref37 doi: 10.3390/en11092292 – ident: ref43 doi: 10.1016/j.compag.2018.10.023 – ident: ref6 doi: 10.1016/j.rser.2016.10.038 – ident: ref49 doi: 10.1109/TSP.2018.2795594 – ident: ref9 doi: 10.1016/j.renene.2018.04.033 – ident: ref42 doi: 10.1016/j.egyr.2021.02.002 – ident: ref32 doi: 10.1002/we.411 – volume-title: Nonlinear Systems year: 2002 ident: ref56 – ident: ref25 doi: 10.1016/j.seta.2019.07.003 – ident: ref3 doi: 10.1177/0309524X17737337 – ident: ref33 doi: 10.1016/j.enconman.2018.04.099 – ident: ref7 doi: 10.1016/j.rser.2016.01.114 – ident: ref15 doi: 10.1016/j.jweia.2017.04.007 – ident: ref39 doi: 10.1016/j.neunet.2007.09.015 – ident: ref53 doi: 10.1016/j.dsp.2019.05.004 – ident: ref10 doi: 10.1016/0960-1481(94)00053-9 – ident: ref22 doi: 10.1016/j.apenergy.2010.10.031 – ident: ref8 doi: 10.1016/j.engappai.2020.103573 – ident: ref54 doi: 10.1109/LSP.2021.3097279 – ident: ref16 doi: 10.1016/j.apenergy.2015.07.043 – ident: ref57 doi: 10.1016/j.sigpro.2017.01.031 – ident: ref40 doi: 10.1109/TNNLS.2018.2826442 – ident: ref41 doi: 10.1016/j.enconman.2019.02.045 – ident: ref26 doi: 10.1016/j.renene.2016.12.071 – ident: ref28 doi: 10.1109/TIM.2017.2751878 – ident: ref31 doi: 10.1016/j.renene.2003.11.009 – ident: ref38 doi: 10.1109/JSYST.2019.2961172 – ident: ref44 doi: 10.1109/TSP.2016.2546225 – ident: ref4 doi: 10.1016/j.engappai.2018.10.003 – ident: ref50 doi: 10.1109/TSP.2018.2802446 – ident: ref47 doi: 10.1016/j.sigpro.2016.11.025 – ident: ref5 doi: 10.1016/j.renene.2019.11.070 – ident: ref34 doi: 10.1016/j.enconman.2014.02.017 – ident: ref45 doi: 10.1109/97.668945 – ident: ref20 doi: 10.1016/j.apenergy.2015.10.145 – ident: ref51 doi: 10.1109/LSP.2018.2815006 – ident: ref13 doi: 10.1016/j.apenergy.2012.04.001 – ident: ref46 doi: 10.1109/97.935739 – year: 2021 ident: ref58 article-title: Wind dataset – ident: ref36 doi: 10.1016/j.apenergy.2019.04.047 – ident: ref12 doi: 10.1016/j.apenergy.2019.114243 – ident: ref23 doi: 10.3390/en9020109 – ident: ref17 doi: 10.1016/j.apenergy.2018.12.076 |
| SSID | ssj0058579 |
| Score | 2.454776 |
| Snippet | This study introduces novel short-term wind speed predictors based on multilayer perceptron (MLP), recurrent neural network (RNN), and support vector machine... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3625 |
| SubjectTerms | Algorithms Data-adaptive censoring (DAC) least mean square (LMS) multilayer perceptron (MLP) Multilayer perceptrons Prediction algorithms Predictive models Recurrent neural networks recurrent neural networks (RNNs) support vector machine (SVM) Support vector machines Testing Training Wind farms Wind speed |
| Title | Data-Adaptive Censoring for Short-Term Wind Speed Predictors Based on MLP, RNN, and SVM |
| URI | https://ieeexplore.ieee.org/document/9724193 https://www.proquest.com/docview/2706894910 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1937-9234 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0058579 issn: 1932-8184 databaseCode: RIE dateStart: 20070101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwRhQK8sBGXRzn4XjkKYRoVdHymqLEdoQEaquSLvx6zk5SIUCILcPZsu7su-9yL4CjHFFFpJmheRhrGqCNoClaahoiNdN-zHNXW9XrR9f3wc1T-NSAzqIWxhjjks9M1366WL6eqLn9VXYiBe4l_SVYEnFU1mrVWhdRr-urZ_EIRSMU1AUyTJ7cDJ-HI3QFOUcPFfGP7Zv5xQi5qSo_VLGzL1dr0KtPVqaVvHbnRdZVH9-aNv736OuwWgFNclrejA1omPEmrHxpP7gFjxdpkdJTnU6tziPn6NG6dDyCQJYMXxCY0xEqbvKIfjsZTtHOkcHMBnbshB5yhvZPk8mY9G4HHXLX73dIaukeettwf3U5Or-m1aAFqrgMC5qpUAgv5Z7SWuE7zNAJ47mP3qunuefbqQexjFVqEEtp5LRhnslVJDTTXIuM-TvQHE_GZheIb4QQJmeSaxXoWKAulTaco1QkRaiiFng15xNVdSG3wzDeEueNMJk4aSVWWkklrRYcL9ZMyx4cf1JvWfYvKCvOt6BdCzipnul7wgWLYhkgZNr7fdU-LNu9y6SyNjSL2dwcIAopskN3_T4BJ2jVJg |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGA58FxEefrAjbo4zsPxkacKNBXaloU9RYntCAnUVpBe-PWMnaRC7Apxy2GcWDP2zDeZF8Bhgagi0szQIow1DdBG0AwtNQ2Rmmk_5oWrrUr6UfcuuH4IH-agPauFMca45DPTsY8ulq_Hamp_lR1Lge-S_g9YCIMgCKtqrUbvIu51nfUsIqFohoKmRIbJ4-vB38EQnUHO0UdFBGQ7Z34wQ26uyj_K2FmYyxVImr1ViSVPnWmZd9Tbp7aN3938KizXUJOcVGdjDebMaB2WPjQg3ID786zM6InOJlbrkTP0aV1CHkEoSwaPCM3pEFU3uUfPnQwmaOnI7YsN7dgZPeQULaAm4xFJerdt8rvfb5PM0v1JfsHd5cXwrEvrUQtUcRmWNFehEF7GPaW1wpuYoxvGCx_9V09zz7dzD2IZq8wgmtLIacM8U6hIaKa5FjnzN2F-NB6ZLSC-EUKYgkmuVaBjgdpU2oCOUpEUoYpa4DWcT1Xdh9yOw3hOnT_CZOqklVpppbW0WnA0WzOpunB8Sb1h2T-jrDnfgt1GwGl9UV9TLlgUywBB0_b_Vx3AYneY9NLeVf9mB37a71QpZrswX75MzR5ikjLfd0fxHX4V2HM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Adaptive+Censoring+for+Short-Term+Wind+Speed+Predictors+Based+on+MLP%2C+RNN%2C+and+SVM&rft.jtitle=IEEE+systems+journal&rft.au=Sarp%2C+Ali+Ogun&rft.au=Menguc%2C+Engin+Cemal&rft.au=Peker%2C+Murat&rft.au=Guvenc%2C+Buket+Colak&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1932-8184&rft.volume=16&rft.issue=3&rft.spage=3625&rft.epage=3634&rft_id=info:doi/10.1109%2FJSYST.2022.3150749&rft.externalDocID=9724193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon |