Data-Adaptive Censoring for Short-Term Wind Speed Predictors Based on MLP, RNN, and SVM

This study introduces novel short-term wind speed predictors based on multilayer perceptron (MLP), recurrent neural network (RNN), and support vector machine (SVM) by combining them with the data-adaptive censoring (DAC) strategy. Taking into account the multistep ahead prediction mode, we design a...

Full description

Saved in:
Bibliographic Details
Published inIEEE systems journal Vol. 16; no. 3; pp. 3625 - 3634
Main Authors Sarp, Ali Ogun, Menguc, Engin Cemal, Peker, Murat, Guvenc, Buket Colak
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-8184
1937-9234
DOI10.1109/JSYST.2022.3150749

Cover

Abstract This study introduces novel short-term wind speed predictors based on multilayer perceptron (MLP), recurrent neural network (RNN), and support vector machine (SVM) by combining them with the data-adaptive censoring (DAC) strategy. Taking into account the multistep ahead prediction mode, we design a DAC strategy based on the least mean square (LMS) algorithm, which iteratively obtains a new training dataset consisting of the most informative input-output wind data from all training set for MLP, RNN, and SVM structures. This enables us to censor less informative training data with high accuracy and thereby the training costs of the MLP, RNN, and SVM are reduced without a considerably adverse effect on their prediction performances in testing processes. The conducted simulation results on real-life large-scale short-term wind speed data verify the mentioned attractive features of the proposed predictors.
AbstractList This study introduces novel short-term wind speed predictors based on multilayer perceptron (MLP), recurrent neural network (RNN), and support vector machine (SVM) by combining them with the data-adaptive censoring (DAC) strategy. Taking into account the multistep ahead prediction mode, we design a DAC strategy based on the least mean square (LMS) algorithm, which iteratively obtains a new training dataset consisting of the most informative input-output wind data from all training set for MLP, RNN, and SVM structures. This enables us to censor less informative training data with high accuracy and thereby the training costs of the MLP, RNN, and SVM are reduced without a considerably adverse effect on their prediction performances in testing processes. The conducted simulation results on real-life large-scale short-term wind speed data verify the mentioned attractive features of the proposed predictors.
Author Peker, Murat
Sarp, Ali Ogun
Guvenc, Buket Colak
Menguc, Engin Cemal
Author_xml – sequence: 1
  givenname: Ali Ogun
  surname: Sarp
  fullname: Sarp, Ali Ogun
  email: aliogunsarp@gmail.com
  organization: Department of Electrical and Electronics Engineering, Nigde Ömer Halisdemir University, Nigde, Turkey
– sequence: 2
  givenname: Engin Cemal
  orcidid: 0000-0002-0619-549X
  surname: Menguc
  fullname: Menguc, Engin Cemal
  email: enginmenguc@kayseri.edu.tr
  organization: Department of Electrical and Electronics Engineering, Kayseri University, Talas, Turkey
– sequence: 3
  givenname: Murat
  orcidid: 0000-0001-9877-5493
  surname: Peker
  fullname: Peker, Murat
  email: murat.peker@btu.edu.tr
  organization: Department of Mechatronics Engineering, Bursa Technical University, Bursa, Turkey
– sequence: 4
  givenname: Buket Colak
  orcidid: 0000-0003-0805-5885
  surname: Guvenc
  fullname: Guvenc, Buket Colak
  email: buketguvenc@kayseri.edu.tr
  organization: Department of Electrical and Electronics Engineering, Kayseri University, Talas, Turkey
BookMark eNp9kctOAjEUhhuDiYi-gG6auGWwlxnaLhHvASSCEleT0na0BKZjW0x8e4dLXLhw1ZPm_845-c4xaJSuNACcYdTBGInLx8nbZNohiJAOxRliqTgATSwoSwShaWNbk4Rjnh6B4xAWCGU8Y6IJZtcyyqSnZRXtl4F9UwbnbfkOC-fh5MP5mEyNX8GZLTWcVMZoOPZGWxWdD_BKhvrDlXA4GLfh82jUhnKTex2egMNCLoM53b8t8HJ7M-3fJ4Onu4d-b5AoIrKYzFXGGJYEK63VHKE5F4IUlFKONcGUo4xwwZU0gghdr2wQNoXqMo000WyOaAtc7PpW3n2uTYj5wq19WY_MCUNdLlKBNym-SynvQvCmyJWNMlpXRi_tMsco32jMtxrzjcZ8r7FGyR-08nYl_ff_0PkOssaYX0AwktZ3oD8beX4H
CODEN ISJEB2
CitedBy_id crossref_primary_10_1016_j_sigpro_2022_108638
crossref_primary_10_1016_j_engappai_2024_107906
crossref_primary_10_3390_app132011455
crossref_primary_10_1007_s11760_023_02786_7
crossref_primary_10_1109_LSP_2023_3255000
crossref_primary_10_1109_TASLP_2024_3389644
crossref_primary_10_1007_s11356_022_22957_2
crossref_primary_10_1016_j_enconman_2025_119673
crossref_primary_10_1007_s11356_023_25759_2
crossref_primary_10_1016_j_sigpro_2023_109302
crossref_primary_10_1016_j_conengprac_2024_106226
crossref_primary_10_1007_s00024_024_03522_z
crossref_primary_10_1016_j_ultras_2023_107014
crossref_primary_10_3390_en17061270
crossref_primary_10_1080_15599612_2023_2225573
crossref_primary_10_1007_s12555_022_0698_z
crossref_primary_10_1016_j_egyr_2025_01_060
crossref_primary_10_1016_j_neucom_2025_129412
crossref_primary_10_3390_app13010051
crossref_primary_10_61435_ijred_2024_60387
crossref_primary_10_1016_j_energy_2023_129536
crossref_primary_10_1016_j_energy_2023_129714
crossref_primary_10_1007_s00034_023_02410_6
Cites_doi 10.1016/j.neucom.2008.09.010
10.1016/j.jclepro.2019.02.015
10.1002/ep.13278
10.1109/TII.2018.2854549
10.1016/j.asoc.2017.01.033
10.1016/j.renene.2015.07.004
10.1016/j.apenergy.2013.08.025
10.1016/j.rser.2018.02.039
10.1016/j.sigpro.2019.01.026
10.1016/j.renene.2018.07.060
10.1109/TSP.2018.2847657
10.1109/TPWRS.2018.2848207
10.1371/journal.pone.0182937
10.1016/j.renene.2016.09.069
10.3390/en11092292
10.1016/j.compag.2018.10.023
10.1016/j.rser.2016.10.038
10.1109/TSP.2018.2795594
10.1016/j.renene.2018.04.033
10.1016/j.egyr.2021.02.002
10.1002/we.411
10.1016/j.seta.2019.07.003
10.1177/0309524X17737337
10.1016/j.enconman.2018.04.099
10.1016/j.rser.2016.01.114
10.1016/j.jweia.2017.04.007
10.1016/j.neunet.2007.09.015
10.1016/j.dsp.2019.05.004
10.1016/0960-1481(94)00053-9
10.1016/j.apenergy.2010.10.031
10.1016/j.engappai.2020.103573
10.1109/LSP.2021.3097279
10.1016/j.apenergy.2015.07.043
10.1016/j.sigpro.2017.01.031
10.1109/TNNLS.2018.2826442
10.1016/j.enconman.2019.02.045
10.1016/j.renene.2016.12.071
10.1109/TIM.2017.2751878
10.1016/j.renene.2003.11.009
10.1109/JSYST.2019.2961172
10.1109/TSP.2016.2546225
10.1016/j.engappai.2018.10.003
10.1109/TSP.2018.2802446
10.1016/j.sigpro.2016.11.025
10.1016/j.renene.2019.11.070
10.1016/j.enconman.2014.02.017
10.1109/97.668945
10.1016/j.apenergy.2015.10.145
10.1109/LSP.2018.2815006
10.1016/j.apenergy.2012.04.001
10.1109/97.935739
10.1016/j.apenergy.2019.04.047
10.1016/j.apenergy.2019.114243
10.3390/en9020109
10.1016/j.apenergy.2018.12.076
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSYST.2022.3150749
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-9234
EndPage 3634
ExternalDocumentID 10_1109_JSYST_2022_3150749
9724193
Genre orig-research
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c295t-bc5771a21cddcb00b8992f33381d2138052898cae929d585e01efc67d0d2d7b03
IEDL.DBID RIE
ISSN 1932-8184
IngestDate Mon Jun 30 03:22:03 EDT 2025
Thu Apr 24 23:11:41 EDT 2025
Wed Oct 01 02:25:54 EDT 2025
Wed Aug 27 02:28:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-bc5771a21cddcb00b8992f33381d2138052898cae929d585e01efc67d0d2d7b03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0619-549X
0000-0001-9877-5493
0000-0003-0805-5885
PQID 2706894910
PQPubID 85494
PageCount 10
ParticipantIDs ieee_primary_9724193
proquest_journals_2706894910
crossref_primary_10_1109_JSYST_2022_3150749
crossref_citationtrail_10_1109_JSYST_2022_3150749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Sept.
2022-9-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-Sept.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE systems journal
PublicationTitleAbbrev JSYST
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Haykin (ref55) 1996
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
(ref58) 2021
ref37
ref36
ref31
Khalil (ref56) 2002
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref35
  doi: 10.1016/j.neucom.2008.09.010
– ident: ref1
  doi: 10.1016/j.jclepro.2019.02.015
– ident: ref11
  doi: 10.1002/ep.13278
– ident: ref29
  doi: 10.1109/TII.2018.2854549
– ident: ref27
  doi: 10.1016/j.asoc.2017.01.033
– ident: ref19
  doi: 10.1016/j.renene.2015.07.004
– ident: ref14
  doi: 10.1016/j.apenergy.2013.08.025
– ident: ref2
  doi: 10.1016/j.rser.2018.02.039
– volume-title: Adaptive Filter Theory
  year: 1996
  ident: ref55
– ident: ref52
  doi: 10.1016/j.sigpro.2019.01.026
– ident: ref30
  doi: 10.1016/j.renene.2018.07.060
– ident: ref48
  doi: 10.1109/TSP.2018.2847657
– ident: ref21
  doi: 10.1109/TPWRS.2018.2848207
– ident: ref24
  doi: 10.1371/journal.pone.0182937
– ident: ref18
  doi: 10.1016/j.renene.2016.09.069
– ident: ref37
  doi: 10.3390/en11092292
– ident: ref43
  doi: 10.1016/j.compag.2018.10.023
– ident: ref6
  doi: 10.1016/j.rser.2016.10.038
– ident: ref49
  doi: 10.1109/TSP.2018.2795594
– ident: ref9
  doi: 10.1016/j.renene.2018.04.033
– ident: ref42
  doi: 10.1016/j.egyr.2021.02.002
– ident: ref32
  doi: 10.1002/we.411
– volume-title: Nonlinear Systems
  year: 2002
  ident: ref56
– ident: ref25
  doi: 10.1016/j.seta.2019.07.003
– ident: ref3
  doi: 10.1177/0309524X17737337
– ident: ref33
  doi: 10.1016/j.enconman.2018.04.099
– ident: ref7
  doi: 10.1016/j.rser.2016.01.114
– ident: ref15
  doi: 10.1016/j.jweia.2017.04.007
– ident: ref39
  doi: 10.1016/j.neunet.2007.09.015
– ident: ref53
  doi: 10.1016/j.dsp.2019.05.004
– ident: ref10
  doi: 10.1016/0960-1481(94)00053-9
– ident: ref22
  doi: 10.1016/j.apenergy.2010.10.031
– ident: ref8
  doi: 10.1016/j.engappai.2020.103573
– ident: ref54
  doi: 10.1109/LSP.2021.3097279
– ident: ref16
  doi: 10.1016/j.apenergy.2015.07.043
– ident: ref57
  doi: 10.1016/j.sigpro.2017.01.031
– ident: ref40
  doi: 10.1109/TNNLS.2018.2826442
– ident: ref41
  doi: 10.1016/j.enconman.2019.02.045
– ident: ref26
  doi: 10.1016/j.renene.2016.12.071
– ident: ref28
  doi: 10.1109/TIM.2017.2751878
– ident: ref31
  doi: 10.1016/j.renene.2003.11.009
– ident: ref38
  doi: 10.1109/JSYST.2019.2961172
– ident: ref44
  doi: 10.1109/TSP.2016.2546225
– ident: ref4
  doi: 10.1016/j.engappai.2018.10.003
– ident: ref50
  doi: 10.1109/TSP.2018.2802446
– ident: ref47
  doi: 10.1016/j.sigpro.2016.11.025
– ident: ref5
  doi: 10.1016/j.renene.2019.11.070
– ident: ref34
  doi: 10.1016/j.enconman.2014.02.017
– ident: ref45
  doi: 10.1109/97.668945
– ident: ref20
  doi: 10.1016/j.apenergy.2015.10.145
– ident: ref51
  doi: 10.1109/LSP.2018.2815006
– ident: ref13
  doi: 10.1016/j.apenergy.2012.04.001
– ident: ref46
  doi: 10.1109/97.935739
– year: 2021
  ident: ref58
  article-title: Wind dataset
– ident: ref36
  doi: 10.1016/j.apenergy.2019.04.047
– ident: ref12
  doi: 10.1016/j.apenergy.2019.114243
– ident: ref23
  doi: 10.3390/en9020109
– ident: ref17
  doi: 10.1016/j.apenergy.2018.12.076
SSID ssj0058579
Score 2.454776
Snippet This study introduces novel short-term wind speed predictors based on multilayer perceptron (MLP), recurrent neural network (RNN), and support vector machine...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3625
SubjectTerms Algorithms
Data-adaptive censoring (DAC)
least mean square (LMS)
multilayer perceptron (MLP)
Multilayer perceptrons
Prediction algorithms
Predictive models
Recurrent neural networks
recurrent neural networks (RNNs)
support vector machine (SVM)
Support vector machines
Testing
Training
Wind farms
Wind speed
Title Data-Adaptive Censoring for Short-Term Wind Speed Predictors Based on MLP, RNN, and SVM
URI https://ieeexplore.ieee.org/document/9724193
https://www.proquest.com/docview/2706894910
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1937-9234
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058579
  issn: 1932-8184
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VTjDwRhQK8sBGXRzn4XjkKYRoVdHymqLEdoQEaquSLvx6zk5SIUCILcPZsu7su-9yL4CjHFFFpJmheRhrGqCNoClaahoiNdN-zHNXW9XrR9f3wc1T-NSAzqIWxhjjks9M1366WL6eqLn9VXYiBe4l_SVYEnFU1mrVWhdRr-urZ_EIRSMU1AUyTJ7cDJ-HI3QFOUcPFfGP7Zv5xQi5qSo_VLGzL1dr0KtPVqaVvHbnRdZVH9-aNv736OuwWgFNclrejA1omPEmrHxpP7gFjxdpkdJTnU6tziPn6NG6dDyCQJYMXxCY0xEqbvKIfjsZTtHOkcHMBnbshB5yhvZPk8mY9G4HHXLX73dIaukeettwf3U5Or-m1aAFqrgMC5qpUAgv5Z7SWuE7zNAJ47mP3qunuefbqQexjFVqEEtp5LRhnslVJDTTXIuM-TvQHE_GZheIb4QQJmeSaxXoWKAulTaco1QkRaiiFng15xNVdSG3wzDeEueNMJk4aSVWWkklrRYcL9ZMyx4cf1JvWfYvKCvOt6BdCzipnul7wgWLYhkgZNr7fdU-LNu9y6SyNjSL2dwcIAopskN3_T4BJ2jVJg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB6xcGA58FxEefrAjbo4zsPxkacKNBXaloU9RYntCAnUVpBe-PWMnaRC7Apxy2GcWDP2zDeZF8Bhgagi0szQIow1DdBG0AwtNQ2Rmmk_5oWrrUr6UfcuuH4IH-agPauFMca45DPTsY8ulq_Hamp_lR1Lge-S_g9YCIMgCKtqrUbvIu51nfUsIqFohoKmRIbJ4-vB38EQnUHO0UdFBGQ7Z34wQ26uyj_K2FmYyxVImr1ViSVPnWmZd9Tbp7aN3938KizXUJOcVGdjDebMaB2WPjQg3ID786zM6InOJlbrkTP0aV1CHkEoSwaPCM3pEFU3uUfPnQwmaOnI7YsN7dgZPeQULaAm4xFJerdt8rvfb5PM0v1JfsHd5cXwrEvrUQtUcRmWNFehEF7GPaW1wpuYoxvGCx_9V09zz7dzD2IZq8wgmtLIacM8U6hIaKa5FjnzN2F-NB6ZLSC-EUKYgkmuVaBjgdpU2oCOUpEUoYpa4DWcT1Xdh9yOw3hOnT_CZOqklVpppbW0WnA0WzOpunB8Sb1h2T-jrDnfgt1GwGl9UV9TLlgUywBB0_b_Vx3AYneY9NLeVf9mB37a71QpZrswX75MzR5ikjLfd0fxHX4V2HM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-Adaptive+Censoring+for+Short-Term+Wind+Speed+Predictors+Based+on+MLP%2C+RNN%2C+and+SVM&rft.jtitle=IEEE+systems+journal&rft.au=Sarp%2C+Ali+Ogun&rft.au=Menguc%2C+Engin+Cemal&rft.au=Peker%2C+Murat&rft.au=Guvenc%2C+Buket+Colak&rft.date=2022-09-01&rft.pub=IEEE&rft.issn=1932-8184&rft.volume=16&rft.issue=3&rft.spage=3625&rft.epage=3634&rft_id=info:doi/10.1109%2FJSYST.2022.3150749&rft.externalDocID=9724193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon