Design of Reinforced Interval Type-2 Fuzzy C-Means-Based Fuzzy Classifier

This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this study is to reduce the computational complexity of type-2 fuzzy set-based models and to alleviate the deterioration of its generalization abili...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 26; no. 5; pp. 3054 - 3068
Main Authors Kim, Eun-Hu, Oh, Sung-Kwun, Pedrycz, Witold
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2017.2785244

Cover

Abstract This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this study is to reduce the computational complexity of type-2 fuzzy set-based models and to alleviate the deterioration of its generalization abilities through the synergistic effect of two algorithms: First, interval type-2 FCM (IT2FCM) is used in the hidden layer of the network and connections (weights) are adjusted by invoking the least squares error estimation method. Second, an L 2 -norm regularization is considered in the cost function to avoid the construction of the network suffering from overfitting. In more detail, the hidden layer of the proposed FC is realized by interval type-2 FCM clustering to deal with the factor of uncertainty involved in the problem. This type of clustering is realized by using two values of the fuzzification coefficient resulting in the interval type-2 membership functions. Once completing type reduction, the membership grades of IT2FCM are used as the outputs of the hidden layer. Instead of the backpropagation training, least squares estimator based learning is applied to adjust the functional connection being regarded as linear functions mapping the hidden layer to the output layer. In order to reduce potential overfitting, L 2 -norm regularization is taken into account. The effectiveness of the proposed classifier is analyzed with the aid of a number of machine learning datasets as well as face image datasets. Thorough comparative studies are also included.
AbstractList This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this study is to reduce the computational complexity of type-2 fuzzy set-based models and to alleviate the deterioration of its generalization abilities through the synergistic effect of two algorithms: First, interval type-2 FCM (IT2FCM) is used in the hidden layer of the network and connections (weights) are adjusted by invoking the least squares error estimation method. Second, an L 2 -norm regularization is considered in the cost function to avoid the construction of the network suffering from overfitting. In more detail, the hidden layer of the proposed FC is realized by interval type-2 FCM clustering to deal with the factor of uncertainty involved in the problem. This type of clustering is realized by using two values of the fuzzification coefficient resulting in the interval type-2 membership functions. Once completing type reduction, the membership grades of IT2FCM are used as the outputs of the hidden layer. Instead of the backpropagation training, least squares estimator based learning is applied to adjust the functional connection being regarded as linear functions mapping the hidden layer to the output layer. In order to reduce potential overfitting, L 2 -norm regularization is taken into account. The effectiveness of the proposed classifier is analyzed with the aid of a number of machine learning datasets as well as face image datasets. Thorough comparative studies are also included.
This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this study is to reduce the computational complexity of type-2 fuzzy set-based models and to alleviate the deterioration of its generalization abilities through the synergistic effect of two algorithms: First, interval type-2 FCM (IT2FCM) is used in the hidden layer of the network and connections (weights) are adjusted by invoking the least squares error estimation method. Second, an L2-norm regularization is considered in the cost function to avoid the construction of the network suffering from overfitting. In more detail, the hidden layer of the proposed FC is realized by interval type-2 FCM clustering to deal with the factor of uncertainty involved in the problem. This type of clustering is realized by using two values of the fuzzification coefficient resulting in the interval type-2 membership functions. Once completing type reduction, the membership grades of IT2FCM are used as the outputs of the hidden layer. Instead of the backpropagation training, least squares estimator based learning is applied to adjust the functional connection being regarded as linear functions mapping the hidden layer to the output layer. In order to reduce potential overfitting, L2-norm regularization is taken into account. The effectiveness of the proposed classifier is analyzed with the aid of a number of machine learning datasets as well as face image datasets. Thorough comparative studies are also included.
Author Kim, Eun-Hu
Pedrycz, Witold
Oh, Sung-Kwun
Author_xml – sequence: 1
  givenname: Eun-Hu
  orcidid: 0000-0002-3636-1524
  surname: Kim
  fullname: Kim, Eun-Hu
  email: wdkim@suwon.ac.kr
  organization: Department of Electrical Engineering, The University of Suwon, Hwaseong, South Korea
– sequence: 2
  givenname: Sung-Kwun
  orcidid: 0000-0001-6798-8955
  surname: Oh
  fullname: Oh, Sung-Kwun
  email: ohsk@suwon.ac.kr
  organization: Department of Electrical Engineering, The University of Suwon, Hwaseong, South Korea
– sequence: 3
  givenname: Witold
  orcidid: 0000-0002-9335-9930
  surname: Pedrycz
  fullname: Pedrycz, Witold
  email: wpedrycz@ualberta.ca
  organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
BookMark eNp9kMFKAzEQhoNUsFZfQC8LnlMzye4me9RqtVARpL30ErK7E0mp2Zpshfbp3driwYOnGYb_mxm-c9LzjUdCroANAVhxOxvPF4shZyCHXKqMp-kJ6UORAmVMpL2uZ7mguWT5GTmPcckYpBmoPpk8YHTvPmls8obO2yZUWCcT32L4Mqtktl0j5cl4s9ttkxF9QeMjvTexyxxnKxOjsw7DBTm1ZhXx8lgHZD5-nI2e6fT1aTK6m9KKF1lLywJFpQzWsszynHcv2TwtVC2YQSzLqntaGOBcgDG2zqBUVhpWSVVaUZdciQG5Oexdh-Zzg7HVy2YTfHdScwAJKmXFPqUOqSo0MQa0unKtaV3j22DcSgPTe3H6R5zei9NHcR3K_6Dr4D5M2P4PXR8gh4i_gOI8V0yKb1c3e0w
CODEN IEFSEV
CitedBy_id crossref_primary_10_1016_j_neucom_2019_07_004
crossref_primary_10_1016_j_asoc_2021_107766
crossref_primary_10_1049_ell2_12492
crossref_primary_10_1109_JSEN_2024_3413793
crossref_primary_10_1109_TFUZZ_2023_3321197
crossref_primary_10_1109_TII_2021_3062036
crossref_primary_10_1109_ACCESS_2023_3238798
crossref_primary_10_1016_j_eswa_2023_119655
crossref_primary_10_1109_TFUZZ_2020_3001740
crossref_primary_10_1007_s00500_019_04625_9
crossref_primary_10_1007_s10845_021_01897_7
crossref_primary_10_1109_TFUZZ_2019_2930492
crossref_primary_10_1109_TFUZZ_2020_2966167
crossref_primary_10_1109_TNNLS_2022_3225181
crossref_primary_10_1109_TFUZZ_2024_3421544
crossref_primary_10_1109_TSMC_2019_2916184
crossref_primary_10_1142_S021812662450124X
crossref_primary_10_1109_TFUZZ_2019_2924402
crossref_primary_10_1016_j_ins_2019_08_005
crossref_primary_10_1109_TFUZZ_2024_3422414
crossref_primary_10_1016_j_ins_2024_121359
crossref_primary_10_1109_TFUZZ_2024_3407739
crossref_primary_10_1109_TII_2023_3326533
crossref_primary_10_1016_j_advengsoft_2022_103377
crossref_primary_10_1016_j_ijepes_2021_107475
crossref_primary_10_1016_j_ins_2020_08_058
crossref_primary_10_1109_TCYB_2024_3353753
crossref_primary_10_3233_JIFS_200639
crossref_primary_10_1109_TFUZZ_2022_3146969
crossref_primary_10_1093_tse_tdac037
crossref_primary_10_1109_TFUZZ_2020_3018190
crossref_primary_10_1016_j_neucom_2020_08_072
crossref_primary_10_3233_JIFS_210336
crossref_primary_10_1007_s11135_022_01318_8
crossref_primary_10_1016_j_knosys_2019_105330
crossref_primary_10_1016_j_eswa_2021_115370
crossref_primary_10_1109_TIE_2022_3177802
crossref_primary_10_1109_TMI_2024_3375357
crossref_primary_10_1109_TCYB_2023_3257274
crossref_primary_10_1109_TITS_2022_3232242
crossref_primary_10_1109_TCDS_2023_3272730
crossref_primary_10_1109_ACCESS_2020_3010313
crossref_primary_10_1109_TFUZZ_2022_3186181
Cites_doi 10.1109/TPAMI.2004.1261097
10.1016/0020-0255(75)90036-5
10.1016/j.neucom.2016.03.033
10.2307/1267351
10.1016/j.fss.2015.01.020
10.1109/TFUZZ.2012.2187453
10.1016/0165-0114(94)90297-6
10.1007/978-1-4757-0450-1
10.1016/j.neucom.2015.03.112
10.1016/j.patcog.2006.06.022
10.1007/978-3-319-26986-3_8
10.1109/TFUZZ.2015.2500274
10.1109/TFUZZ.2007.896229
10.1016/j.fss.2013.05.007
10.5370/JEET.2011.6.6.853
10.1016/j.neucom.2011.06.031
10.1016/j.fss.2010.11.012
10.1016/j.eswa.2012.08.046
10.1109/TFUZZ.2014.2315656
10.1109/TFUZZ.2010.2046904
10.1016/j.simpat.2003.09.001
10.5370/JEET.2017.12.2.911
10.1016/0165-0114(94)90279-8
10.1016/j.asoc.2014.05.036
10.1155/2017/7094046
10.1007/s00500-014-1287-8
10.1080/03081079.2015.1072523
10.1109/21.256541
10.1016/j.patrec.2005.10.010
10.1109/TFUZZ.2006.889763
10.1016/j.neucom.2013.10.023
10.1109/MCI.2007.357193
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2017.2785244
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 3068
ExternalDocumentID 10_1109_TFUZZ_2017_2785244
8226807
Genre orig-research
GrantInformation_xml – fundername: Basic Science Research Program through the National Research Foundation of Korea
– fundername: Ministry of Education
  grantid: NRF-2017R1D1A1B03032333
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-b9e3c8aed7b5662670f6498d30aeebbc1943a12231aafd51b8f7a0c78bf3db283
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Sun Oct 05 00:18:07 EDT 2025
Thu Apr 24 23:06:11 EDT 2025
Wed Oct 01 02:37:23 EDT 2025
Wed Aug 27 02:54:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-b9e3c8aed7b5662670f6498d30aeebbc1943a12231aafd51b8f7a0c78bf3db283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9335-9930
0000-0001-6798-8955
0000-0002-3636-1524
PQID 2117184098
PQPubID 85428
PageCount 15
ParticipantIDs proquest_journals_2117184098
crossref_citationtrail_10_1109_TFUZZ_2017_2785244
crossref_primary_10_1109_TFUZZ_2017_2785244
ieee_primary_8226807
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-Oct.
2018-10-00
20181001
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-Oct.
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref37
ref15
tahayori (ref14) 0
ref30
ref33
ref11
ref32
ref10
cai (ref39) 0
ref2
ref1
ref38
ref16
ref19
ref18
salazar (ref27) 2015; 9
john (ref13) 2006
ref24
ref23
ref26
mendel (ref12) 2001
ref25
he (ref36) 2004; 16
ref20
ref41
ref22
liu (ref31) 2008; 16
witten (ref34) 2016
rhee (ref21) 0
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
fazel zarandi (ref17) 0
References_xml – ident: ref37
  doi: 10.1109/TPAMI.2004.1261097
– ident: ref11
  doi: 10.1016/0020-0255(75)90036-5
– ident: ref26
  doi: 10.1016/j.neucom.2016.03.033
– ident: ref28
  doi: 10.2307/1267351
– start-page: 1
  year: 0
  ident: ref39
  article-title: Spectral regression for efficient regularized subspace learning
  publication-title: Proc IEEE 11th Int Conf Comput Vis
– start-page: 30
  year: 0
  ident: ref17
  article-title: Type-II fuzzy possibilistic c-mean clustering
  publication-title: Proc Joint Int Fuzzy Syst Assoc World Congr Eur Soc Fuzzy Logic Technol Conf
– ident: ref4
  doi: 10.1016/j.fss.2015.01.020
– ident: ref15
  doi: 10.1109/TFUZZ.2012.2187453
– ident: ref1
  doi: 10.1016/0165-0114(94)90297-6
– ident: ref32
  doi: 10.1007/978-1-4757-0450-1
– ident: ref30
  doi: 10.1016/j.neucom.2015.03.112
– ident: ref38
  doi: 10.1016/j.patcog.2006.06.022
– ident: ref20
  doi: 10.1007/978-3-319-26986-3_8
– ident: ref25
  doi: 10.1109/TFUZZ.2015.2500274
– volume: 16
  start-page: 1
  year: 2008
  ident: ref31
  article-title: Aggregation using the fuzzy weighted average as computed by the KM algorithms
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2007.896229
– ident: ref5
  doi: 10.1016/j.fss.2013.05.007
– ident: ref9
  doi: 10.5370/JEET.2011.6.6.853
– volume: 16
  start-page: 153
  year: 2004
  ident: ref36
  article-title: Locality preserving projections
  publication-title: Neural Inf Process Syst
– ident: ref7
  doi: 10.1016/j.neucom.2011.06.031
– start-page: 1
  year: 0
  ident: ref21
  article-title: Interval type-2 fuzzy membership function design and its application to radial basis function neural networks
  publication-title: Proc 2007 IEEE Int Conf Fuzzy Syst
– ident: ref3
  doi: 10.1016/j.fss.2010.11.012
– ident: ref40
  doi: 10.1016/j.eswa.2012.08.046
– ident: ref22
  doi: 10.1109/TFUZZ.2014.2315656
– ident: ref23
  doi: 10.1109/TFUZZ.2010.2046904
– year: 2001
  ident: ref12
  publication-title: Uncertain Rule-Based Fuzzy Logic Systems Introduction and New Directions
– ident: ref8
  doi: 10.1016/j.simpat.2003.09.001
– start-page: 1
  year: 0
  ident: ref14
  article-title: Zadeh's separation theorem to calculate operations on type-2 fuzzy sets
  publication-title: Proc 2017 IEEE Int Conf Fuzzy Syst
– ident: ref10
  doi: 10.5370/JEET.2017.12.2.911
– ident: ref2
  doi: 10.1016/0165-0114(94)90279-8
– ident: ref19
  doi: 10.1016/j.asoc.2014.05.036
– ident: ref18
  doi: 10.1155/2017/7094046
– ident: ref24
  doi: 10.1007/s00500-014-1287-8
– ident: ref35
  doi: 10.1080/03081079.2015.1072523
– ident: ref6
  doi: 10.1109/21.256541
– ident: ref41
  doi: 10.1016/j.patrec.2005.10.010
– ident: ref16
  doi: 10.1109/TFUZZ.2006.889763
– start-page: 89
  year: 2006
  ident: ref13
  article-title: Extensions to type-1 fuzzy: Type-2 fuzzy logic and uncertainty
  publication-title: Computational Intelligence Principles and Practice
– ident: ref29
  doi: 10.1016/j.neucom.2013.10.023
– ident: ref33
  doi: 10.1109/MCI.2007.357193
– year: 2016
  ident: ref34
  article-title: Data mining
  publication-title: Fourth Edition Practical Machine Learning Tools and Techniques
– volume: 9
  start-page: 1069
  year: 2015
  ident: ref27
  article-title: Convex combination and its application to fuzzy sets and interval-valued fuzzy sets II
  publication-title: Appl Math Sci
SSID ssj0014518
Score 2.460197
Snippet This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3054
SubjectTerms Back propagation
Classifiers
Clustering
Comparative studies
Computational complexity
Computational modeling
Computer architecture
Construction costs
Datasets
Fuzzy c-means (FCM) based fuzzy neural networks (FNNs)
Fuzzy logic
Fuzzy neural networks
Fuzzy sets
interval type-2 FCM (IT2FCM)
L2-norm regularization
Least squares
least squares estimation
Linear functions
Machine learning
Neural networks
Regularization
reinforced interval type-2 FCM-based fuzzy classifier (RIT2FC)
Synergistic effect
Title Design of Reinforced Interval Type-2 Fuzzy C-Means-Based Fuzzy Classifier
URI https://ieeexplore.ieee.org/document/8226807
https://www.proquest.com/docview/2117184098
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4VnrYHCnSIDob8sDdwiRPHdh6BreomdQ-olaq-RP5xkRConbb2gf712E5SMUBob1FkRyffOd-dffcdwFePwExaZqjw-EG5woLqXGtqUuR5ypEVLhwNjH-J0ZT_nOWzDlxsa2EQMSaf4SA8xrt8t7TrcFR26cFMqFA6viOVqGu1tjcGPGd12ZvIqJCJaAtkkuJyMpzO5yGLSw5SqbwE_B8Qil1VXv2KI74MuzBuJavTSu4H65UZ2M0L0sb_FX0f9hpHk1zVlnEAHVwcQrdt4kCaPX0IH58xEvbgx7eY0UGWFbnFSKpq0ZF4bOhNkoSolaZkuN5sHskNHaMHOnrtgdC174Izfld5rP0E0-H3yc2INt0WqE2LfEVNgZlVGp003sVL_RpWghfKZYlGNMaygmeaeW-CaV25nBlVSZ1YqUyVOeO9lCPYXSwXeAzEg2IWGiBpLgyvpDCpU1qrwKOjhKiSPrB2-UvbUJGHjhgPZQxJkqKMKiuDyspGZX043875XRNxvDu6F3SwHdksfx9OWy2XzV79W_oQWMY4V31-e9YJfPDfrllw2Snsrv6s8Yt3RVbmLNrgEwHf2Es
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOEAP0AIVC7T1obfiJU4c2znyWi2U5VDtSohL5MdEQqBdBLsH9tdjO8mqFIR6iyJbGXnG-WbsmW8AfnoEZtIyQ4XHD8oVFlTnWlOTIs9Tjqxw4WhgcCX6I35xnV8vwcGiFgYRY_IZdsNjvMt3EzsLR2WHHsyECqXjKznnPK-rtRZ3BjxndeGbyKiQiWhLZJLicNgb3dyEPC7ZTaXyMvBXMBT7qrz5GUeE6W3AoJWtTiy5686mpmvn_9A2_q_wn2G9cTXJUW0bX2AJx5uw0bZxIM2u3oRPf3ESbsH5aczpIJOK_MFIq2rRkXhw6I2ShLiVpqQ3m8-fyQkdoIc6euyh0LXvgjt-W3m03YZR72x40qdNvwVq0yKfUlNgZpVGJ4138lK_hpXghXJZohGNsazgmWben2BaVy5nRlVSJ1YqU2XOeD_lKyyPJ2PcAeJhMQstkDQXhldSmNQprVVg0lFCVEkHWLv8pW3IyENPjPsyBiVJUUaVlUFlZaOyDvxazHmoqTg-HL0VdLAY2Sx_B_ZbLZfNbn0qfRAsY6Srdt-f9QNW-8PBZXl5fvV7D9b8d2pOXLYPy9PHGX7zjsnUfI_2-AJ_-duY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Reinforced+Interval+Type-2+Fuzzy+C-Means-Based+Fuzzy+Classifier&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Kim%2C+Eun-Hu&rft.au=Oh%2C+Sung-Kwun&rft.au=Pedrycz%2C+Witold&rft.date=2018-10-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=26&rft.issue=5&rft.spage=3054&rft.epage=3068&rft_id=info:doi/10.1109%2FTFUZZ.2017.2785244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2017_2785244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon