Design of Reinforced Interval Type-2 Fuzzy C-Means-Based Fuzzy Classifier
This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this study is to reduce the computational complexity of type-2 fuzzy set-based models and to alleviate the deterioration of its generalization abili...
Saved in:
| Published in | IEEE transactions on fuzzy systems Vol. 26; no. 5; pp. 3054 - 3068 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.10.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6706 1941-0034 |
| DOI | 10.1109/TFUZZ.2017.2785244 |
Cover
| Abstract | This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this study is to reduce the computational complexity of type-2 fuzzy set-based models and to alleviate the deterioration of its generalization abilities through the synergistic effect of two algorithms: First, interval type-2 FCM (IT2FCM) is used in the hidden layer of the network and connections (weights) are adjusted by invoking the least squares error estimation method. Second, an L 2 -norm regularization is considered in the cost function to avoid the construction of the network suffering from overfitting. In more detail, the hidden layer of the proposed FC is realized by interval type-2 FCM clustering to deal with the factor of uncertainty involved in the problem. This type of clustering is realized by using two values of the fuzzification coefficient resulting in the interval type-2 membership functions. Once completing type reduction, the membership grades of IT2FCM are used as the outputs of the hidden layer. Instead of the backpropagation training, least squares estimator based learning is applied to adjust the functional connection being regarded as linear functions mapping the hidden layer to the output layer. In order to reduce potential overfitting, L 2 -norm regularization is taken into account. The effectiveness of the proposed classifier is analyzed with the aid of a number of machine learning datasets as well as face image datasets. Thorough comparative studies are also included. |
|---|---|
| AbstractList | This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this study is to reduce the computational complexity of type-2 fuzzy set-based models and to alleviate the deterioration of its generalization abilities through the synergistic effect of two algorithms: First, interval type-2 FCM (IT2FCM) is used in the hidden layer of the network and connections (weights) are adjusted by invoking the least squares error estimation method. Second, an L 2 -norm regularization is considered in the cost function to avoid the construction of the network suffering from overfitting. In more detail, the hidden layer of the proposed FC is realized by interval type-2 FCM clustering to deal with the factor of uncertainty involved in the problem. This type of clustering is realized by using two values of the fuzzification coefficient resulting in the interval type-2 membership functions. Once completing type reduction, the membership grades of IT2FCM are used as the outputs of the hidden layer. Instead of the backpropagation training, least squares estimator based learning is applied to adjust the functional connection being regarded as linear functions mapping the hidden layer to the output layer. In order to reduce potential overfitting, L 2 -norm regularization is taken into account. The effectiveness of the proposed classifier is analyzed with the aid of a number of machine learning datasets as well as face image datasets. Thorough comparative studies are also included. This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this study is to reduce the computational complexity of type-2 fuzzy set-based models and to alleviate the deterioration of its generalization abilities through the synergistic effect of two algorithms: First, interval type-2 FCM (IT2FCM) is used in the hidden layer of the network and connections (weights) are adjusted by invoking the least squares error estimation method. Second, an L2-norm regularization is considered in the cost function to avoid the construction of the network suffering from overfitting. In more detail, the hidden layer of the proposed FC is realized by interval type-2 FCM clustering to deal with the factor of uncertainty involved in the problem. This type of clustering is realized by using two values of the fuzzification coefficient resulting in the interval type-2 membership functions. Once completing type reduction, the membership grades of IT2FCM are used as the outputs of the hidden layer. Instead of the backpropagation training, least squares estimator based learning is applied to adjust the functional connection being regarded as linear functions mapping the hidden layer to the output layer. In order to reduce potential overfitting, L2-norm regularization is taken into account. The effectiveness of the proposed classifier is analyzed with the aid of a number of machine learning datasets as well as face image datasets. Thorough comparative studies are also included. |
| Author | Kim, Eun-Hu Pedrycz, Witold Oh, Sung-Kwun |
| Author_xml | – sequence: 1 givenname: Eun-Hu orcidid: 0000-0002-3636-1524 surname: Kim fullname: Kim, Eun-Hu email: wdkim@suwon.ac.kr organization: Department of Electrical Engineering, The University of Suwon, Hwaseong, South Korea – sequence: 2 givenname: Sung-Kwun orcidid: 0000-0001-6798-8955 surname: Oh fullname: Oh, Sung-Kwun email: ohsk@suwon.ac.kr organization: Department of Electrical Engineering, The University of Suwon, Hwaseong, South Korea – sequence: 3 givenname: Witold orcidid: 0000-0002-9335-9930 surname: Pedrycz fullname: Pedrycz, Witold email: wpedrycz@ualberta.ca organization: Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada |
| BookMark | eNp9kMFKAzEQhoNUsFZfQC8LnlMzye4me9RqtVARpL30ErK7E0mp2Zpshfbp3driwYOnGYb_mxm-c9LzjUdCroANAVhxOxvPF4shZyCHXKqMp-kJ6UORAmVMpL2uZ7mguWT5GTmPcckYpBmoPpk8YHTvPmls8obO2yZUWCcT32L4Mqtktl0j5cl4s9ttkxF9QeMjvTexyxxnKxOjsw7DBTm1ZhXx8lgHZD5-nI2e6fT1aTK6m9KKF1lLywJFpQzWsszynHcv2TwtVC2YQSzLqntaGOBcgDG2zqBUVhpWSVVaUZdciQG5Oexdh-Zzg7HVy2YTfHdScwAJKmXFPqUOqSo0MQa0unKtaV3j22DcSgPTe3H6R5zei9NHcR3K_6Dr4D5M2P4PXR8gh4i_gOI8V0yKb1c3e0w |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2019_07_004 crossref_primary_10_1016_j_asoc_2021_107766 crossref_primary_10_1049_ell2_12492 crossref_primary_10_1109_JSEN_2024_3413793 crossref_primary_10_1109_TFUZZ_2023_3321197 crossref_primary_10_1109_TII_2021_3062036 crossref_primary_10_1109_ACCESS_2023_3238798 crossref_primary_10_1016_j_eswa_2023_119655 crossref_primary_10_1109_TFUZZ_2020_3001740 crossref_primary_10_1007_s00500_019_04625_9 crossref_primary_10_1007_s10845_021_01897_7 crossref_primary_10_1109_TFUZZ_2019_2930492 crossref_primary_10_1109_TFUZZ_2020_2966167 crossref_primary_10_1109_TNNLS_2022_3225181 crossref_primary_10_1109_TFUZZ_2024_3421544 crossref_primary_10_1109_TSMC_2019_2916184 crossref_primary_10_1142_S021812662450124X crossref_primary_10_1109_TFUZZ_2019_2924402 crossref_primary_10_1016_j_ins_2019_08_005 crossref_primary_10_1109_TFUZZ_2024_3422414 crossref_primary_10_1016_j_ins_2024_121359 crossref_primary_10_1109_TFUZZ_2024_3407739 crossref_primary_10_1109_TII_2023_3326533 crossref_primary_10_1016_j_advengsoft_2022_103377 crossref_primary_10_1016_j_ijepes_2021_107475 crossref_primary_10_1016_j_ins_2020_08_058 crossref_primary_10_1109_TCYB_2024_3353753 crossref_primary_10_3233_JIFS_200639 crossref_primary_10_1109_TFUZZ_2022_3146969 crossref_primary_10_1093_tse_tdac037 crossref_primary_10_1109_TFUZZ_2020_3018190 crossref_primary_10_1016_j_neucom_2020_08_072 crossref_primary_10_3233_JIFS_210336 crossref_primary_10_1007_s11135_022_01318_8 crossref_primary_10_1016_j_knosys_2019_105330 crossref_primary_10_1016_j_eswa_2021_115370 crossref_primary_10_1109_TIE_2022_3177802 crossref_primary_10_1109_TMI_2024_3375357 crossref_primary_10_1109_TCYB_2023_3257274 crossref_primary_10_1109_TITS_2022_3232242 crossref_primary_10_1109_TCDS_2023_3272730 crossref_primary_10_1109_ACCESS_2020_3010313 crossref_primary_10_1109_TFUZZ_2022_3186181 |
| Cites_doi | 10.1109/TPAMI.2004.1261097 10.1016/0020-0255(75)90036-5 10.1016/j.neucom.2016.03.033 10.2307/1267351 10.1016/j.fss.2015.01.020 10.1109/TFUZZ.2012.2187453 10.1016/0165-0114(94)90297-6 10.1007/978-1-4757-0450-1 10.1016/j.neucom.2015.03.112 10.1016/j.patcog.2006.06.022 10.1007/978-3-319-26986-3_8 10.1109/TFUZZ.2015.2500274 10.1109/TFUZZ.2007.896229 10.1016/j.fss.2013.05.007 10.5370/JEET.2011.6.6.853 10.1016/j.neucom.2011.06.031 10.1016/j.fss.2010.11.012 10.1016/j.eswa.2012.08.046 10.1109/TFUZZ.2014.2315656 10.1109/TFUZZ.2010.2046904 10.1016/j.simpat.2003.09.001 10.5370/JEET.2017.12.2.911 10.1016/0165-0114(94)90279-8 10.1016/j.asoc.2014.05.036 10.1155/2017/7094046 10.1007/s00500-014-1287-8 10.1080/03081079.2015.1072523 10.1109/21.256541 10.1016/j.patrec.2005.10.010 10.1109/TFUZZ.2006.889763 10.1016/j.neucom.2013.10.023 10.1109/MCI.2007.357193 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2017.2785244 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 3068 |
| ExternalDocumentID | 10_1109_TFUZZ_2017_2785244 8226807 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Basic Science Research Program through the National Research Foundation of Korea – fundername: Ministry of Education grantid: NRF-2017R1D1A1B03032333 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-b9e3c8aed7b5662670f6498d30aeebbc1943a12231aafd51b8f7a0c78bf3db283 |
| IEDL.DBID | RIE |
| ISSN | 1063-6706 |
| IngestDate | Sun Oct 05 00:18:07 EDT 2025 Thu Apr 24 23:06:11 EDT 2025 Wed Oct 01 02:37:23 EDT 2025 Wed Aug 27 02:54:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-b9e3c8aed7b5662670f6498d30aeebbc1943a12231aafd51b8f7a0c78bf3db283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9335-9930 0000-0001-6798-8955 0000-0002-3636-1524 |
| PQID | 2117184098 |
| PQPubID | 85428 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2117184098 crossref_citationtrail_10_1109_TFUZZ_2017_2785244 crossref_primary_10_1109_TFUZZ_2017_2785244 ieee_primary_8226807 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-Oct. 2018-10-00 20181001 |
| PublicationDateYYYYMMDD | 2018-10-01 |
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-Oct. |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2018 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref37 ref15 tahayori (ref14) 0 ref30 ref33 ref11 ref32 ref10 cai (ref39) 0 ref2 ref1 ref38 ref16 ref19 ref18 salazar (ref27) 2015; 9 john (ref13) 2006 ref24 ref23 ref26 mendel (ref12) 2001 ref25 he (ref36) 2004; 16 ref20 ref41 ref22 liu (ref31) 2008; 16 witten (ref34) 2016 rhee (ref21) 0 ref28 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 fazel zarandi (ref17) 0 |
| References_xml | – ident: ref37 doi: 10.1109/TPAMI.2004.1261097 – ident: ref11 doi: 10.1016/0020-0255(75)90036-5 – ident: ref26 doi: 10.1016/j.neucom.2016.03.033 – ident: ref28 doi: 10.2307/1267351 – start-page: 1 year: 0 ident: ref39 article-title: Spectral regression for efficient regularized subspace learning publication-title: Proc IEEE 11th Int Conf Comput Vis – start-page: 30 year: 0 ident: ref17 article-title: Type-II fuzzy possibilistic c-mean clustering publication-title: Proc Joint Int Fuzzy Syst Assoc World Congr Eur Soc Fuzzy Logic Technol Conf – ident: ref4 doi: 10.1016/j.fss.2015.01.020 – ident: ref15 doi: 10.1109/TFUZZ.2012.2187453 – ident: ref1 doi: 10.1016/0165-0114(94)90297-6 – ident: ref32 doi: 10.1007/978-1-4757-0450-1 – ident: ref30 doi: 10.1016/j.neucom.2015.03.112 – ident: ref38 doi: 10.1016/j.patcog.2006.06.022 – ident: ref20 doi: 10.1007/978-3-319-26986-3_8 – ident: ref25 doi: 10.1109/TFUZZ.2015.2500274 – volume: 16 start-page: 1 year: 2008 ident: ref31 article-title: Aggregation using the fuzzy weighted average as computed by the KM algorithms publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2007.896229 – ident: ref5 doi: 10.1016/j.fss.2013.05.007 – ident: ref9 doi: 10.5370/JEET.2011.6.6.853 – volume: 16 start-page: 153 year: 2004 ident: ref36 article-title: Locality preserving projections publication-title: Neural Inf Process Syst – ident: ref7 doi: 10.1016/j.neucom.2011.06.031 – start-page: 1 year: 0 ident: ref21 article-title: Interval type-2 fuzzy membership function design and its application to radial basis function neural networks publication-title: Proc 2007 IEEE Int Conf Fuzzy Syst – ident: ref3 doi: 10.1016/j.fss.2010.11.012 – ident: ref40 doi: 10.1016/j.eswa.2012.08.046 – ident: ref22 doi: 10.1109/TFUZZ.2014.2315656 – ident: ref23 doi: 10.1109/TFUZZ.2010.2046904 – year: 2001 ident: ref12 publication-title: Uncertain Rule-Based Fuzzy Logic Systems Introduction and New Directions – ident: ref8 doi: 10.1016/j.simpat.2003.09.001 – start-page: 1 year: 0 ident: ref14 article-title: Zadeh's separation theorem to calculate operations on type-2 fuzzy sets publication-title: Proc 2017 IEEE Int Conf Fuzzy Syst – ident: ref10 doi: 10.5370/JEET.2017.12.2.911 – ident: ref2 doi: 10.1016/0165-0114(94)90279-8 – ident: ref19 doi: 10.1016/j.asoc.2014.05.036 – ident: ref18 doi: 10.1155/2017/7094046 – ident: ref24 doi: 10.1007/s00500-014-1287-8 – ident: ref35 doi: 10.1080/03081079.2015.1072523 – ident: ref6 doi: 10.1109/21.256541 – ident: ref41 doi: 10.1016/j.patrec.2005.10.010 – ident: ref16 doi: 10.1109/TFUZZ.2006.889763 – start-page: 89 year: 2006 ident: ref13 article-title: Extensions to type-1 fuzzy: Type-2 fuzzy logic and uncertainty publication-title: Computational Intelligence Principles and Practice – ident: ref29 doi: 10.1016/j.neucom.2013.10.023 – ident: ref33 doi: 10.1109/MCI.2007.357193 – year: 2016 ident: ref34 article-title: Data mining publication-title: Fourth Edition Practical Machine Learning Tools and Techniques – volume: 9 start-page: 1069 year: 2015 ident: ref27 article-title: Convex combination and its application to fuzzy sets and interval-valued fuzzy sets II publication-title: Appl Math Sci |
| SSID | ssj0014518 |
| Score | 2.460197 |
| Snippet | This paper is concerned with a new design methodology of a reinforced interval type-2 fuzzy c-means (FCM) based fuzzy classifier (FC). The key point of this... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 3054 |
| SubjectTerms | Back propagation Classifiers Clustering Comparative studies Computational complexity Computational modeling Computer architecture Construction costs Datasets Fuzzy c-means (FCM) based fuzzy neural networks (FNNs) Fuzzy logic Fuzzy neural networks Fuzzy sets interval type-2 FCM (IT2FCM) L2-norm regularization Least squares least squares estimation Linear functions Machine learning Neural networks Regularization reinforced interval type-2 FCM-based fuzzy classifier (RIT2FC) Synergistic effect |
| Title | Design of Reinforced Interval Type-2 Fuzzy C-Means-Based Fuzzy Classifier |
| URI | https://ieeexplore.ieee.org/document/8226807 https://www.proquest.com/docview/2117184098 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4VnrYHCnSIDob8sDdwiRPHdh6BreomdQ-olaq-RP5xkRConbb2gf712E5SMUBob1FkRyffOd-dffcdwFePwExaZqjw-EG5woLqXGtqUuR5ypEVLhwNjH-J0ZT_nOWzDlxsa2EQMSaf4SA8xrt8t7TrcFR26cFMqFA6viOVqGu1tjcGPGd12ZvIqJCJaAtkkuJyMpzO5yGLSw5SqbwE_B8Qil1VXv2KI74MuzBuJavTSu4H65UZ2M0L0sb_FX0f9hpHk1zVlnEAHVwcQrdt4kCaPX0IH58xEvbgx7eY0UGWFbnFSKpq0ZF4bOhNkoSolaZkuN5sHskNHaMHOnrtgdC174Izfld5rP0E0-H3yc2INt0WqE2LfEVNgZlVGp003sVL_RpWghfKZYlGNMaygmeaeW-CaV25nBlVSZ1YqUyVOeO9lCPYXSwXeAzEg2IWGiBpLgyvpDCpU1qrwKOjhKiSPrB2-UvbUJGHjhgPZQxJkqKMKiuDyspGZX043875XRNxvDu6F3SwHdksfx9OWy2XzV79W_oQWMY4V31-e9YJfPDfrllw2Snsrv6s8Yt3RVbmLNrgEwHf2Es |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB4hOEAP0AIVC7T1obfiJU4c2znyWi2U5VDtSohL5MdEQqBdBLsH9tdjO8mqFIR6iyJbGXnG-WbsmW8AfnoEZtIyQ4XHD8oVFlTnWlOTIs9Tjqxw4WhgcCX6I35xnV8vwcGiFgYRY_IZdsNjvMt3EzsLR2WHHsyECqXjKznnPK-rtRZ3BjxndeGbyKiQiWhLZJLicNgb3dyEPC7ZTaXyMvBXMBT7qrz5GUeE6W3AoJWtTiy5686mpmvn_9A2_q_wn2G9cTXJUW0bX2AJx5uw0bZxIM2u3oRPf3ESbsH5aczpIJOK_MFIq2rRkXhw6I2ShLiVpqQ3m8-fyQkdoIc6euyh0LXvgjt-W3m03YZR72x40qdNvwVq0yKfUlNgZpVGJ4138lK_hpXghXJZohGNsazgmWben2BaVy5nRlVSJ1YqU2XOeD_lKyyPJ2PcAeJhMQstkDQXhldSmNQprVVg0lFCVEkHWLv8pW3IyENPjPsyBiVJUUaVlUFlZaOyDvxazHmoqTg-HL0VdLAY2Sx_B_ZbLZfNbn0qfRAsY6Srdt-f9QNW-8PBZXl5fvV7D9b8d2pOXLYPy9PHGX7zjsnUfI_2-AJ_-duY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+Reinforced+Interval+Type-2+Fuzzy+C-Means-Based+Fuzzy+Classifier&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Kim%2C+Eun-Hu&rft.au=Oh%2C+Sung-Kwun&rft.au=Pedrycz%2C+Witold&rft.date=2018-10-01&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=26&rft.issue=5&rft.spage=3054&rft.epage=3068&rft_id=info:doi/10.1109%2FTFUZZ.2017.2785244&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TFUZZ_2017_2785244 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |