Sequence-to-Sequence Acoustic Modeling for Voice Conversion

In this paper, a neural network named sequence-to-sequence ConvErsion NeTwork (SCENT) is presented for acoustic modeling in voice conversion. At training stage, a SCENT model is estimated by aligning the feature sequences of source and target speakers implicitly using attention mechanism. At the con...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on audio, speech, and language processing Vol. 27; no. 3; pp. 631 - 644
Main Authors Zhang, Jing-Xuan, Ling, Zhen-Hua, Liu, Li-Juan, Jiang, Yuan, Dai, Li-Rong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.03.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2329-9290
2329-9304
DOI10.1109/TASLP.2019.2892235

Cover

Abstract In this paper, a neural network named sequence-to-sequence ConvErsion NeTwork (SCENT) is presented for acoustic modeling in voice conversion. At training stage, a SCENT model is estimated by aligning the feature sequences of source and target speakers implicitly using attention mechanism. At the conversion stage, acoustic features and durations of source utterances are converted simultaneously using the unified acoustic model. Mel-scale spectrograms are adopted as acoustic features, which contain both excitation and vocal tract descriptions of speech signals. The bottleneck features extracted from source speech using an automatic speech recognition model are appended as an auxiliary input. A WaveNet vocoder conditioned on Mel-spectrograms is built to reconstruct waveforms from the outputs of the SCENT model. It is worth noting that our proposed method can achieve appropriate duration conversion, which is difficult in conventional methods. Experimental results show that our proposed method obtained better objective and subjective performance than the baseline methods using Gaussian mixture models and deep neural networks as acoustic models. This proposed method also outperformed our previous work, which achieved the top rank in Voice Conversion Challenge 2018. Ablation tests further confirmed the effectiveness of several components in our proposed method.
AbstractList In this paper, a neural network named sequence-to-sequence ConvErsion NeTwork (SCENT) is presented for acoustic modeling in voice conversion. At training stage, a SCENT model is estimated by aligning the feature sequences of source and target speakers implicitly using attention mechanism. At the conversion stage, acoustic features and durations of source utterances are converted simultaneously using the unified acoustic model. Mel-scale spectrograms are adopted as acoustic features, which contain both excitation and vocal tract descriptions of speech signals. The bottleneck features extracted from source speech using an automatic speech recognition model are appended as an auxiliary input. A WaveNet vocoder conditioned on Mel-spectrograms is built to reconstruct waveforms from the outputs of the SCENT model. It is worth noting that our proposed method can achieve appropriate duration conversion, which is difficult in conventional methods. Experimental results show that our proposed method obtained better objective and subjective performance than the baseline methods using Gaussian mixture models and deep neural networks as acoustic models. This proposed method also outperformed our previous work, which achieved the top rank in Voice Conversion Challenge 2018. Ablation tests further confirmed the effectiveness of several components in our proposed method.
Author Jing-Xuan Zhang
Yuan Jiang
Li-Rong Dai
Zhen-Hua Ling
Li-Juan Liu
Author_xml – sequence: 1
  givenname: Jing-Xuan
  orcidid: 0000-0003-4341-3174
  surname: Zhang
  fullname: Zhang, Jing-Xuan
– sequence: 2
  givenname: Zhen-Hua
  orcidid: 0000-0001-7853-5273
  surname: Ling
  fullname: Ling, Zhen-Hua
– sequence: 3
  givenname: Li-Juan
  surname: Liu
  fullname: Liu, Li-Juan
– sequence: 4
  givenname: Yuan
  surname: Jiang
  fullname: Jiang, Yuan
– sequence: 5
  givenname: Li-Rong
  surname: Dai
  fullname: Dai, Li-Rong
BookMark eNp9kE9LAzEQxYNUsNZ-Ab0seN51kmyyCZ5K8R9UFFq9hjSdlZS6qclW8Nu7ta0HD57mwbzfzOOdkl4TGiTknEJBKeir2Wg6eS4YUF0wpRnj4oj0GWc61xzK3kEzDSdkmNISAChUWldln1xP8WODjcO8DflBZyMXNqn1LnsMC1z55i2rQ8xeg-9249B8Ykw-NGfkuLarhMP9HJCX25vZ-D6fPN09jEeT3DEt2txazeuystxKULWTkiuHC45oLQNNJbVuzpTEshJWyc5aS4CFZnNh57aUNR-Qy93ddQxdwNSaZdjEpntpGK1ESYVWonOpncvFkFLE2jjf2rbL2UbrV4aC2bZlftoy27bMvq0OZX_QdfTvNn79D13sII-Iv4CSUIHg_Bt9gHdN
CODEN ITASD8
CitedBy_id crossref_primary_10_1109_ACCESS_2020_3034253
crossref_primary_10_1007_s13735_022_00241_w
crossref_primary_10_1016_j_engappai_2022_105279
crossref_primary_10_1016_j_heliyon_2023_e21625
crossref_primary_10_1109_TASLP_2022_3156757
crossref_primary_10_1186_s13636_021_00226_3
crossref_primary_10_1007_s41204_021_00148_7
crossref_primary_10_3390_app11167484
crossref_primary_10_1109_TASLP_2023_3313424
crossref_primary_10_1016_j_bspc_2022_104279
crossref_primary_10_1109_TASLP_2021_3049336
crossref_primary_10_1109_TASLP_2020_3001456
crossref_primary_10_3390_jimaging7050091
crossref_primary_10_1109_TASLP_2021_3060810
crossref_primary_10_1109_LSP_2023_3313515
crossref_primary_10_1109_TASLP_2021_3060813
crossref_primary_10_1109_TASLP_2024_3395994
crossref_primary_10_1109_TASLP_2023_3293042
crossref_primary_10_1016_j_jvoice_2023_08_027
crossref_primary_10_1016_j_specom_2021_11_006
crossref_primary_10_1109_JSTSP_2022_3193761
crossref_primary_10_1109_TAFFC_2022_3175578
crossref_primary_10_1109_TASLP_2020_3047262
crossref_primary_10_1007_s10462_022_10148_x
crossref_primary_10_3390_app10082884
crossref_primary_10_3390_sym13020214
crossref_primary_10_1109_TASLP_2021_3125142
crossref_primary_10_1109_TII_2020_3009159
crossref_primary_10_1109_TASLP_2021_3066047
crossref_primary_10_3390_pr9122247
crossref_primary_10_1111_exsy_13322
crossref_primary_10_1007_s10489_024_05380_7
crossref_primary_10_1016_j_inffus_2023_101869
crossref_primary_10_1016_j_ijcce_2024_12_007
crossref_primary_10_1109_TASLP_2020_3038524
crossref_primary_10_1109_TASLP_2021_3126925
crossref_primary_10_3390_app132111988
crossref_primary_10_1109_ACCESS_2023_3344653
crossref_primary_10_1016_j_specom_2023_05_004
crossref_primary_10_1109_ACCESS_2021_3065460
crossref_primary_10_1109_ACCESS_2022_3226350
crossref_primary_10_1109_TASLP_2021_3124420
crossref_primary_10_1016_j_neunet_2022_01_003
crossref_primary_10_1142_S271755452350011X
crossref_primary_10_1108_IJWIS_09_2023_0162
crossref_primary_10_1109_TASLP_2021_3076867
crossref_primary_10_1587_transinf_2019EDP7297
crossref_primary_10_1109_TASLP_2019_2960721
Cites_doi 10.1109/TASL.2013.2269291
10.1016/0167-6393(89)90041-1
10.1109/ICASSP.2018.8461452
10.1109/ICASSP.2015.7178896
10.1109/ICASSP.2018.8461829
10.1162/neco.1997.9.8.1735
10.1109/TASL.2007.907344
10.1016/0893-6080(89)90020-8
10.1109/ICASSP.1998.674423
10.1109/ICASSP.1998.675407
10.1109/TASL.2010.2047683
10.1109/ICASSP.2018.8462020
10.21437/Interspeech.2018-1830
10.1109/ICASSP.2018.8461878
10.1109/ICASSP.2018.8461948
10.1109/ICASSP.2018.8461368
10.1109/ICASSP.2009.4960478
10.18653/v1/D15-1166
10.1109/TASLP.2014.2353991
10.21437/Interspeech.2018-1190
10.1016/j.specom.2017.01.008
10.1109/ICASSP.1985.1168479
10.1109/ICSP.2016.7877819
10.1109/ICASSP.2016.7472621
10.1016/S0167-6393(99)00015-1
10.1587/transinf.2015EDP7457
10.3115/v1/D14-1179
10.1007/978-3-540-74048-3_4
10.1016/S0167-6393(98)00085-5
10.1109/TASLP.2014.2379589
10.1016/j.asoc.2012.05.027
10.1109/ICASSP.2014.6854321
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7T9
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TASLP.2019.2892235
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Linguistics and Language Behavior Abstracts (LLBA)
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9304
EndPage 644
ExternalDocumentID 10_1109_TASLP_2019_2892235
8607053
Genre orig-research
GrantInformation_xml – fundername: National Nature Science Foundation of China
  grantid: 61871358
– fundername: Key Science and Technology Project of Anhui Province
  grantid: 18030901016
– fundername: National Key R&D Program of China
  grantid: 2017YFB1002202
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACIWK
ACM
ADBCU
AEBYY
AEFXT
AEJOY
AENSD
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
EBS
EJD
GUFHI
HGAVV
IFIPE
IPLJI
JAVBF
LHSKQ
M43
OCL
PQQKQ
RIA
RIE
RNS
ROL
AAYXX
CITATION
7SC
7T9
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-aa93f47a3a608fc6638ced3eeaa209161acb286e475a863f4f600d92b5aba46f3
IEDL.DBID RIE
ISSN 2329-9290
IngestDate Mon Jun 30 05:05:18 EDT 2025
Wed Oct 01 02:10:32 EDT 2025
Thu Apr 24 22:57:32 EDT 2025
Wed Aug 27 02:54:09 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-aa93f47a3a608fc6638ced3eeaa209161acb286e475a863f4f600d92b5aba46f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4341-3174
0000-0001-7853-5273
PQID 2175415985
PQPubID 85426
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TASLP_2019_2892235
crossref_primary_10_1109_TASLP_2019_2892235
proquest_journals_2175415985
ieee_primary_8607053
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/ACM transactions on audio, speech, and language processing
PublicationTitleAbbrev TASLP
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref15
ref14
taigman (ref30) 0
ref53
ref11
ref10
ramos (ref31) 2016
ref16
ref18
kobayashi (ref35) 0
kingma (ref52) 2015
titterington (ref9) 1985
ref45
sutskever (ref17) 0
ref47
ref42
den oord (ref34) 0
ref41
wu (ref55) 0
xu (ref49) 0
ref8
ref7
ref4
ref3
ref6
ref5
kominek (ref50) 2003
ref40
vaswani (ref44) 0
nachmani (ref29) 0
ref37
krueger (ref51) 0
ref36
ba (ref43) 2016
ref2
ref1
ref39
christopher (ref48) 2016
ref38
jia (ref28) 0
ref25
ref20
ohtani (ref54) 0
ref22
ref21
bishop (ref46) 1994
ref27
bahdanau (ref19) 0
kaneko (ref32) 0
wang (ref24) 0
arik (ref23) 0
miyoshi (ref33) 0
ping (ref26) 0
References_xml – ident: ref56
  doi: 10.1109/TASL.2013.2269291
– year: 2016
  ident: ref43
  article-title: Layer normalization
  publication-title: arXiv 1607 06450
– start-page: 4485
  year: 0
  ident: ref28
  article-title: Transfer learning from speaker verification to multispeaker text-to-speech synthesis
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref2
  doi: 10.1016/0167-6393(89)90041-1
– ident: ref39
  doi: 10.1109/ICASSP.2018.8461452
– year: 2003
  ident: ref50
  article-title: CMU ARCTIC databases for speech synthesis
– ident: ref13
  doi: 10.1109/ICASSP.2015.7178896
– year: 1994
  ident: ref46
  article-title: Mixture density networks
– start-page: 10 040
  year: 0
  ident: ref23
  article-title: Neural voice cloning with a few samples
  publication-title: Proc Adv Neural Inf Process Syst
– year: 0
  ident: ref26
  article-title: Deep Voice 3: 2000-speaker neural text-to-speech
  publication-title: Proc Int Conf Learn Represent
– year: 2015
  ident: ref52
  article-title: Adam: A method for stochastic optimization
  publication-title: Proc Int Conf Learn Represent
– ident: ref27
  doi: 10.1109/ICASSP.2018.8461829
– ident: ref41
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref6
  doi: 10.1109/TASL.2007.907344
– ident: ref10
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref3
  doi: 10.1109/ICASSP.1998.674423
– start-page: 3683
  year: 0
  ident: ref29
  article-title: Fitting new speakers based on a short untranscribed sample
  publication-title: Proc Int Conf Mach Learn
– start-page: 2266
  year: 0
  ident: ref54
  article-title: Maximum likelihood voice conversion based on GMM with STRAIGHT mixed excitation
  publication-title: Proc Int Conf Spoken Lang Process
– ident: ref53
  doi: 10.1109/ICASSP.1998.675407
– ident: ref8
  doi: 10.1109/TASL.2010.2047683
– ident: ref45
  doi: 10.1109/ICASSP.2018.8462020
– year: 2016
  ident: ref31
  article-title: Voice conversion with deep learning
– ident: ref22
  doi: 10.21437/Interspeech.2018-1830
– year: 1985
  ident: ref9
  publication-title: Statistical Analysis of Finite Mixture Distributions
– ident: ref40
  doi: 10.1109/ICASSP.2018.8461878
– year: 0
  ident: ref55
  article-title: Merlin: An open source neural network speech synthesis system
  publication-title: Proc ISCA Speech Synthesis Workshop
– ident: ref36
  doi: 10.1109/ICASSP.2018.8461948
– year: 2016
  ident: ref48
  publication-title: Pattern Recognition and Machine Learning
– start-page: 125
  year: 0
  ident: ref34
  article-title: WaveNet: A generative model for raw audio
  publication-title: Proc ISCA Speech Synthesis Workshop
– ident: ref25
  doi: 10.1109/ICASSP.2018.8461368
– start-page: 1138
  year: 0
  ident: ref35
  article-title: Statistical voice conversion with WaveNet-based waveform generation
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– ident: ref7
  doi: 10.1109/ICASSP.2009.4960478
– ident: ref20
  doi: 10.18653/v1/D15-1166
– ident: ref12
  doi: 10.1109/TASLP.2014.2353991
– year: 0
  ident: ref51
  article-title: Zoneout: Regularizing RNNs by randomly preserving hidden activations
  publication-title: Proc Int Conf Learn Represent
– start-page: 1268
  year: 0
  ident: ref33
  article-title: Voice conversion using sequence-to-sequence learning of context posterior probabilities
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– start-page: 4006
  year: 0
  ident: ref24
  article-title: Tacotron: Towards end-to-end speech synthesis
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– start-page: 3104
  year: 0
  ident: ref17
  article-title: Sequence to sequence learning with neural networks
  publication-title: Proc 27th Int Conf Neural Inf Process Syst
– start-page: 1283
  year: 0
  ident: ref32
  article-title: Sequence-to-sequence voice conversion with similarity metric learned using generative adversarial networks
  publication-title: Proc Annu Conf Int Speech Commun Assoc
– ident: ref21
  doi: 10.21437/Interspeech.2018-1190
– ident: ref16
  doi: 10.1016/j.specom.2017.01.008
– ident: ref1
  doi: 10.1109/ICASSP.1985.1168479
– year: 0
  ident: ref30
  article-title: VoiceLoop: Voice fitting and synthesis via a phonological loop
  publication-title: Proc Int Conf Learn Represent
– ident: ref15
  doi: 10.1109/ICSP.2016.7877819
– ident: ref42
  doi: 10.1109/ICASSP.2016.7472621
– start-page: 6000
  year: 0
  ident: ref44
  article-title: Attention is all you need
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref4
  doi: 10.1016/S0167-6393(99)00015-1
– year: 0
  ident: ref19
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Proc Int Conf Learn Represent
– ident: ref37
  doi: 10.1587/transinf.2015EDP7457
– ident: ref18
  doi: 10.3115/v1/D14-1179
– ident: ref5
  doi: 10.1007/978-3-540-74048-3_4
– ident: ref38
  doi: 10.1016/S0167-6393(98)00085-5
– ident: ref14
  doi: 10.1109/TASLP.2014.2379589
– ident: ref11
  doi: 10.1016/j.asoc.2012.05.027
– year: 0
  ident: ref49
  article-title: Empirical evaluation of recitified acitvations in convolutional network
  publication-title: Proc ICML Deep Learn Workshop
– ident: ref47
  doi: 10.1109/ICASSP.2014.6854321
SSID ssj0001079974
Score 2.4924452
Snippet In this paper, a neural network named sequence-to-sequence ConvErsion NeTwork (SCENT) is presented for acoustic modeling in voice conversion. At training...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 631
SubjectTerms Ablation
Acoustics
Artificial neural networks
attention
Automatic speech recognition
Cloning
Conditioning
Conversion
Decoding
Feature extraction
Linguistics
Mel-spectrogram
Modelling
Neural networks
Probabilistic models
sequence-to-sequence
Spectrograms
Speech processing
Speech recognition
Vocal tract
Vocoders
Voice conversion
Voice recognition
Waveforms
Title Sequence-to-Sequence Acoustic Modeling for Voice Conversion
URI https://ieeexplore.ieee.org/document/8607053
https://www.proquest.com/docview/2175415985
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9304
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001079974
  issn: 2329-9290
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED61nWDgVRCFgjKwgVMnduxYTFVFVSFASG1Rt8hxnAXUIEgXfj22k5SnEJsHO7LubN93l-_uAM6EYpmgQYyMP00R5SRAsVAhShmWlGcS55lj-d6xyZxeL6JFCy7WuTBaa0c-074dun_5WaFWNlQ2iJk5oBFpQ5tzUeVqfcRTMBfCFV02GEEgY_VxkyODxWA2nN7cWyKX8I2HYUxi9MUOucYqP15jZ2LG23DbbK5iljz6qzL11du3uo3_3f0ObNVY0xtWh2MXWnq5B5ufKhB24XJaU6lRWaBm7A1V4Zp8ebZTms1X9wy09R4K86h4I0tTdzG2fZiPr2ajCar7KSAViqhEUgqSUy6JZDjOlcEasdIZ0VrK0MAGFkiVhjHTlEcyZmZqbtBQJsI0kqmkLCcH0FkWS30InlYk1DKkGaGYamJWc52HKcEZ45gz0YOgkW6i6mLjtufFU-KcDiwSp5HEaiSpNdKD8_Wa56rUxp-zu1bE65m1dHvQb5SY1LfxNTFuV2SAioijo99XHcOG_XbFLetDp3xZ6RMDNsr01J2yd8YWziY
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07b9swED646ZBm6Mst6tRtNXRr6FDiS0Qmw6jhNrZRwHbhTaAoaklhFYm85NfnSElO-kDRjQMJEXck77vTd3cAH7WVheZxStCf5oQrFpNU24TkkhquCkPLIrB8l3K24V-3YtuDs0MujHMukM_cyA_Dv_yisnsfKjtPJR5QwR7BY4FehWqyte4jKlRpHcouI0rQBO0-7bJkqD5fj1fzb57KpUfoY6BRFL9YotBa5Y_3OBiZ6TNYdNtruCVXo32dj-ztb5Ub_3f_z-FpizajcXM8XkDP7V7CyYMahH24WLVkalJXpBtHY1uFNl-R75XmM9YjBLfR9wqflWjiieohyvYKNtPP68mMtB0ViE20qIkxmpVcGWYkTUuLaCO1rmDOGZMgcJCxsXmSSseVMKnEqSXioUInuTC54bJkr-FoV-3cG4icZYkzCS8Yp9wxXK1cmeSMFlJRJfUA4k66mW3LjfuuFz-y4HZQnQWNZF4jWauRAXw6rPnZFNv45-y-F_FhZivdAQw7JWbtfbzJ0PESCFV0Kk7_vuoDHM_Wi3k2_7K8fAtP_HcaptkQjurrvXuH0KPO34cTdwfIU9F3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sequence-to-Sequence+Acoustic+Modeling+for+Voice+Conversion&rft.jtitle=IEEE%2FACM+transactions+on+audio%2C+speech%2C+and+language+processing&rft.au=Jing-Xuan%2C+Zhang&rft.au=Zhen-Hua%2C+Ling&rft.au=Li-Juan%2C+Liu&rft.au=Jiang%2C+Yuan&rft.date=2019-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2329-9290&rft.eissn=2329-9304&rft.volume=27&rft.issue=3&rft.spage=631&rft_id=info:doi/10.1109%2FTASLP.2019.2892235&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2329-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2329-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2329-9290&client=summon