Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation

Simulation has been performed on fully lead-free inorganic cesium germanium tri-iodide (CsGeI3) perovskite solar cell heterostructure and achieved a champion power conversion efficiency (PCE) of ∼18.30% with significantly improved device parameters. The influence of thickness of an electron transpor...

Full description

Saved in:
Bibliographic Details
Published inJournal of vacuum science and technology. B, Nanotechnology & microelectronics Vol. 39; no. 1
Main Authors Raj, Abhishek, Kumar, Manish, Bherwani, Hemant, Gupta, Ankit, Anshul, Avneesh
Format Journal Article
LanguageEnglish
Published 01.01.2021
Online AccessGet full text
ISSN2166-2746
2166-2754
DOI10.1116/6.0000718

Cover

Abstract Simulation has been performed on fully lead-free inorganic cesium germanium tri-iodide (CsGeI3) perovskite solar cell heterostructure and achieved a champion power conversion efficiency (PCE) of ∼18.30% with significantly improved device parameters. The influence of thickness of an electron transport layer, a hole transport layer, an absorber, defect density, doping concentration, electron affinity, temperature, and series resistance issued for the optimization of the lead-free device is studied. It is confirmed via the scaps simulation results that this device is perfectly optimized with the experimental results and demonstrates the maximum possible improved power conversion efficiency in a fully inorganic lead-free CsGeI3 perovskite solar cell device. The final optimized device performance parameters are as follows: %PCE = 18.30%, %FF = 75.46%, Jsc = 23.31 mA/cm2, and Voc = 1.04 V. In the future, this efficiency may offer prominent potential as a substitute in a highly efficient green solar absorber material for photovoltaic applications after confirmation in the laboratory.
AbstractList Simulation has been performed on fully lead-free inorganic cesium germanium tri-iodide (CsGeI3) perovskite solar cell heterostructure and achieved a champion power conversion efficiency (PCE) of ∼18.30% with significantly improved device parameters. The influence of thickness of an electron transport layer, a hole transport layer, an absorber, defect density, doping concentration, electron affinity, temperature, and series resistance issued for the optimization of the lead-free device is studied. It is confirmed via the scaps simulation results that this device is perfectly optimized with the experimental results and demonstrates the maximum possible improved power conversion efficiency in a fully inorganic lead-free CsGeI3 perovskite solar cell device. The final optimized device performance parameters are as follows: %PCE = 18.30%, %FF = 75.46%, Jsc = 23.31 mA/cm2, and Voc = 1.04 V. In the future, this efficiency may offer prominent potential as a substitute in a highly efficient green solar absorber material for photovoltaic applications after confirmation in the laboratory.
Author Gupta, Ankit
Anshul, Avneesh
Bherwani, Hemant
Raj, Abhishek
Kumar, Manish
Author_xml – sequence: 1
  givenname: Abhishek
  surname: Raj
  fullname: Raj, Abhishek
  organization: 3Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi 110021, India
– sequence: 2
  givenname: Manish
  surname: Kumar
  fullname: Kumar, Manish
  organization: Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi
– sequence: 3
  givenname: Hemant
  surname: Bherwani
  fullname: Bherwani, Hemant
  organization: 3Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi 110021, India
– sequence: 4
  givenname: Ankit
  surname: Gupta
  fullname: Gupta, Ankit
  organization: 3Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi 110021, India
– sequence: 5
  givenname: Avneesh
  surname: Anshul
  fullname: Anshul, Avneesh
  organization: CSIR-National Environmental Engineering Research Institute (NEERI)
BookMark eNp9kFFLwzAQx4MoOOce_AZ5VejWNE3bPcqYczDwRZ_LNblgtGtLklX2AfzeZm5OUDFw5Dh-_x_HXZDTpm2QkCsWjxlj2SQbx-HlrDghg4RlWZTkIj099ml2TkbOveygrBAxjwfkfd4bhY1E2mpq1p1te1S0a9_QUtk2PVpn2oai1kaawG2paWiNoCJtEenMLXDJaQVul8KQdq_GI3VtDUGAdU2f0Ye583Yj_cYi7Q1QJ6Fz1Jn1pgYf_JfkTEPtcHT4h-Tpbv44u49WD4vl7HYVyWQqfATA1VRXOZcChapSXTGp41RxFIJVnCciTbTIxRRQM6hUXggQVagCYs6A8SG53ntl2MhZ1GVnzRrstmRxuTthmZWHEwZ28oOVxn9u6y2Y-s_EzT7hvsijvm_tN1h2Sv8H_zZ_ALFdk_c
CODEN JVTBD9
CitedBy_id crossref_primary_10_1007_s11664_025_11740_x
crossref_primary_10_1088_1402_4896_acf535
crossref_primary_10_1016_j_heliyon_2023_e20558
crossref_primary_10_1007_s12633_025_03283_x
crossref_primary_10_1007_s11664_024_11051_7
crossref_primary_10_1002_pssa_202100606
crossref_primary_10_1021_acs_energyfuels_4c00443
crossref_primary_10_1002_adts_202401283
crossref_primary_10_1016_j_solmat_2024_112883
crossref_primary_10_1016_j_mtcomm_2023_105860
crossref_primary_10_1021_acs_energyfuels_4c03960
crossref_primary_10_1088_2631_8695_ad2f83
crossref_primary_10_1007_s12648_024_03158_8
crossref_primary_10_1002_pssa_202300227
crossref_primary_10_1016_j_solener_2022_03_053
crossref_primary_10_1016_j_ceramint_2022_09_112
crossref_primary_10_1007_s12596_025_02656_0
crossref_primary_10_1016_j_optmat_2022_112611
crossref_primary_10_1016_j_optmat_2022_112575
crossref_primary_10_1016_j_ceramint_2021_11_184
crossref_primary_10_1016_j_optmat_2021_111743
crossref_primary_10_1016_j_matpr_2023_05_349
crossref_primary_10_3390_en14217200
crossref_primary_10_1007_s11082_024_08022_x
crossref_primary_10_1016_j_solener_2022_03_069
crossref_primary_10_1016_j_mseb_2023_116757
crossref_primary_10_1007_s12633_024_02920_1
crossref_primary_10_1038_s41598_023_42447_w
crossref_primary_10_1016_j_mseb_2024_117524
crossref_primary_10_1039_D1CP05787A
crossref_primary_10_1002_ente_202300772
crossref_primary_10_1016_j_matpr_2022_06_580
crossref_primary_10_1109_ACCESS_2024_3352444
crossref_primary_10_1088_1402_4896_ac9e7f
crossref_primary_10_1007_s12596_023_01570_7
crossref_primary_10_1016_j_matpr_2022_07_143
crossref_primary_10_1088_1402_4896_acdc65
crossref_primary_10_1098_rsos_221127
crossref_primary_10_1016_j_mtcomm_2025_111490
crossref_primary_10_1142_S0217979225500341
crossref_primary_10_1002_adts_202400129
crossref_primary_10_1007_s11664_024_11372_7
crossref_primary_10_1016_j_solener_2023_02_037
crossref_primary_10_1016_j_solener_2023_111846
crossref_primary_10_1016_j_jpcs_2025_112616
crossref_primary_10_1002_adom_202102661
crossref_primary_10_3390_mi12121508
crossref_primary_10_1021_acs_energyfuels_3c01258
crossref_primary_10_3103_S0003701X22010194
crossref_primary_10_1016_j_nxmate_2024_100439
crossref_primary_10_1007_s10854_023_11225_9
crossref_primary_10_1039_D3NA00319A
crossref_primary_10_1002_er_8099
crossref_primary_10_1016_j_solener_2024_112843
crossref_primary_10_1016_j_ijleo_2024_171684
crossref_primary_10_1016_j_inoche_2024_113578
crossref_primary_10_1016_j_mtchem_2021_100595
crossref_primary_10_1007_s10854_023_10231_1
crossref_primary_10_1002_ente_202400632
crossref_primary_10_1088_1402_4896_ad482c
crossref_primary_10_1007_s11051_023_05702_9
crossref_primary_10_1016_j_solener_2024_112752
crossref_primary_10_1088_1361_648X_ad6f63
crossref_primary_10_1016_j_ijoes_2024_100641
crossref_primary_10_1016_j_mtcomm_2023_107841
crossref_primary_10_1016_j_inoche_2024_113587
crossref_primary_10_1007_s11664_023_10284_2
crossref_primary_10_1039_D3CP03639A
crossref_primary_10_1016_j_jpcs_2025_112598
crossref_primary_10_1016_j_optmat_2021_111839
crossref_primary_10_1002_ente_202300564
crossref_primary_10_1016_j_matpr_2022_06_094
crossref_primary_10_1016_j_optmat_2022_112894
crossref_primary_10_1039_D3VA00401E
crossref_primary_10_1016_j_ijoes_2024_100893
crossref_primary_10_1016_j_ijleo_2023_171206
crossref_primary_10_1016_j_optmat_2024_115125
crossref_primary_10_1016_j_flatc_2024_100629
crossref_primary_10_1016_j_jpcs_2024_111951
crossref_primary_10_1016_j_jpcs_2024_112247
crossref_primary_10_1002_adts_202401504
crossref_primary_10_1002_er_7942
crossref_primary_10_1007_s12596_025_02628_4
crossref_primary_10_1039_D4CP02974G
crossref_primary_10_1016_j_rser_2023_114187
crossref_primary_10_1002_masy_202100464
crossref_primary_10_1088_1402_4896_ad69cb
crossref_primary_10_1016_j_solener_2025_113347
crossref_primary_10_1016_j_ssc_2024_115590
crossref_primary_10_1016_j_solener_2022_10_039
crossref_primary_10_1016_j_solmat_2023_112426
crossref_primary_10_1002_jnm_3164
crossref_primary_10_1002_pssa_202200791
crossref_primary_10_1016_j_cplett_2023_140809
crossref_primary_10_1002_pssa_202300525
crossref_primary_10_1007_s11082_023_05024_z
crossref_primary_10_1007_s11082_025_08154_8
crossref_primary_10_1007_s11082_024_08028_5
crossref_primary_10_1016_j_ijleo_2023_170819
crossref_primary_10_1002_pssa_202300071
crossref_primary_10_1007_s11082_021_02918_8
crossref_primary_10_1109_JPHOTOV_2024_3424844
crossref_primary_10_1016_j_jpcs_2023_111515
crossref_primary_10_1016_j_matpr_2021_03_610
crossref_primary_10_1021_acs_energyfuels_3c04179
crossref_primary_10_1016_j_physb_2023_415504
Cites_doi 10.1021/jacs.7b01162
10.1137/060650751
10.1038/nphys3357
10.1039/C5TA01246E
10.1109/PVSC40753.2019.8980512
10.1038/natrevmats.2017.42
10.1016/j.solener.2020.02.074
10.1016/j.solener.2019.02.041
10.1002/adma.201704611
10.1016/j.solener.2019.11.005
10.1039/C8QM00611C
10.1021/acs.jpclett.6b02786
10.1038/nature23877
10.1002/adma.201606666
10.1021/acsaem.8b00007
10.1016/j.ijleo.2016.10.122
10.1021/acs.chemrev.5b00715
10.1016/j.optmat.2020.109738
10.1016/j.solener.2019.12.050
10.1038/s41467-018-07951-y
10.1002/adfm.201804354
10.1021/acs.accounts.5b00411
10.1021/jacs.5b01025
10.1039/C7TC03733C
10.1016/j.optmat.2019.109631
10.1126/science.1243982
10.1039/C5TA05741H
10.1039/C8RA10251A
10.1039/C4CS00458B
10.1002/adfm.201706401
10.1002/admi.201500678
10.1016/j.solener.2019.12.014
10.1016/j.optmat.2020.110213
10.1002/solr.201800378
10.1155/2017/9846310
10.1021/acs.jpcc.6b10914
10.1039/C6TA05938D
10.1039/C6CS00896H
10.1039/C8RA01150H
10.1021/ja5033259
10.1063/1.4885367
10.1039/C5TA03686K
10.1038/NENERGY.2016.48
10.1021/acs.chemrev.8b00336
10.1016/j.optmat.2019.109607
10.1016/j.electacta.2017.06.154
10.1021/nl400349b
10.1021/ja809598r
10.1016/j.solmat.2016.08.025
10.7567/1882-0786/ab2a1b
10.1088/1361-6641/aaa596
10.1038/s41467-019-08918-3
10.1021/acsaem.9b01827
10.1021/acs.inorgchem.8b03095
10.1039/C6TA08699C
10.1016/j.cap.2010.02.018
10.1002/asia.201800573
10.1126/science.aad5845
10.1002/smll.201804858
10.1039/C5TC03417E
10.17265/1934-8975/2019.01.003
10.1016/j.solener.2019.02.017
10.1016/j.solmat.2014.10.036
10.1126/science.aan2301
10.1016/j.solener.2020.03.070
10.1039/C9SE00550A
10.1038/nenergy.2016.152
10.1016/j.solmat.2019.110070
10.1016/j.spmi.2019.04.007
10.1038/s41560-018-0200-6
10.1039/C6TA04685A
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
DBID AAYXX
CITATION
DOI 10.1116/6.0000718
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2166-2754
ExternalDocumentID 10_1116_6_0000718
GroupedDBID .DC
AAAAW
AAEUA
AAPUP
AAYIH
ABNAN
ACBRY
ACGFS
ADLOM
AFHCQ
AGKCL
AGTJO
AGVCI
ALMA_UNASSIGNED_HOLDINGS
ARCSS
EBS
EJD
M71
RIP
RNS
RQS
VAS
AAGWI
AAYXX
ABJGX
ADMLS
CITATION
ID FETCH-LOGICAL-c295t-aa3d9fb73c5e5db4fb1cf04d3e551b332542f5759aef1abd785a5b5a58a031a13
ISSN 2166-2746
IngestDate Tue Jul 01 02:43:48 EDT 2025
Thu Apr 24 23:11:15 EDT 2025
Thu Jun 23 13:45:04 EDT 2022
Fri Jun 21 00:13:59 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2166-2746/2021/39(1)/012401/12/$30.00
Published under license by AVS.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c295t-aa3d9fb73c5e5db4fb1cf04d3e551b332542f5759aef1abd785a5b5a58a031a13
ORCID 0000-0002-8750-8389
0000-0003-1213-4025
PageCount 12
ParticipantIDs crossref_primary_10_1116_6_0000718
scitation_primary_10_1116_6_0000718
crossref_citationtrail_10_1116_6_0000718
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Journal of vacuum science and technology. B, Nanotechnology & microelectronics
PublicationYear 2021
References Khadka, Shirai, Yanagida, Miyano (c43) 2018
Chen (c16) 2017
Miyata, Mitioglu, Plochocka, Portugall, Wang, Stranks, Snaith, Nicholas (c3) 2015
Jacobs, Luo, Morgan (c37) 2019
Zhao, Zhu (c12) 2016
Chelvanathan, Hossain, Amin (c45) 2010
Johnston, Herz (c54) 2016
Wu, Song, Li, Zhao, He, Quan (c35) 2018
Behrouznejad, Shahbazi, Taghavinia, Wu, Wei-Guang Diau (c42) 2016
Huang, Yuan, Shao, Yan (c6) 2017
Wang, Zhang, Lou, Zhao (c1) 2019
Chen, Chen (c64) 2020
Chen (c36) 2019
Jong, Yu, Kye, Choe, Hao, Li (c56) 2019
Karimi, Ghorashi (c51) 2017
Ke, Kanatzidis (c32) 2019
Liu, Li, Jing, Wu (c38) 2019
Boyd, Cheacharoen, Leijtens, McGehee (c13) 2019
Nagaoka, Hills-Kimball, Tan, Li, Wang, Chen (c28) 2017
Anwar, Mahbub, Satter, Ullah (c46)
Haider, Anwar, Wang (c52) 2018
Wang, Muryobayashi, Nakada, Li, Yamada (c25) 2019
Akhiro, Kenjiro, Yasuo, Tsutomu (c20) 2009
Lim, Ahn, Kim, Choi, Huh, Lee (c69) 2016
Chen (c2) 2018
Huang (c47) 2016
Wang, Kim (c9) 2017
Shen (c23) 2015
Azri, Meftah, Sengouga, Meftah (c63) 2019
Rai, Pandey, Dwivedi (c50) 2020
Jeon (c14) 2018
Ming, Shi, Du (c26) 2016
Kumar, Raj, Kumar, Anshul (c59) 2020
Lu, Ma, Gu, Tian, Li (c60) 2015
Zhou, Zhou, Chen, Zong, Huang, Pang, Padture (c68) 2016
Liu, Zhu, Wei, Li, Lv, Yang, Zhang, Yao, Dai (c40) 2014
Zhang, Eperon, Snaith (c11) 2016
Park, Grätzel, Miyasaka, Zhu, Emery (c18) 2016
Stoumpos, Frazer, Clark, Kim, Rhim, Freeman, Ketterson, Jang, Kanatzidis (c34) 2015
Goudon, Miljanović, Schmeiser (c55) 2007
Bing (c44) 2019
Jeong (c8) 2018
Liu, Sa, Wu (c58) 2019
Minemoto, Murata (c70) 2015
Hima, Lakhdar (c39) 2020
Noh, Im, Heo, Mandal, Il Seok (c5) 2013
Et-taya, Ouslimane, Benami (c49) 2020
Li, Li, Wang, Quan, Meng, Zou (c30) 2017
Zandi, Saxena, Gorji (c41) 2020
Stranks, Eperon, Grancini, Menelaou, Alcocer, Leijtens, Herz, Petrozza, Snaith (c4) 2013
Zhao, Liu, Yu, Cao, Cai (c24) 2017
Bag, Radhakrishnan, Nekovei, Jeyakumar (c61) 2020
McMeekin (c15) 2016
López-Fraguas, Masi, Mora-Seró (c27) 2019
Saparov, Mitzi (c7) 2016
Chen, Zhou, Jin, Li, Zhai (c22) 2016
Benami (c48) 2019
Chakraborty, Choudhury, Paul (c66) 2019
Zhou, Long (c67) 2017
Krishnamoorthy (c31) 2015
Mundhaas, Yu, Bush, Wang, Häusele, Kavadiya, McGehee, Holman (c71) 2019
Kopacic, Friesenbichler, Hoefler, Kunert, Plank, Rath, Trimmel (c33) 2018
Hima, Lakhdar, Benhaoua, Saadoune, Kemerchou, Rogti (c62) 2019
Jaffe, Lin, Mao, Karunadasa (c29) 2017
Baig, Kanda, Asiri, Nazeeruddin, Mallick (c72) 2020
Leung, Ho, Kung, Hsiao, Alshareef, Wang, He (c10) 2018
Yang (c17) 2017
Abdelaziz, Zekry, Shaker, Abouelatta (c53) 2020
Kanoun, Kanoun, Merad, Goumri-Said (c65) 2019
Hao, Stoumpos, Chang, Kanatzidis (c21) 2014
(2023071607273526500_c39) 2020; 99
(2023071607273526500_c13) 2019; 119
(2023071607273526500_c38) 2019; 9
(2023071607273526500_c23) 2015; 3
(2023071607273526500_c59) 2020; 108
(2023071607273526500_c70) 2015; 133
(2023071607273526500_c44) 2019; 15
(2023071607273526500_c72) 2020; 4
(2023071607273526500_c15) 2016; 351
(2023071607273526500_c53) 2020; 101
(2023071607273526500_c14) 2018; 3
(2023071607273526500_c36) 2019; 10
(2023071607273526500_c60) 2015; 3
(2023071607273526500_c7) 2016; 116
(2023071607273526500_c58) 2019; 12
(2023071607273526500_c6) 2017; 2
(2023071607273526500_c62) 2019; 129
(2023071607273526500_c28) 2017; 29
(2023071607273526500_c46); 2017
(2023071607273526500_c47) 2016; 157
(2023071607273526500_c8) 2018; 28
(2023071607273526500_c71) 2019; 3
(2023071607273526500_c4) 2013; 342
(2023071607273526500_c32) 2019; 10
(2023071607273526500_c43) 2018; 6
(2023071607273526500_c45) 2010; 10
(2023071607273526500_c66) 2019; 194
(2023071607273526500_c37) 2019; 29
(2023071607273526500_c25) 2019; 201
(2023071607273526500_c5) 2013; 13
(2023071607273526500_c67) 2017; 121
(2023071607273526500_c48) 2019; 13
(2023071607273526500_c68) 2016; 4
(2023071607273526500_c57) 2019
(2023071607273526500_c22) 2016; 4
(2023071607273526500_c35) 2018; 13
(2023071607273526500_c49) 2020; 201
(2023071607273526500_c52) 2018; 33
(2023071607273526500_c34) 2015; 137
(2023071607273526500_c63) 2019; 181
(2023071607273526500_c40) 2014; 104
(2023071607273526500_c54) 2016; 49
(2023071607273526500_c42) 2016; 4
(2023071607273526500_c11) 2016; 1
(2023071607273526500_c69) 2016; 3
(2023071607273526500_c10) 2018; 30
(2023071607273526500_c20) 2009; 131
NREL (2023071607273526500_c19)
(2023071607273526500_c41) 2020; 197
(2023071607273526500_c27) 2019; 2
(2023071607273526500_c26) 2016; 4
(2023071607273526500_c17) 2017; 356
(2023071607273526500_c31) 2015; 3
(2023071607273526500_c12) 2016; 45
(2023071607273526500_c61) 2020; 196
(2023071607273526500_c3) 2015; 11
(2023071607273526500_c65) 2019; 182
(2023071607273526500_c18) 2016; 1
(2023071607273526500_c64) 2020; 201
(2023071607273526500_c56) 2019; 58
(2023071607273526500_c55) 2007; 67
(2023071607273526500_c50) 2020; 100
(2023071607273526500_c1) 2019; 3
(2023071607273526500_c9) 2017; 46
(2023071607273526500_c24) 2017; 247
(2023071607273526500_c33) 2018; 1
(2023071607273526500_c2) 2018; 8
(2023071607273526500_c30) 2017; 8
(2023071607273526500_c16) 2017; 550
(2023071607273526500_c29) 2017; 139
2023071607273526500_c73
(2023071607273526500_c51) 2017; 130
(2023071607273526500_c21) 2014; 136
References_xml – start-page: 146
  year: 2016
  ident: c54
  publication-title: Acc. Chem. Res.
– start-page: 11
  year: 2016
  ident: c22
  publication-title: J. Mater. Chem. C
– start-page: 92
  year: 2017
  ident: c16
  publication-title: Nature
– start-page: 343
  year: 2018
  ident: c33
  publication-title: ACS Appl. Energy Mater.
– start-page: 9846310
  ident: c46
  publication-title: Int. J. Photoenergy
– start-page: 965
  year: 2019
  ident: c32
  publication-title: Nat. Commun.
– start-page: 1500678
  year: 2016
  ident: c69
  publication-title: Adv. Mater. Interfaces
– start-page: 13488
  year: 2016
  ident: c42
  publication-title: J. Mater. Chem. A
– start-page: 827
  year: 2020
  ident: c49
  publication-title: Sol. Energy
– start-page: 13852
  year: 2016
  ident: c26
  publication-title: J. Mater. Chem. A
– start-page: 372
  year: 2019
  ident: c63
  publication-title: Sol. Energy
– start-page: 886
  year: 2019
  ident: c66
  publication-title: Sol. Energy
– start-page: 16
  year: 2019
  ident: c36
  publication-title: Nat. Commun.
– start-page: 1804354
  year: 2019
  ident: c37
  publication-title: Adv. Funct. Mater.
– year: 2016
  ident: c11
  publication-title: Nat. Energy
– start-page: S387
  year: 2010
  ident: c45
  publication-title: Curr. Appl. Phys.
– start-page: 6050
  year: 2009
  ident: c20
  publication-title: J. Am. Chem. Soc.
– start-page: 8381
  year: 2019
  ident: c27
  publication-title: ACS Appl. Energy Mater.
– start-page: 9308
  year: 2015
  ident: c23
  publication-title: J. Mater. Chem. A
– year: 2019
  ident: c48
  publication-title: J. Energy Power Eng.
– start-page: 105
  year: 2020
  ident: c41
  publication-title: Sol. Energy
– start-page: 3418
  year: 2019
  ident: c13
  publication-title: Chem. Rev.
– start-page: 3279
  year: 2019
  ident: c38
  publication-title: RSC Adv.
– start-page: 16152
  year: 2016
  ident: c18
  publication-title: Nat. Energy
– start-page: 110070
  year: 2019
  ident: c25
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 18396
  year: 2018
  ident: c2
  publication-title: RSC Adv.
– start-page: 253508
  year: 2014
  ident: c40
  publication-title: Appl. Phys. Lett.
– start-page: 109738
  year: 2020
  ident: c53
  publication-title: Opt. Mater.
– start-page: 1804858
  year: 2019
  ident: c44
  publication-title: Small
– start-page: 237
  year: 2019
  ident: c65
  publication-title: Sol. Energy
– start-page: 528
  year: 2020
  ident: c72
  publication-title: Sustain. Energy Fuels
– start-page: 1704611
  year: 2018
  ident: c10
  publication-title: Adv. Mater.
– start-page: 1455
  year: 2017
  ident: c67
  publication-title: J. Phys. Chem. C
– start-page: 177
  year: 2020
  ident: c61
  publication-title: Sol. Energy
– start-page: 582
  year: 2015
  ident: c3
  publication-title: Nat. Phys.
– start-page: 109607
  year: 2020
  ident: c39
  publication-title: Opt. Mater.
– start-page: 365
  year: 2019
  ident: c1
  publication-title: Mater. Chem. Front.
– start-page: 4330
  year: 2017
  ident: c29
  publication-title: J. Am. Chem. Soc.
– start-page: 5204
  year: 2017
  ident: c9
  publication-title: Chem. Soc. Rev.
– start-page: 1183
  year: 2007
  ident: c55
  publication-title: SIAM J. Appl. Math.
– start-page: 1376
  year: 2017
  ident: c17
  publication-title: Science
– start-page: 110213
  year: 2020
  ident: c59
  publication-title: Opt. Mater.
– start-page: 323
  year: 2020
  ident: c64
  publication-title: Sol. Energy
– start-page: 1038
  year: 2016
  ident: c47
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 1800378
  year: 2019
  ident: c71
  publication-title: Sol. RRL
– start-page: 23829
  year: 2015
  ident: c31
  publication-title: J. Mater. Chem. A
– start-page: 151
  year: 2016
  ident: c15
  publication-title: Science
– start-page: 8094
  year: 2014
  ident: c21
  publication-title: J. Am. Chem. Soc.
– start-page: 500
  year: 2017
  ident: c30
  publication-title: J. Phys. Chem. Lett.
– start-page: 035001
  year: 2018
  ident: c52
  publication-title: Semicond. Sci. Technol.
– start-page: 240
  year: 2019
  ident: c62
  publication-title: Superlattices Microstruct.
– start-page: 1764
  year: 2013
  ident: c5
  publication-title: Nano Lett.
– start-page: 4558
  year: 2016
  ident: c7
  publication-title: Chem. Rev.
– start-page: 162
  year: 2018
  ident: c43
  publication-title: J. Mater. Chem. C
– start-page: 891
  year: 2017
  ident: c24
  publication-title: Electrochim. Acta
– start-page: 1606666
  year: 2017
  ident: c28
  publication-title: Adv. Mater.
– start-page: 17623
  year: 2016
  ident: c68
  publication-title: J. Mater. Chem. A
– start-page: 109631
  year: 2020
  ident: c50
  publication-title: Opt. Mater.
– start-page: 650
  year: 2017
  ident: c51
  publication-title: Optik
– start-page: 8
  year: 2015
  ident: c70
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 682
  year: 2018
  ident: c14
  publication-title: Nat. Energy
– start-page: 17042
  year: 2017
  ident: c6
  publication-title: Nat. Rev. Mater.
– start-page: 655
  year: 2016
  ident: c12
  publication-title: Chem. Soc. Rev.
– start-page: 4134
  year: 2019
  ident: c56
  publication-title: Inorg. Chem.
– start-page: 341
  year: 2013
  ident: c4
  publication-title: Science
– start-page: 1654
  year: 2018
  ident: c35
  publication-title: Chem. Asian J.
– start-page: 16445
  year: 2015
  ident: c60
  publication-title: J. Mater. Chem. A
– start-page: 1706401
  year: 2018
  ident: c8
  publication-title: Adv. Funct. Mater.
– start-page: 6804
  year: 2015
  ident: c34
  publication-title: J. Am. Chem. Soc.
– start-page: 071007
  year: 2019
  ident: c58
  publication-title: Appl. Phys. Express
– volume: 139
  start-page: 4330
  year: 2017
  ident: 2023071607273526500_c29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01162
– volume: 67
  start-page: 1183
  year: 2007
  ident: 2023071607273526500_c55
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/060650751
– volume: 11
  start-page: 582
  year: 2015
  ident: 2023071607273526500_c3
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3357
– volume: 3
  start-page: 9308
  year: 2015
  ident: 2023071607273526500_c23
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA01246E
– start-page: 1183
  year: 2019
  ident: 2023071607273526500_c57
  doi: 10.1109/PVSC40753.2019.8980512
– volume: 2
  start-page: 17042
  year: 2017
  ident: 2023071607273526500_c6
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.42
– volume: 201
  start-page: 323
  year: 2020
  ident: 2023071607273526500_c64
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.02.074
– volume: 182
  start-page: 237
  year: 2019
  ident: 2023071607273526500_c65
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.02.041
– volume: 30
  start-page: 1704611
  year: 2018
  ident: 2023071607273526500_c10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704611
– volume: 194
  start-page: 886
  year: 2019
  ident: 2023071607273526500_c66
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.11.005
– volume: 3
  start-page: 365
  year: 2019
  ident: 2023071607273526500_c1
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C8QM00611C
– volume: 8
  start-page: 500
  year: 2017
  ident: 2023071607273526500_c30
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02786
– volume: 550
  start-page: 92
  year: 2017
  ident: 2023071607273526500_c16
  publication-title: Nature
  doi: 10.1038/nature23877
– volume: 29
  start-page: 1606666
  year: 2017
  ident: 2023071607273526500_c28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606666
– volume: 1
  start-page: 343
  year: 2018
  ident: 2023071607273526500_c33
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00007
– volume: 130
  start-page: 650
  year: 2017
  ident: 2023071607273526500_c51
  publication-title: Optik
  doi: 10.1016/j.ijleo.2016.10.122
– volume: 116
  start-page: 4558
  year: 2016
  ident: 2023071607273526500_c7
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00715
– volume: 101
  start-page: 109738
  year: 2020
  ident: 2023071607273526500_c53
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.109738
– ident: 2023071607273526500_c73
– volume: 197
  start-page: 105
  year: 2020
  ident: 2023071607273526500_c41
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.12.050
– volume: 10
  start-page: 16
  year: 2019
  ident: 2023071607273526500_c36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07951-y
– volume: 29
  start-page: 1804354
  year: 2019
  ident: 2023071607273526500_c37
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804354
– volume: 49
  start-page: 146
  year: 2016
  ident: 2023071607273526500_c54
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.5b00411
– volume: 137
  start-page: 6804
  year: 2015
  ident: 2023071607273526500_c34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b01025
– volume: 6
  start-page: 162
  year: 2018
  ident: 2023071607273526500_c43
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC03733C
– volume: 100
  start-page: 109631
  year: 2020
  ident: 2023071607273526500_c50
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2019.109631
– volume: 342
  start-page: 341
  year: 2013
  ident: 2023071607273526500_c4
  publication-title: Science
  doi: 10.1126/science.1243982
– volume: 3
  start-page: 23829
  year: 2015
  ident: 2023071607273526500_c31
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA05741H
– volume: 9
  start-page: 3279
  year: 2019
  ident: 2023071607273526500_c38
  publication-title: RSC Adv.
  doi: 10.1039/C8RA10251A
– volume: 45
  start-page: 655
  year: 2016
  ident: 2023071607273526500_c12
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00458B
– volume: 28
  start-page: 1706401
  year: 2018
  ident: 2023071607273526500_c8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201706401
– volume: 3
  start-page: 1500678
  year: 2016
  ident: 2023071607273526500_c69
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201500678
– volume: 196
  start-page: 177
  year: 2020
  ident: 2023071607273526500_c61
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.12.014
– volume: 108
  start-page: 110213
  year: 2020
  ident: 2023071607273526500_c59
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.110213
– volume: 3
  start-page: 1800378
  year: 2019
  ident: 2023071607273526500_c71
  publication-title: Sol. RRL
  doi: 10.1002/solr.201800378
– volume: 2017
  start-page: 9846310
  ident: 2023071607273526500_c46
  publication-title: Int. J. Photoenergy
  doi: 10.1155/2017/9846310
– volume: 121
  start-page: 1455
  year: 2017
  ident: 2023071607273526500_c67
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b10914
– volume: 4
  start-page: 13488
  year: 2016
  ident: 2023071607273526500_c42
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA05938D
– volume: 46
  start-page: 5204
  year: 2017
  ident: 2023071607273526500_c9
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00896H
– volume: 8
  start-page: 18396
  year: 2018
  ident: 2023071607273526500_c2
  publication-title: RSC Adv.
  doi: 10.1039/C8RA01150H
– volume: 136
  start-page: 8094
  year: 2014
  ident: 2023071607273526500_c21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5033259
– volume: 104
  start-page: 253508
  year: 2014
  ident: 2023071607273526500_c40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4885367
– volume: 3
  start-page: 16445
  year: 2015
  ident: 2023071607273526500_c60
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA03686K
– volume: 1
  year: 2016
  ident: 2023071607273526500_c11
  publication-title: Nat. Energy
  doi: 10.1038/NENERGY.2016.48
– volume: 119
  start-page: 3418
  year: 2019
  ident: 2023071607273526500_c13
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00336
– volume: 99
  start-page: 109607
  year: 2020
  ident: 2023071607273526500_c39
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2019.109607
– volume: 247
  start-page: 891
  year: 2017
  ident: 2023071607273526500_c24
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.06.154
– volume: 13
  start-page: 1764
  year: 2013
  ident: 2023071607273526500_c5
  publication-title: Nano Lett.
  doi: 10.1021/nl400349b
– volume: 131
  start-page: 6050
  year: 2009
  ident: 2023071607273526500_c20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja809598r
– volume: 157
  start-page: 1038
  year: 2016
  ident: 2023071607273526500_c47
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.08.025
– volume: 12
  start-page: 071007
  year: 2019
  ident: 2023071607273526500_c58
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab2a1b
– volume: 33
  start-page: 035001
  year: 2018
  ident: 2023071607273526500_c52
  publication-title: Semicond. Sci. Technol.
  doi: 10.1088/1361-6641/aaa596
– volume: 10
  start-page: 965
  year: 2019
  ident: 2023071607273526500_c32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08918-3
– volume: 2
  start-page: 8381
  year: 2019
  ident: 2023071607273526500_c27
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b01827
– ident: 2023071607273526500_c19
– volume: 58
  start-page: 4134
  year: 2019
  ident: 2023071607273526500_c56
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b03095
– volume: 4
  start-page: 17623
  year: 2016
  ident: 2023071607273526500_c68
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA08699C
– volume: 10
  start-page: S387
  year: 2010
  ident: 2023071607273526500_c45
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2010.02.018
– volume: 13
  start-page: 1654
  year: 2018
  ident: 2023071607273526500_c35
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.201800573
– volume: 351
  start-page: 151
  year: 2016
  ident: 2023071607273526500_c15
  publication-title: Science
  doi: 10.1126/science.aad5845
– volume: 15
  start-page: 1804858
  year: 2019
  ident: 2023071607273526500_c44
  publication-title: Small
  doi: 10.1002/smll.201804858
– volume: 4
  start-page: 11
  year: 2016
  ident: 2023071607273526500_c22
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C5TC03417E
– volume: 13
  year: 2019
  ident: 2023071607273526500_c48
  publication-title: J. Energy Power Eng.
  doi: 10.17265/1934-8975/2019.01.003
– volume: 181
  start-page: 372
  year: 2019
  ident: 2023071607273526500_c63
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.02.017
– volume: 133
  start-page: 8
  year: 2015
  ident: 2023071607273526500_c70
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.10.036
– volume: 356
  start-page: 1376
  year: 2017
  ident: 2023071607273526500_c17
  publication-title: Science
  doi: 10.1126/science.aan2301
– volume: 201
  start-page: 827
  year: 2020
  ident: 2023071607273526500_c49
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.03.070
– volume: 4
  start-page: 528
  year: 2020
  ident: 2023071607273526500_c72
  publication-title: Sustain. Energy Fuels
  doi: 10.1039/C9SE00550A
– volume: 1
  start-page: 16152
  year: 2016
  ident: 2023071607273526500_c18
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.152
– volume: 201
  start-page: 110070
  year: 2019
  ident: 2023071607273526500_c25
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2019.110070
– volume: 129
  start-page: 240
  year: 2019
  ident: 2023071607273526500_c62
  publication-title: Superlattices Microstruct.
  doi: 10.1016/j.spmi.2019.04.007
– volume: 3
  start-page: 682
  year: 2018
  ident: 2023071607273526500_c14
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0200-6
– volume: 4
  start-page: 13852
  year: 2016
  ident: 2023071607273526500_c26
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA04685A
SSID ssj0000685030
Score 2.6289845
Snippet Simulation has been performed on fully lead-free inorganic cesium germanium tri-iodide (CsGeI3) perovskite solar cell heterostructure and achieved a champion...
SourceID crossref
scitation
SourceType Enrichment Source
Index Database
Publisher
Title Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation
URI http://dx.doi.org/10.1116/6.0000718
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2166-2754
  dateEnd: 20240929
  omitProxy: false
  ssIdentifier: ssj0000685030
  issn: 2166-2746
  databaseCode: ADMLS
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCegAOiKcoL1nAAWm1ZV_eJMdQoAURLrRSb5G9tkWkZnfVTVKpd_4ZP4wZe9feliC1HGIljjebeL54Po_nQchbFgsFrEGGMtITDMlhIR-nCl5GWqkIOHGBJ7qz7_nhcfb1hJ0MBr97XkvrldgrLrbGlfyPVKEP5IpRsjeQrPtQ6IDnIF9oQcLQXkvGXUlQk_fBWAeAPtZY98x6kxtTGLpsLMw_2IT4nYJQQ32mVLDfHKgvaYB6TGL64mrToCk3aHC3G6BFH2gkTHtlc8ziScNmwYOm4HUTNItlW_jrH_R2w4v1ehl0YUPGUdOZ8feCD-3SXvlOg8IlOgj62jzeE5-bY6ap-IlO_C68yHmIz3gJbzjjAiDx3FarAsW65N6552BdW748LeHH9m0eSdyzeZilMYnzPIT9dJtEu99nU1J3a7tNlNTH8BaVgdaL3CSyHLW64FJa7ivq0jkx2u1TPke_QHPpLbKTjPI8GZKd6cfZtx_O1hflYxaZsjfui7dJruD69-7Wl6jRbZCPdcbo8Z2j--ReK0k6tah7QAaqfEju9tJXPiK_OvzRStMOf9Tgj3r8UY8_uiipwx-1-KMGf9Tjjxr8UcQfvYI_CvijBn_U4-8xOf786Wj_MGzLeoRFMmGrkPNUTrQYpQVTTIpMi7jQUSZTBexdpGnCskRj3ViudMyFHI0ZZwIeYw4aiMfpEzIsq1I9JRT4qUh0BkxM6CwbCSFhQqHBXXWeSLFL3nUzOu-mE0uvnM7_Et4uee2G1jbRy7ZBb5xYbjhqU535EfNa6mfXueFzcsfj_wUZwnyrl8CCV-JVC7I_lz25Fg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+improved+power+conversion+efficiency+in+lead-free+CsGeI3+based+perovskite+solar+cell+heterostructure+via+scaps+simulation&rft.jtitle=Journal+of+vacuum+science+and+technology.+B%2C+Nanotechnology+%26+microelectronics&rft.au=Raj%2C+Abhishek&rft.au=Kumar%2C+Manish&rft.au=Bherwani%2C+Hemant&rft.au=Gupta%2C+Ankit&rft.date=2021-01-01&rft.issn=2166-2746&rft.eissn=2166-2754&rft.volume=39&rft.issue=1&rft_id=info:doi/10.1116%2F6.0000718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1116_6_0000718
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2166-2746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2166-2746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2166-2746&client=summon