Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation
Simulation has been performed on fully lead-free inorganic cesium germanium tri-iodide (CsGeI3) perovskite solar cell heterostructure and achieved a champion power conversion efficiency (PCE) of ∼18.30% with significantly improved device parameters. The influence of thickness of an electron transpor...
Saved in:
Published in | Journal of vacuum science and technology. B, Nanotechnology & microelectronics Vol. 39; no. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2021
|
Online Access | Get full text |
ISSN | 2166-2746 2166-2754 |
DOI | 10.1116/6.0000718 |
Cover
Abstract | Simulation has been performed on fully lead-free inorganic cesium germanium tri-iodide (CsGeI3) perovskite solar cell heterostructure and achieved a champion power conversion efficiency (PCE) of ∼18.30% with significantly improved device parameters. The influence of thickness of an electron transport layer, a hole transport layer, an absorber, defect density, doping concentration, electron affinity, temperature, and series resistance issued for the optimization of the lead-free device is studied. It is confirmed via the scaps simulation results that this device is perfectly optimized with the experimental results and demonstrates the maximum possible improved power conversion efficiency in a fully inorganic lead-free CsGeI3 perovskite solar cell device. The final optimized device performance parameters are as follows: %PCE = 18.30%, %FF = 75.46%, Jsc = 23.31 mA/cm2, and Voc = 1.04 V. In the future, this efficiency may offer prominent potential as a substitute in a highly efficient green solar absorber material for photovoltaic applications after confirmation in the laboratory. |
---|---|
AbstractList | Simulation has been performed on fully lead-free inorganic cesium germanium tri-iodide (CsGeI3) perovskite solar cell heterostructure and achieved a champion power conversion efficiency (PCE) of ∼18.30% with significantly improved device parameters. The influence of thickness of an electron transport layer, a hole transport layer, an absorber, defect density, doping concentration, electron affinity, temperature, and series resistance issued for the optimization of the lead-free device is studied. It is confirmed via the scaps simulation results that this device is perfectly optimized with the experimental results and demonstrates the maximum possible improved power conversion efficiency in a fully inorganic lead-free CsGeI3 perovskite solar cell device. The final optimized device performance parameters are as follows: %PCE = 18.30%, %FF = 75.46%, Jsc = 23.31 mA/cm2, and Voc = 1.04 V. In the future, this efficiency may offer prominent potential as a substitute in a highly efficient green solar absorber material for photovoltaic applications after confirmation in the laboratory. |
Author | Gupta, Ankit Anshul, Avneesh Bherwani, Hemant Raj, Abhishek Kumar, Manish |
Author_xml | – sequence: 1 givenname: Abhishek surname: Raj fullname: Raj, Abhishek organization: 3Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi 110021, India – sequence: 2 givenname: Manish surname: Kumar fullname: Kumar, Manish organization: Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi – sequence: 3 givenname: Hemant surname: Bherwani fullname: Bherwani, Hemant organization: 3Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi 110021, India – sequence: 4 givenname: Ankit surname: Gupta fullname: Gupta, Ankit organization: 3Experimental Research Laboratory, Department of Physics, ARSD College, University of Delhi, New Delhi 110021, India – sequence: 5 givenname: Avneesh surname: Anshul fullname: Anshul, Avneesh organization: CSIR-National Environmental Engineering Research Institute (NEERI) |
BookMark | eNp9kFFLwzAQx4MoOOce_AZ5VejWNE3bPcqYczDwRZ_LNblgtGtLklX2AfzeZm5OUDFw5Dh-_x_HXZDTpm2QkCsWjxlj2SQbx-HlrDghg4RlWZTkIj099ml2TkbOveygrBAxjwfkfd4bhY1E2mpq1p1te1S0a9_QUtk2PVpn2oai1kaawG2paWiNoCJtEenMLXDJaQVul8KQdq_GI3VtDUGAdU2f0Ye583Yj_cYi7Q1QJ6Fz1Jn1pgYf_JfkTEPtcHT4h-Tpbv44u49WD4vl7HYVyWQqfATA1VRXOZcChapSXTGp41RxFIJVnCciTbTIxRRQM6hUXggQVagCYs6A8SG53ntl2MhZ1GVnzRrstmRxuTthmZWHEwZ28oOVxn9u6y2Y-s_EzT7hvsijvm_tN1h2Sv8H_zZ_ALFdk_c |
CODEN | JVTBD9 |
CitedBy_id | crossref_primary_10_1007_s11664_025_11740_x crossref_primary_10_1088_1402_4896_acf535 crossref_primary_10_1016_j_heliyon_2023_e20558 crossref_primary_10_1007_s12633_025_03283_x crossref_primary_10_1007_s11664_024_11051_7 crossref_primary_10_1002_pssa_202100606 crossref_primary_10_1021_acs_energyfuels_4c00443 crossref_primary_10_1002_adts_202401283 crossref_primary_10_1016_j_solmat_2024_112883 crossref_primary_10_1016_j_mtcomm_2023_105860 crossref_primary_10_1021_acs_energyfuels_4c03960 crossref_primary_10_1088_2631_8695_ad2f83 crossref_primary_10_1007_s12648_024_03158_8 crossref_primary_10_1002_pssa_202300227 crossref_primary_10_1016_j_solener_2022_03_053 crossref_primary_10_1016_j_ceramint_2022_09_112 crossref_primary_10_1007_s12596_025_02656_0 crossref_primary_10_1016_j_optmat_2022_112611 crossref_primary_10_1016_j_optmat_2022_112575 crossref_primary_10_1016_j_ceramint_2021_11_184 crossref_primary_10_1016_j_optmat_2021_111743 crossref_primary_10_1016_j_matpr_2023_05_349 crossref_primary_10_3390_en14217200 crossref_primary_10_1007_s11082_024_08022_x crossref_primary_10_1016_j_solener_2022_03_069 crossref_primary_10_1016_j_mseb_2023_116757 crossref_primary_10_1007_s12633_024_02920_1 crossref_primary_10_1038_s41598_023_42447_w crossref_primary_10_1016_j_mseb_2024_117524 crossref_primary_10_1039_D1CP05787A crossref_primary_10_1002_ente_202300772 crossref_primary_10_1016_j_matpr_2022_06_580 crossref_primary_10_1109_ACCESS_2024_3352444 crossref_primary_10_1088_1402_4896_ac9e7f crossref_primary_10_1007_s12596_023_01570_7 crossref_primary_10_1016_j_matpr_2022_07_143 crossref_primary_10_1088_1402_4896_acdc65 crossref_primary_10_1098_rsos_221127 crossref_primary_10_1016_j_mtcomm_2025_111490 crossref_primary_10_1142_S0217979225500341 crossref_primary_10_1002_adts_202400129 crossref_primary_10_1007_s11664_024_11372_7 crossref_primary_10_1016_j_solener_2023_02_037 crossref_primary_10_1016_j_solener_2023_111846 crossref_primary_10_1016_j_jpcs_2025_112616 crossref_primary_10_1002_adom_202102661 crossref_primary_10_3390_mi12121508 crossref_primary_10_1021_acs_energyfuels_3c01258 crossref_primary_10_3103_S0003701X22010194 crossref_primary_10_1016_j_nxmate_2024_100439 crossref_primary_10_1007_s10854_023_11225_9 crossref_primary_10_1039_D3NA00319A crossref_primary_10_1002_er_8099 crossref_primary_10_1016_j_solener_2024_112843 crossref_primary_10_1016_j_ijleo_2024_171684 crossref_primary_10_1016_j_inoche_2024_113578 crossref_primary_10_1016_j_mtchem_2021_100595 crossref_primary_10_1007_s10854_023_10231_1 crossref_primary_10_1002_ente_202400632 crossref_primary_10_1088_1402_4896_ad482c crossref_primary_10_1007_s11051_023_05702_9 crossref_primary_10_1016_j_solener_2024_112752 crossref_primary_10_1088_1361_648X_ad6f63 crossref_primary_10_1016_j_ijoes_2024_100641 crossref_primary_10_1016_j_mtcomm_2023_107841 crossref_primary_10_1016_j_inoche_2024_113587 crossref_primary_10_1007_s11664_023_10284_2 crossref_primary_10_1039_D3CP03639A crossref_primary_10_1016_j_jpcs_2025_112598 crossref_primary_10_1016_j_optmat_2021_111839 crossref_primary_10_1002_ente_202300564 crossref_primary_10_1016_j_matpr_2022_06_094 crossref_primary_10_1016_j_optmat_2022_112894 crossref_primary_10_1039_D3VA00401E crossref_primary_10_1016_j_ijoes_2024_100893 crossref_primary_10_1016_j_ijleo_2023_171206 crossref_primary_10_1016_j_optmat_2024_115125 crossref_primary_10_1016_j_flatc_2024_100629 crossref_primary_10_1016_j_jpcs_2024_111951 crossref_primary_10_1016_j_jpcs_2024_112247 crossref_primary_10_1002_adts_202401504 crossref_primary_10_1002_er_7942 crossref_primary_10_1007_s12596_025_02628_4 crossref_primary_10_1039_D4CP02974G crossref_primary_10_1016_j_rser_2023_114187 crossref_primary_10_1002_masy_202100464 crossref_primary_10_1088_1402_4896_ad69cb crossref_primary_10_1016_j_solener_2025_113347 crossref_primary_10_1016_j_ssc_2024_115590 crossref_primary_10_1016_j_solener_2022_10_039 crossref_primary_10_1016_j_solmat_2023_112426 crossref_primary_10_1002_jnm_3164 crossref_primary_10_1002_pssa_202200791 crossref_primary_10_1016_j_cplett_2023_140809 crossref_primary_10_1002_pssa_202300525 crossref_primary_10_1007_s11082_023_05024_z crossref_primary_10_1007_s11082_025_08154_8 crossref_primary_10_1007_s11082_024_08028_5 crossref_primary_10_1016_j_ijleo_2023_170819 crossref_primary_10_1002_pssa_202300071 crossref_primary_10_1007_s11082_021_02918_8 crossref_primary_10_1109_JPHOTOV_2024_3424844 crossref_primary_10_1016_j_jpcs_2023_111515 crossref_primary_10_1016_j_matpr_2021_03_610 crossref_primary_10_1021_acs_energyfuels_3c04179 crossref_primary_10_1016_j_physb_2023_415504 |
Cites_doi | 10.1021/jacs.7b01162 10.1137/060650751 10.1038/nphys3357 10.1039/C5TA01246E 10.1109/PVSC40753.2019.8980512 10.1038/natrevmats.2017.42 10.1016/j.solener.2020.02.074 10.1016/j.solener.2019.02.041 10.1002/adma.201704611 10.1016/j.solener.2019.11.005 10.1039/C8QM00611C 10.1021/acs.jpclett.6b02786 10.1038/nature23877 10.1002/adma.201606666 10.1021/acsaem.8b00007 10.1016/j.ijleo.2016.10.122 10.1021/acs.chemrev.5b00715 10.1016/j.optmat.2020.109738 10.1016/j.solener.2019.12.050 10.1038/s41467-018-07951-y 10.1002/adfm.201804354 10.1021/acs.accounts.5b00411 10.1021/jacs.5b01025 10.1039/C7TC03733C 10.1016/j.optmat.2019.109631 10.1126/science.1243982 10.1039/C5TA05741H 10.1039/C8RA10251A 10.1039/C4CS00458B 10.1002/adfm.201706401 10.1002/admi.201500678 10.1016/j.solener.2019.12.014 10.1016/j.optmat.2020.110213 10.1002/solr.201800378 10.1155/2017/9846310 10.1021/acs.jpcc.6b10914 10.1039/C6TA05938D 10.1039/C6CS00896H 10.1039/C8RA01150H 10.1021/ja5033259 10.1063/1.4885367 10.1039/C5TA03686K 10.1038/NENERGY.2016.48 10.1021/acs.chemrev.8b00336 10.1016/j.optmat.2019.109607 10.1016/j.electacta.2017.06.154 10.1021/nl400349b 10.1021/ja809598r 10.1016/j.solmat.2016.08.025 10.7567/1882-0786/ab2a1b 10.1088/1361-6641/aaa596 10.1038/s41467-019-08918-3 10.1021/acsaem.9b01827 10.1021/acs.inorgchem.8b03095 10.1039/C6TA08699C 10.1016/j.cap.2010.02.018 10.1002/asia.201800573 10.1126/science.aad5845 10.1002/smll.201804858 10.1039/C5TC03417E 10.17265/1934-8975/2019.01.003 10.1016/j.solener.2019.02.017 10.1016/j.solmat.2014.10.036 10.1126/science.aan2301 10.1016/j.solener.2020.03.070 10.1039/C9SE00550A 10.1038/nenergy.2016.152 10.1016/j.solmat.2019.110070 10.1016/j.spmi.2019.04.007 10.1038/s41560-018-0200-6 10.1039/C6TA04685A |
ContentType | Journal Article |
Copyright | Author(s) |
Copyright_xml | – notice: Author(s) |
DBID | AAYXX CITATION |
DOI | 10.1116/6.0000718 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2166-2754 |
ExternalDocumentID | 10_1116_6_0000718 |
GroupedDBID | .DC AAAAW AAEUA AAPUP AAYIH ABNAN ACBRY ACGFS ADLOM AFHCQ AGKCL AGTJO AGVCI ALMA_UNASSIGNED_HOLDINGS ARCSS EBS EJD M71 RIP RNS RQS VAS AAGWI AAYXX ABJGX ADMLS CITATION |
ID | FETCH-LOGICAL-c295t-aa3d9fb73c5e5db4fb1cf04d3e551b332542f5759aef1abd785a5b5a58a031a13 |
ISSN | 2166-2746 |
IngestDate | Tue Jul 01 02:43:48 EDT 2025 Thu Apr 24 23:11:15 EDT 2025 Thu Jun 23 13:45:04 EDT 2022 Fri Jun 21 00:13:59 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2166-2746/2021/39(1)/012401/12/$30.00 Published under license by AVS. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c295t-aa3d9fb73c5e5db4fb1cf04d3e551b332542f5759aef1abd785a5b5a58a031a13 |
ORCID | 0000-0002-8750-8389 0000-0003-1213-4025 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1116_6_0000718 scitation_primary_10_1116_6_0000718 crossref_citationtrail_10_1116_6_0000718 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Journal of vacuum science and technology. B, Nanotechnology & microelectronics |
PublicationYear | 2021 |
References | Khadka, Shirai, Yanagida, Miyano (c43) 2018 Chen (c16) 2017 Miyata, Mitioglu, Plochocka, Portugall, Wang, Stranks, Snaith, Nicholas (c3) 2015 Jacobs, Luo, Morgan (c37) 2019 Zhao, Zhu (c12) 2016 Chelvanathan, Hossain, Amin (c45) 2010 Johnston, Herz (c54) 2016 Wu, Song, Li, Zhao, He, Quan (c35) 2018 Behrouznejad, Shahbazi, Taghavinia, Wu, Wei-Guang Diau (c42) 2016 Huang, Yuan, Shao, Yan (c6) 2017 Wang, Zhang, Lou, Zhao (c1) 2019 Chen, Chen (c64) 2020 Chen (c36) 2019 Jong, Yu, Kye, Choe, Hao, Li (c56) 2019 Karimi, Ghorashi (c51) 2017 Ke, Kanatzidis (c32) 2019 Liu, Li, Jing, Wu (c38) 2019 Boyd, Cheacharoen, Leijtens, McGehee (c13) 2019 Nagaoka, Hills-Kimball, Tan, Li, Wang, Chen (c28) 2017 Anwar, Mahbub, Satter, Ullah (c46) Haider, Anwar, Wang (c52) 2018 Wang, Muryobayashi, Nakada, Li, Yamada (c25) 2019 Akhiro, Kenjiro, Yasuo, Tsutomu (c20) 2009 Lim, Ahn, Kim, Choi, Huh, Lee (c69) 2016 Chen (c2) 2018 Huang (c47) 2016 Wang, Kim (c9) 2017 Shen (c23) 2015 Azri, Meftah, Sengouga, Meftah (c63) 2019 Rai, Pandey, Dwivedi (c50) 2020 Jeon (c14) 2018 Ming, Shi, Du (c26) 2016 Kumar, Raj, Kumar, Anshul (c59) 2020 Lu, Ma, Gu, Tian, Li (c60) 2015 Zhou, Zhou, Chen, Zong, Huang, Pang, Padture (c68) 2016 Liu, Zhu, Wei, Li, Lv, Yang, Zhang, Yao, Dai (c40) 2014 Zhang, Eperon, Snaith (c11) 2016 Park, Grätzel, Miyasaka, Zhu, Emery (c18) 2016 Stoumpos, Frazer, Clark, Kim, Rhim, Freeman, Ketterson, Jang, Kanatzidis (c34) 2015 Goudon, Miljanović, Schmeiser (c55) 2007 Bing (c44) 2019 Jeong (c8) 2018 Liu, Sa, Wu (c58) 2019 Minemoto, Murata (c70) 2015 Hima, Lakhdar (c39) 2020 Noh, Im, Heo, Mandal, Il Seok (c5) 2013 Et-taya, Ouslimane, Benami (c49) 2020 Li, Li, Wang, Quan, Meng, Zou (c30) 2017 Zandi, Saxena, Gorji (c41) 2020 Stranks, Eperon, Grancini, Menelaou, Alcocer, Leijtens, Herz, Petrozza, Snaith (c4) 2013 Zhao, Liu, Yu, Cao, Cai (c24) 2017 Bag, Radhakrishnan, Nekovei, Jeyakumar (c61) 2020 McMeekin (c15) 2016 López-Fraguas, Masi, Mora-Seró (c27) 2019 Saparov, Mitzi (c7) 2016 Chen, Zhou, Jin, Li, Zhai (c22) 2016 Benami (c48) 2019 Chakraborty, Choudhury, Paul (c66) 2019 Zhou, Long (c67) 2017 Krishnamoorthy (c31) 2015 Mundhaas, Yu, Bush, Wang, Häusele, Kavadiya, McGehee, Holman (c71) 2019 Kopacic, Friesenbichler, Hoefler, Kunert, Plank, Rath, Trimmel (c33) 2018 Hima, Lakhdar, Benhaoua, Saadoune, Kemerchou, Rogti (c62) 2019 Jaffe, Lin, Mao, Karunadasa (c29) 2017 Baig, Kanda, Asiri, Nazeeruddin, Mallick (c72) 2020 Leung, Ho, Kung, Hsiao, Alshareef, Wang, He (c10) 2018 Yang (c17) 2017 Abdelaziz, Zekry, Shaker, Abouelatta (c53) 2020 Kanoun, Kanoun, Merad, Goumri-Said (c65) 2019 Hao, Stoumpos, Chang, Kanatzidis (c21) 2014 (2023071607273526500_c39) 2020; 99 (2023071607273526500_c13) 2019; 119 (2023071607273526500_c38) 2019; 9 (2023071607273526500_c23) 2015; 3 (2023071607273526500_c59) 2020; 108 (2023071607273526500_c70) 2015; 133 (2023071607273526500_c44) 2019; 15 (2023071607273526500_c72) 2020; 4 (2023071607273526500_c15) 2016; 351 (2023071607273526500_c53) 2020; 101 (2023071607273526500_c14) 2018; 3 (2023071607273526500_c36) 2019; 10 (2023071607273526500_c60) 2015; 3 (2023071607273526500_c7) 2016; 116 (2023071607273526500_c58) 2019; 12 (2023071607273526500_c6) 2017; 2 (2023071607273526500_c62) 2019; 129 (2023071607273526500_c28) 2017; 29 (2023071607273526500_c46); 2017 (2023071607273526500_c47) 2016; 157 (2023071607273526500_c8) 2018; 28 (2023071607273526500_c71) 2019; 3 (2023071607273526500_c4) 2013; 342 (2023071607273526500_c32) 2019; 10 (2023071607273526500_c43) 2018; 6 (2023071607273526500_c45) 2010; 10 (2023071607273526500_c66) 2019; 194 (2023071607273526500_c37) 2019; 29 (2023071607273526500_c25) 2019; 201 (2023071607273526500_c5) 2013; 13 (2023071607273526500_c67) 2017; 121 (2023071607273526500_c48) 2019; 13 (2023071607273526500_c68) 2016; 4 (2023071607273526500_c57) 2019 (2023071607273526500_c22) 2016; 4 (2023071607273526500_c35) 2018; 13 (2023071607273526500_c49) 2020; 201 (2023071607273526500_c52) 2018; 33 (2023071607273526500_c34) 2015; 137 (2023071607273526500_c63) 2019; 181 (2023071607273526500_c40) 2014; 104 (2023071607273526500_c54) 2016; 49 (2023071607273526500_c42) 2016; 4 (2023071607273526500_c11) 2016; 1 (2023071607273526500_c69) 2016; 3 (2023071607273526500_c10) 2018; 30 (2023071607273526500_c20) 2009; 131 NREL (2023071607273526500_c19) (2023071607273526500_c41) 2020; 197 (2023071607273526500_c27) 2019; 2 (2023071607273526500_c26) 2016; 4 (2023071607273526500_c17) 2017; 356 (2023071607273526500_c31) 2015; 3 (2023071607273526500_c12) 2016; 45 (2023071607273526500_c61) 2020; 196 (2023071607273526500_c3) 2015; 11 (2023071607273526500_c65) 2019; 182 (2023071607273526500_c18) 2016; 1 (2023071607273526500_c64) 2020; 201 (2023071607273526500_c56) 2019; 58 (2023071607273526500_c55) 2007; 67 (2023071607273526500_c50) 2020; 100 (2023071607273526500_c1) 2019; 3 (2023071607273526500_c9) 2017; 46 (2023071607273526500_c24) 2017; 247 (2023071607273526500_c33) 2018; 1 (2023071607273526500_c2) 2018; 8 (2023071607273526500_c30) 2017; 8 (2023071607273526500_c16) 2017; 550 (2023071607273526500_c29) 2017; 139 2023071607273526500_c73 (2023071607273526500_c51) 2017; 130 (2023071607273526500_c21) 2014; 136 |
References_xml | – start-page: 146 year: 2016 ident: c54 publication-title: Acc. Chem. Res. – start-page: 11 year: 2016 ident: c22 publication-title: J. Mater. Chem. C – start-page: 92 year: 2017 ident: c16 publication-title: Nature – start-page: 343 year: 2018 ident: c33 publication-title: ACS Appl. Energy Mater. – start-page: 9846310 ident: c46 publication-title: Int. J. Photoenergy – start-page: 965 year: 2019 ident: c32 publication-title: Nat. Commun. – start-page: 1500678 year: 2016 ident: c69 publication-title: Adv. Mater. Interfaces – start-page: 13488 year: 2016 ident: c42 publication-title: J. Mater. Chem. A – start-page: 827 year: 2020 ident: c49 publication-title: Sol. Energy – start-page: 13852 year: 2016 ident: c26 publication-title: J. Mater. Chem. A – start-page: 372 year: 2019 ident: c63 publication-title: Sol. Energy – start-page: 886 year: 2019 ident: c66 publication-title: Sol. Energy – start-page: 16 year: 2019 ident: c36 publication-title: Nat. Commun. – start-page: 1804354 year: 2019 ident: c37 publication-title: Adv. Funct. Mater. – year: 2016 ident: c11 publication-title: Nat. Energy – start-page: S387 year: 2010 ident: c45 publication-title: Curr. Appl. Phys. – start-page: 6050 year: 2009 ident: c20 publication-title: J. Am. Chem. Soc. – start-page: 8381 year: 2019 ident: c27 publication-title: ACS Appl. Energy Mater. – start-page: 9308 year: 2015 ident: c23 publication-title: J. Mater. Chem. A – year: 2019 ident: c48 publication-title: J. Energy Power Eng. – start-page: 105 year: 2020 ident: c41 publication-title: Sol. Energy – start-page: 3418 year: 2019 ident: c13 publication-title: Chem. Rev. – start-page: 3279 year: 2019 ident: c38 publication-title: RSC Adv. – start-page: 16152 year: 2016 ident: c18 publication-title: Nat. Energy – start-page: 110070 year: 2019 ident: c25 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 18396 year: 2018 ident: c2 publication-title: RSC Adv. – start-page: 253508 year: 2014 ident: c40 publication-title: Appl. Phys. Lett. – start-page: 109738 year: 2020 ident: c53 publication-title: Opt. Mater. – start-page: 1804858 year: 2019 ident: c44 publication-title: Small – start-page: 237 year: 2019 ident: c65 publication-title: Sol. Energy – start-page: 528 year: 2020 ident: c72 publication-title: Sustain. Energy Fuels – start-page: 1704611 year: 2018 ident: c10 publication-title: Adv. Mater. – start-page: 1455 year: 2017 ident: c67 publication-title: J. Phys. Chem. C – start-page: 177 year: 2020 ident: c61 publication-title: Sol. Energy – start-page: 582 year: 2015 ident: c3 publication-title: Nat. Phys. – start-page: 109607 year: 2020 ident: c39 publication-title: Opt. Mater. – start-page: 365 year: 2019 ident: c1 publication-title: Mater. Chem. Front. – start-page: 4330 year: 2017 ident: c29 publication-title: J. Am. Chem. Soc. – start-page: 5204 year: 2017 ident: c9 publication-title: Chem. Soc. Rev. – start-page: 1183 year: 2007 ident: c55 publication-title: SIAM J. Appl. Math. – start-page: 1376 year: 2017 ident: c17 publication-title: Science – start-page: 110213 year: 2020 ident: c59 publication-title: Opt. Mater. – start-page: 323 year: 2020 ident: c64 publication-title: Sol. Energy – start-page: 1038 year: 2016 ident: c47 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 1800378 year: 2019 ident: c71 publication-title: Sol. RRL – start-page: 23829 year: 2015 ident: c31 publication-title: J. Mater. Chem. A – start-page: 151 year: 2016 ident: c15 publication-title: Science – start-page: 8094 year: 2014 ident: c21 publication-title: J. Am. Chem. Soc. – start-page: 500 year: 2017 ident: c30 publication-title: J. Phys. Chem. Lett. – start-page: 035001 year: 2018 ident: c52 publication-title: Semicond. Sci. Technol. – start-page: 240 year: 2019 ident: c62 publication-title: Superlattices Microstruct. – start-page: 1764 year: 2013 ident: c5 publication-title: Nano Lett. – start-page: 4558 year: 2016 ident: c7 publication-title: Chem. Rev. – start-page: 162 year: 2018 ident: c43 publication-title: J. Mater. Chem. C – start-page: 891 year: 2017 ident: c24 publication-title: Electrochim. Acta – start-page: 1606666 year: 2017 ident: c28 publication-title: Adv. Mater. – start-page: 17623 year: 2016 ident: c68 publication-title: J. Mater. Chem. A – start-page: 109631 year: 2020 ident: c50 publication-title: Opt. Mater. – start-page: 650 year: 2017 ident: c51 publication-title: Optik – start-page: 8 year: 2015 ident: c70 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 682 year: 2018 ident: c14 publication-title: Nat. Energy – start-page: 17042 year: 2017 ident: c6 publication-title: Nat. Rev. Mater. – start-page: 655 year: 2016 ident: c12 publication-title: Chem. Soc. Rev. – start-page: 4134 year: 2019 ident: c56 publication-title: Inorg. Chem. – start-page: 341 year: 2013 ident: c4 publication-title: Science – start-page: 1654 year: 2018 ident: c35 publication-title: Chem. Asian J. – start-page: 16445 year: 2015 ident: c60 publication-title: J. Mater. Chem. A – start-page: 1706401 year: 2018 ident: c8 publication-title: Adv. Funct. Mater. – start-page: 6804 year: 2015 ident: c34 publication-title: J. Am. Chem. Soc. – start-page: 071007 year: 2019 ident: c58 publication-title: Appl. Phys. Express – volume: 139 start-page: 4330 year: 2017 ident: 2023071607273526500_c29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01162 – volume: 67 start-page: 1183 year: 2007 ident: 2023071607273526500_c55 publication-title: SIAM J. Appl. Math. doi: 10.1137/060650751 – volume: 11 start-page: 582 year: 2015 ident: 2023071607273526500_c3 publication-title: Nat. Phys. doi: 10.1038/nphys3357 – volume: 3 start-page: 9308 year: 2015 ident: 2023071607273526500_c23 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01246E – start-page: 1183 year: 2019 ident: 2023071607273526500_c57 doi: 10.1109/PVSC40753.2019.8980512 – volume: 2 start-page: 17042 year: 2017 ident: 2023071607273526500_c6 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.42 – volume: 201 start-page: 323 year: 2020 ident: 2023071607273526500_c64 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.02.074 – volume: 182 start-page: 237 year: 2019 ident: 2023071607273526500_c65 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.041 – volume: 30 start-page: 1704611 year: 2018 ident: 2023071607273526500_c10 publication-title: Adv. Mater. doi: 10.1002/adma.201704611 – volume: 194 start-page: 886 year: 2019 ident: 2023071607273526500_c66 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.11.005 – volume: 3 start-page: 365 year: 2019 ident: 2023071607273526500_c1 publication-title: Mater. Chem. Front. doi: 10.1039/C8QM00611C – volume: 8 start-page: 500 year: 2017 ident: 2023071607273526500_c30 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02786 – volume: 550 start-page: 92 year: 2017 ident: 2023071607273526500_c16 publication-title: Nature doi: 10.1038/nature23877 – volume: 29 start-page: 1606666 year: 2017 ident: 2023071607273526500_c28 publication-title: Adv. Mater. doi: 10.1002/adma.201606666 – volume: 1 start-page: 343 year: 2018 ident: 2023071607273526500_c33 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00007 – volume: 130 start-page: 650 year: 2017 ident: 2023071607273526500_c51 publication-title: Optik doi: 10.1016/j.ijleo.2016.10.122 – volume: 116 start-page: 4558 year: 2016 ident: 2023071607273526500_c7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00715 – volume: 101 start-page: 109738 year: 2020 ident: 2023071607273526500_c53 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.109738 – ident: 2023071607273526500_c73 – volume: 197 start-page: 105 year: 2020 ident: 2023071607273526500_c41 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.12.050 – volume: 10 start-page: 16 year: 2019 ident: 2023071607273526500_c36 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07951-y – volume: 29 start-page: 1804354 year: 2019 ident: 2023071607273526500_c37 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201804354 – volume: 49 start-page: 146 year: 2016 ident: 2023071607273526500_c54 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.5b00411 – volume: 137 start-page: 6804 year: 2015 ident: 2023071607273526500_c34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b01025 – volume: 6 start-page: 162 year: 2018 ident: 2023071607273526500_c43 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC03733C – volume: 100 start-page: 109631 year: 2020 ident: 2023071607273526500_c50 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2019.109631 – volume: 342 start-page: 341 year: 2013 ident: 2023071607273526500_c4 publication-title: Science doi: 10.1126/science.1243982 – volume: 3 start-page: 23829 year: 2015 ident: 2023071607273526500_c31 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA05741H – volume: 9 start-page: 3279 year: 2019 ident: 2023071607273526500_c38 publication-title: RSC Adv. doi: 10.1039/C8RA10251A – volume: 45 start-page: 655 year: 2016 ident: 2023071607273526500_c12 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00458B – volume: 28 start-page: 1706401 year: 2018 ident: 2023071607273526500_c8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201706401 – volume: 3 start-page: 1500678 year: 2016 ident: 2023071607273526500_c69 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201500678 – volume: 196 start-page: 177 year: 2020 ident: 2023071607273526500_c61 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.12.014 – volume: 108 start-page: 110213 year: 2020 ident: 2023071607273526500_c59 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.110213 – volume: 3 start-page: 1800378 year: 2019 ident: 2023071607273526500_c71 publication-title: Sol. RRL doi: 10.1002/solr.201800378 – volume: 2017 start-page: 9846310 ident: 2023071607273526500_c46 publication-title: Int. J. Photoenergy doi: 10.1155/2017/9846310 – volume: 121 start-page: 1455 year: 2017 ident: 2023071607273526500_c67 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b10914 – volume: 4 start-page: 13488 year: 2016 ident: 2023071607273526500_c42 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA05938D – volume: 46 start-page: 5204 year: 2017 ident: 2023071607273526500_c9 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00896H – volume: 8 start-page: 18396 year: 2018 ident: 2023071607273526500_c2 publication-title: RSC Adv. doi: 10.1039/C8RA01150H – volume: 136 start-page: 8094 year: 2014 ident: 2023071607273526500_c21 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5033259 – volume: 104 start-page: 253508 year: 2014 ident: 2023071607273526500_c40 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4885367 – volume: 3 start-page: 16445 year: 2015 ident: 2023071607273526500_c60 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA03686K – volume: 1 year: 2016 ident: 2023071607273526500_c11 publication-title: Nat. Energy doi: 10.1038/NENERGY.2016.48 – volume: 119 start-page: 3418 year: 2019 ident: 2023071607273526500_c13 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00336 – volume: 99 start-page: 109607 year: 2020 ident: 2023071607273526500_c39 publication-title: Opt. Mater. doi: 10.1016/j.optmat.2019.109607 – volume: 247 start-page: 891 year: 2017 ident: 2023071607273526500_c24 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.06.154 – volume: 13 start-page: 1764 year: 2013 ident: 2023071607273526500_c5 publication-title: Nano Lett. doi: 10.1021/nl400349b – volume: 131 start-page: 6050 year: 2009 ident: 2023071607273526500_c20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja809598r – volume: 157 start-page: 1038 year: 2016 ident: 2023071607273526500_c47 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.08.025 – volume: 12 start-page: 071007 year: 2019 ident: 2023071607273526500_c58 publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab2a1b – volume: 33 start-page: 035001 year: 2018 ident: 2023071607273526500_c52 publication-title: Semicond. Sci. Technol. doi: 10.1088/1361-6641/aaa596 – volume: 10 start-page: 965 year: 2019 ident: 2023071607273526500_c32 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08918-3 – volume: 2 start-page: 8381 year: 2019 ident: 2023071607273526500_c27 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b01827 – ident: 2023071607273526500_c19 – volume: 58 start-page: 4134 year: 2019 ident: 2023071607273526500_c56 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b03095 – volume: 4 start-page: 17623 year: 2016 ident: 2023071607273526500_c68 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA08699C – volume: 10 start-page: S387 year: 2010 ident: 2023071607273526500_c45 publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2010.02.018 – volume: 13 start-page: 1654 year: 2018 ident: 2023071607273526500_c35 publication-title: Chem. Asian J. doi: 10.1002/asia.201800573 – volume: 351 start-page: 151 year: 2016 ident: 2023071607273526500_c15 publication-title: Science doi: 10.1126/science.aad5845 – volume: 15 start-page: 1804858 year: 2019 ident: 2023071607273526500_c44 publication-title: Small doi: 10.1002/smll.201804858 – volume: 4 start-page: 11 year: 2016 ident: 2023071607273526500_c22 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC03417E – volume: 13 year: 2019 ident: 2023071607273526500_c48 publication-title: J. Energy Power Eng. doi: 10.17265/1934-8975/2019.01.003 – volume: 181 start-page: 372 year: 2019 ident: 2023071607273526500_c63 publication-title: Sol. Energy doi: 10.1016/j.solener.2019.02.017 – volume: 133 start-page: 8 year: 2015 ident: 2023071607273526500_c70 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.10.036 – volume: 356 start-page: 1376 year: 2017 ident: 2023071607273526500_c17 publication-title: Science doi: 10.1126/science.aan2301 – volume: 201 start-page: 827 year: 2020 ident: 2023071607273526500_c49 publication-title: Sol. Energy doi: 10.1016/j.solener.2020.03.070 – volume: 4 start-page: 528 year: 2020 ident: 2023071607273526500_c72 publication-title: Sustain. Energy Fuels doi: 10.1039/C9SE00550A – volume: 1 start-page: 16152 year: 2016 ident: 2023071607273526500_c18 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.152 – volume: 201 start-page: 110070 year: 2019 ident: 2023071607273526500_c25 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2019.110070 – volume: 129 start-page: 240 year: 2019 ident: 2023071607273526500_c62 publication-title: Superlattices Microstruct. doi: 10.1016/j.spmi.2019.04.007 – volume: 3 start-page: 682 year: 2018 ident: 2023071607273526500_c14 publication-title: Nat. Energy doi: 10.1038/s41560-018-0200-6 – volume: 4 start-page: 13852 year: 2016 ident: 2023071607273526500_c26 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA04685A |
SSID | ssj0000685030 |
Score | 2.6289845 |
Snippet | Simulation has been performed on fully lead-free inorganic cesium germanium tri-iodide (CsGeI3) perovskite solar cell heterostructure and achieved a champion... |
SourceID | crossref scitation |
SourceType | Enrichment Source Index Database Publisher |
Title | Evidence of improved power conversion efficiency in lead-free CsGeI3 based perovskite solar cell heterostructure via scaps simulation |
URI | http://dx.doi.org/10.1116/6.0000718 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2166-2754 dateEnd: 20240929 omitProxy: false ssIdentifier: ssj0000685030 issn: 2166-2746 databaseCode: ADMLS dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCegAOiKcoL1nAAWm1ZV_eJMdQoAURLrRSb5G9tkWkZnfVTVKpd_4ZP4wZe9feliC1HGIljjebeL54Po_nQchbFgsFrEGGMtITDMlhIR-nCl5GWqkIOHGBJ7qz7_nhcfb1hJ0MBr97XkvrldgrLrbGlfyPVKEP5IpRsjeQrPtQ6IDnIF9oQcLQXkvGXUlQk_fBWAeAPtZY98x6kxtTGLpsLMw_2IT4nYJQQ32mVLDfHKgvaYB6TGL64mrToCk3aHC3G6BFH2gkTHtlc8ziScNmwYOm4HUTNItlW_jrH_R2w4v1ehl0YUPGUdOZ8feCD-3SXvlOg8IlOgj62jzeE5-bY6ap-IlO_C68yHmIz3gJbzjjAiDx3FarAsW65N6552BdW748LeHH9m0eSdyzeZilMYnzPIT9dJtEu99nU1J3a7tNlNTH8BaVgdaL3CSyHLW64FJa7ivq0jkx2u1TPke_QHPpLbKTjPI8GZKd6cfZtx_O1hflYxaZsjfui7dJruD69-7Wl6jRbZCPdcbo8Z2j--ReK0k6tah7QAaqfEju9tJXPiK_OvzRStMOf9Tgj3r8UY8_uiipwx-1-KMGf9Tjjxr8UcQfvYI_CvijBn_U4-8xOf786Wj_MGzLeoRFMmGrkPNUTrQYpQVTTIpMi7jQUSZTBexdpGnCskRj3ViudMyFHI0ZZwIeYw4aiMfpEzIsq1I9JRT4qUh0BkxM6CwbCSFhQqHBXXWeSLFL3nUzOu-mE0uvnM7_Et4uee2G1jbRy7ZBb5xYbjhqU535EfNa6mfXueFzcsfj_wUZwnyrl8CCV-JVC7I_lz25Fg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evidence+of+improved+power+conversion+efficiency+in+lead-free+CsGeI3+based+perovskite+solar+cell+heterostructure+via+scaps+simulation&rft.jtitle=Journal+of+vacuum+science+and+technology.+B%2C+Nanotechnology+%26+microelectronics&rft.au=Raj%2C+Abhishek&rft.au=Kumar%2C+Manish&rft.au=Bherwani%2C+Hemant&rft.au=Gupta%2C+Ankit&rft.date=2021-01-01&rft.issn=2166-2746&rft.eissn=2166-2754&rft.volume=39&rft.issue=1&rft_id=info:doi/10.1116%2F6.0000718&rft.externalDBID=n%2Fa&rft.externalDocID=10_1116_6_0000718 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2166-2746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2166-2746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2166-2746&client=summon |