Sparsity Fuzzy C-Means Clustering with Principal Component Analysis Embedding
The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that introduces the concept of membership. In this method, the fuzzy membership matrix is obtained by calculating the distance between data points...
Saved in:
| Published in | IEEE transactions on fuzzy systems Vol. 31; no. 7; pp. 1 - 13 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6706 1941-0034 |
| DOI | 10.1109/TFUZZ.2022.3217343 |
Cover
| Abstract | The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that introduces the concept of membership. In this method, the fuzzy membership matrix is obtained by calculating the distance between data points in the original space. However, these methods may yield suboptimal results owing to the influence of redundant features. Moreover, FCM is always sensitive to noise points and heavily subject to outliers. In this paper, we propose a method called sparsity FCM clustering with principal component analysis embedding (P_SFCM). We simultaneously conduct principal component analysis (PCA) and membership learning, and then add an additional weighting factor for each data point. The goal of this operation is to identify the noise or outliers. Overall, the benefit of our framework is that it retains most of the information in the subspace while improving the robustness of the noise. In this paper, we employ an iterative optimization algorithm to efficiently solve our model. To verify the reliability of the proposed method, we conduct a convergence analysis, noise robustness analysis, and multi-cluster experiments. Furthermore, comparative experiments are conducted on both synthetic and real benchmark datasets. The experimental results show that the P_SFCM is competitive with comparable methods. |
|---|---|
| AbstractList | The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that introduces the concept of membership. In this method, the fuzzy membership matrix is obtained by calculating the distance between data points in the original space. However, these methods may yield suboptimal results owing to the influence of redundant features. Moreover, FCM is always sensitive to noise points and heavily subject to outliers. In this paper, we propose a method called sparsity FCM clustering with principal component analysis embedding (P_SFCM). We simultaneously conduct principal component analysis (PCA) and membership learning, and then add an additional weighting factor for each data point. The goal of this operation is to identify the noise or outliers. Overall, the benefit of our framework is that it retains most of the information in the subspace while improving the robustness of the noise. In this paper, we employ an iterative optimization algorithm to efficiently solve our model. To verify the reliability of the proposed method, we conduct a convergence analysis, noise robustness analysis, and multi-cluster experiments. Furthermore, comparative experiments are conducted on both synthetic and real benchmark datasets. The experimental results show that the P_SFCM is competitive with comparable methods. The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that introduces the concept of membership. In this method, the fuzzy membership matrix is obtained by calculating the distance between data points in the original space. However, these methods may yield suboptimal results owing to the influence of redundant features. Moreover, FCM is always sensitive to noise points and heavily subject to outliers. In this article, we propose a method called sparsity FCM clustering with principal component analysis embedding (P_SFCM). We simultaneously conduct principal component analysis and membership learning, and then add an additional weighting factor for each data point. The goal of this operation is to identify the noise or outliers. Overall, the benefit of our framework is that it retains most of the information in the subspace while improving the robustness of the noise. In this article, we employ an iterative optimization algorithm to efficiently solve our model. To verify the reliability of the proposed method, we conduct a convergence analysis, noise robustness analysis, and multicluster experiments. Furthermore, comparative experiments are conducted on both synthetic and real benchmark datasets. The experimental results show that the P_SFCM is competitive with comparable methods. |
| Author | Chen, Jingwei Zhu, Jianyong Nie, Feiping Jiang, Hongyun Yang, Hui |
| Author_xml | – sequence: 1 givenname: Jingwei orcidid: 0000-0002-9868-8936 surname: Chen fullname: Chen, Jingwei organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, Jiangxi, P.R. China – sequence: 2 givenname: Jianyong orcidid: 0000-0002-4830-632X surname: Zhu fullname: Zhu, Jianyong organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, Jiangxi, P.R. China – sequence: 3 givenname: Hongyun surname: Jiang fullname: Jiang, Hongyun organization: China Railway Conservancy & Hydropower Planning and Design Group Co., Ltd, Nangchang, Jiang'xi, P.R. China – sequence: 4 givenname: Hui orcidid: 0000-0003-2560-9528 surname: Yang fullname: Yang, Hui organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, Jiangxi, P.R. China – sequence: 5 givenname: Feiping orcidid: 0000-0002-0871-6519 surname: Nie fullname: Nie, Feiping organization: School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), School of Computer Science, Northwestern Polytechnical University, Xi'an, P.R. China |
| BookMark | eNp9kLFOwzAQhi1UJNrCC8BiiTnF9iWOPVZRC0itQKJdukRO4oCrNAm2K5Q-PSmtGBiY7h_-7-70jdCgbmqN0C0lE0qJfFjN15vNhBHGJsBoDCFcoCGVIQ0IgXDQZ8Ih4DHhV2jk3JYQGkZUDNHyrVXWGd_h-f5w6HASLLWqHU6qvfPamvodfxn_gV_7mJtWVThpdm1_vPZ4Wquqc8bh2S7TRdF3r9FlqSqnb85zjNbz2Sp5ChYvj8_JdBHkTEY-UFxHuSyiksUAJANVMuB5CaUMteI05lpIEAAgdCaLnBCuRCFUQTMlwhgUjNH9aW9rm8-9dj7dNnvbv-NSJoBGjIYk6lvs1Mpt45zVZdpas1O2SylJj9rSH23pUVt61tZD4g-UG6-8aWpvlan-R-9OqNFa_96SEgiPYvgGdWJ9Sw |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1109_TKDE_2024_3419184 crossref_primary_10_1109_TIM_2025_3527611 crossref_primary_10_3390_w16203001 crossref_primary_10_3390_sym16101370 crossref_primary_10_1109_TAES_2024_3408139 crossref_primary_10_1080_23311916_2024_2430430 |
| Cites_doi | 10.1016/j.neucom.2019.10.108 10.1007/11811305_30 10.1007/s11432-014-5146-0 10.1080/00401706.1990.10484648 10.1016/j.neucom.2009.03.011 10.1145/1273496.1273562 10.1109/FUZZY.1994.343658 10.1007/s00521-016-2786-6 10.1109/TSMC.1987.6499296 10.1016/S0218-4885(00)00053-8 10.1016/j.fss.2014.12.007 10.1109/CloudCom.2011.86 10.1007/s00500-007-0231-6 10.1007/s11704-010-0393-8 10.1016/j.compmedimag.2010.12.001 10.1016/j.cviu.2013.05.001 10.1109/TKDE.2008.88 10.1016/j.patcog.2012.12.007 10.1109/ACCESS.2020.3015270 10.1145/1015330.1015408 10.1016/0169-7439(87)80084-9 10.1109/TFUZZ.2004.840099 10.1016/j.neucom.2015.01.106 10.1016/j.asoc.2016.12.049 10.14569/IJACSA.2013.040406 10.1016/j.neucom.2015.09.127 10.1109/TPAMI.1980.4766964 10.1016/0098-3004(84)90020-7 10.1016/j.fss.2019.03.017 10.1145/2623330.2623726 10.1109/TKDE.2020.2995748 10.1109/NAFIPS.2000.877408 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2022.3217343 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TFUZZ_2022_3217343 9930657 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-a6e5c9d5f27330b3af236cf3f94ea6176e89383338eb9dc006a8d8ad1ba8473a3 |
| IEDL.DBID | RIE |
| ISSN | 1063-6706 |
| IngestDate | Mon Jun 30 02:34:27 EDT 2025 Wed Oct 01 02:37:30 EDT 2025 Thu Apr 24 23:02:23 EDT 2025 Wed Aug 27 02:29:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-a6e5c9d5f27330b3af236cf3f94ea6176e89383338eb9dc006a8d8ad1ba8473a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9868-8936 0000-0002-4830-632X 0000-0003-2560-9528 0000-0002-0871-6519 |
| PQID | 2831521405 |
| PQPubID | 85428 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2831521405 ieee_primary_9930657 crossref_primary_10_1109_TFUZZ_2022_3217343 crossref_citationtrail_10_1109_TFUZZ_2022_3217343 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref32 ref1 ref17 ref39 ref16 ref38 ref19 ref18 balakrishnama (ref9) 1998 ref24 ref23 ref20 zhang (ref25) 0; 4 ref22 ref21 xu (ref26) 0 ref28 ref27 ref29 ref8 ref7 wang (ref5) 2019; 20 ref4 hou (ref10) 2014; 26 ref6 ng (ref3) 0 macqueen (ref2) 0; 1 nie (ref40) 0 |
| References_xml | – ident: ref23 doi: 10.1016/j.neucom.2019.10.108 – ident: ref16 doi: 10.1007/11811305_30 – ident: ref35 doi: 10.1007/s11432-014-5146-0 – ident: ref1 doi: 10.1080/00401706.1990.10484648 – volume: 26 start-page: 1287 year: 2014 ident: ref10 article-title: Discriminative embedded clustering: A framework for grouping high-dimensional data publication-title: IEEE Trans Neural Netw Learn Syst – ident: ref20 doi: 10.1016/j.neucom.2009.03.011 – ident: ref4 doi: 10.1145/1273496.1273562 – start-page: 1 year: 1998 ident: ref9 article-title: Linear discriminant analysis-A brief tutorial publication-title: Inst Signal Inf Process Dept Elect Comput Eng Mississippi State Univ – ident: ref13 doi: 10.1109/FUZZY.1994.343658 – ident: ref31 doi: 10.1007/s00521-016-2786-6 – volume: 20 start-page: 431 year: 2019 ident: ref5 article-title: Scalable kernel k-means clustering with Nyström approximation: Relative-error bounds publication-title: J Mach Learn Res – ident: ref39 doi: 10.1109/TSMC.1987.6499296 – ident: ref30 doi: 10.1016/S0218-4885(00)00053-8 – ident: ref33 doi: 10.1016/j.fss.2014.12.007 – ident: ref37 doi: 10.1109/CloudCom.2011.86 – volume: 1 start-page: 281 year: 0 ident: ref2 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proc 5th Berkeley Symp Math Statist Probability – ident: ref17 doi: 10.1007/s00500-007-0231-6 – ident: ref15 doi: 10.1007/s11704-010-0393-8 – ident: ref14 doi: 10.1016/j.compmedimag.2010.12.001 – start-page: 1433 year: 0 ident: ref40 article-title: Robust principal component analysis with non-greedy L1-norm maximization publication-title: Proc 22nd Int Joint Conf Artif Intell – ident: ref24 doi: 10.1016/j.cviu.2013.05.001 – ident: ref27 doi: 10.1109/TKDE.2008.88 – ident: ref21 doi: 10.1016/j.patcog.2012.12.007 – ident: ref28 doi: 10.1109/ACCESS.2020.3015270 – ident: ref6 doi: 10.1145/1015330.1015408 – ident: ref8 doi: 10.1016/0169-7439(87)80084-9 – ident: ref19 doi: 10.1109/TFUZZ.2004.840099 – ident: ref12 doi: 10.1016/j.neucom.2015.01.106 – ident: ref18 doi: 10.1016/j.asoc.2016.12.049 – ident: ref36 doi: 10.14569/IJACSA.2013.040406 – start-page: 849 year: 0 ident: ref3 article-title: On spectral clustering: Analysis and an algorithm publication-title: Proc Adv Neural Inf Process Syst – volume: 4 start-page: 2189 year: 0 ident: ref25 article-title: Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation publication-title: Proc Int Conf Mach Learn Cybern – start-page: 2224 year: 0 ident: ref26 article-title: Robust and sparse fuzzy k-means clustering publication-title: Proc 25th Int Joint Conf Artif Intell – ident: ref32 doi: 10.1016/j.neucom.2015.09.127 – ident: ref38 doi: 10.1109/TPAMI.1980.4766964 – ident: ref7 doi: 10.1016/0098-3004(84)90020-7 – ident: ref34 doi: 10.1016/j.fss.2019.03.017 – ident: ref11 doi: 10.1145/2623330.2623726 – ident: ref22 doi: 10.1109/TKDE.2020.2995748 – ident: ref29 doi: 10.1109/NAFIPS.2000.877408 |
| SSID | ssj0014518 |
| Score | 2.499913 |
| Snippet | The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Clustering Clustering algorithms Clustering methods Data analysis Data mining Data points Dimensionality reduction Embedding Feature extraction Fuzzy c-means (FCM) Iterative methods Noise sensitivity Optimization outliers Outliers (statistics) Pattern recognition Principal component analysis principal component analysis (PCA) Principal components analysis Robustness Sparsity |
| Title | Sparsity Fuzzy C-Means Clustering with Principal Component Analysis Embedding |
| URI | https://ieeexplore.ieee.org/document/9930657 https://www.proquest.com/docview/2831521405 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH5qmWDgaEGUSx7YwMGJEyceUUWFkIqQoFLFEtmxs1BaBM1Afz3PucQlxJbBl_TZ-b5nvwPglDEdJ1bm1M9MQENfcSo11zT3hYlziYQmXbzz-FZcT8KbaTTtwHkbC2OtLZ3PrOc-y7d8s8gKd1V2gVyKjBl3oRsnoorVal8Mwsivwt4EpyJmogmQYfLiYTR5fERTMAg8jgqch_wLCZVVVX78ikt-GW3BuFlZ5Vby5BVL7WWrb0kb_7v0bdishSa5rHbGDnTsvAdbTREHUp_pHmx8ykjYh_H9iyrdNMioWK3eyZCOLZIZGc4Kl1EB2xB3c0vuqjt6nMCNuJjj5KTJb0KunrU1jhN3YTK6ehhe07riAs0CGS2pEjbKpIlyFDWcaa7ygIss57kMrUKtIyzKm4SjWWu1NBmeWJWYRBlfK2Q5rvgerM1xzn0gaJdyLXhutUhCw0QiFRrbLLQ68SPF2QD8BoI0q9ORu6oYs7Q0S5hMS9hSB1tawzaAs7bPS5WM48_WfYdD27KGYABHDdJpfV7fUtyTTsigej34vdchrLtC85Wj7hGsLV8Le4xyZKlPyn34AXY92v8 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9swGH4F3WFwoINuolA2H3ZjLk7suPERVa26jSAkWqniEtmxc1kpCJoD_fW8zkcFY0K75eAv6bHzPK_9fgB8Z8wMYqdyGmQ2pCLQnCrDDc0DaQe5QkJTPt45uZSTmfg1j-Zb8GMTC-OcK53PXN9_lm_59i4r_FXZGXIpMuZgGz5EQoioitbavBmIKKgC3ySncsBkEyLD1Nl0PLu5QWMwDPscNTgX_BUNlXVV3vyMS4YZtyFp1lY5lvzpFyvTz9Z_pW3838V_gr1aapLzam_sw5ZbHkC7KeNA6lN9ALsvchJ2ILm-16WjBhkX6_UTGdLEIZ2R4aLwORWwDfF3t-SquqXHCfyId0ucnDQZTsjo1jjrWfEzzMaj6XBC65oLNAtVtKJauihTNspR1nBmuM5DLrOc50o4jWpHOhQ4MUfD1hllMzyzOraxtoHRyHNc8y_QWuKch0DQMuVG8twZGQvLZKw0mttMOBMHkeasC0EDQZrVCcl9XYxFWhomTKUlbKmHLa1h68Lpps99lY7j3dYdj8OmZQ1BF3oN0ml9Yh9T3JVeyqB-Pfp3r2_wcTJNLtKLn5e_j2HHl52v3HZ70Fo9FO4ExcnKfC335DMXMt5M |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity+Fuzzy+C-Means+Clustering+With+Principal+Component+Analysis+Embedding&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Chen%2C+Jingwei&rft.au=Zhu%2C+Jianyong&rft.au=Jiang%2C+Hongyun&rft.au=Yang%2C+Hui&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=31&rft.issue=7&rft.spage=2099&rft_id=info:doi/10.1109%2FTFUZZ.2022.3217343&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |