Sparsity Fuzzy C-Means Clustering with Principal Component Analysis Embedding

The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that introduces the concept of membership. In this method, the fuzzy membership matrix is obtained by calculating the distance between data points...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 31; no. 7; pp. 1 - 13
Main Authors Chen, Jingwei, Zhu, Jianyong, Jiang, Hongyun, Yang, Hui, Nie, Feiping
Format Journal Article
LanguageEnglish
Published New York IEEE 01.07.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2022.3217343

Cover

Abstract The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that introduces the concept of membership. In this method, the fuzzy membership matrix is obtained by calculating the distance between data points in the original space. However, these methods may yield suboptimal results owing to the influence of redundant features. Moreover, FCM is always sensitive to noise points and heavily subject to outliers. In this paper, we propose a method called sparsity FCM clustering with principal component analysis embedding (P_SFCM). We simultaneously conduct principal component analysis (PCA) and membership learning, and then add an additional weighting factor for each data point. The goal of this operation is to identify the noise or outliers. Overall, the benefit of our framework is that it retains most of the information in the subspace while improving the robustness of the noise. In this paper, we employ an iterative optimization algorithm to efficiently solve our model. To verify the reliability of the proposed method, we conduct a convergence analysis, noise robustness analysis, and multi-cluster experiments. Furthermore, comparative experiments are conducted on both synthetic and real benchmark datasets. The experimental results show that the P_SFCM is competitive with comparable methods.
AbstractList The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that introduces the concept of membership. In this method, the fuzzy membership matrix is obtained by calculating the distance between data points in the original space. However, these methods may yield suboptimal results owing to the influence of redundant features. Moreover, FCM is always sensitive to noise points and heavily subject to outliers. In this paper, we propose a method called sparsity FCM clustering with principal component analysis embedding (P_SFCM). We simultaneously conduct principal component analysis (PCA) and membership learning, and then add an additional weighting factor for each data point. The goal of this operation is to identify the noise or outliers. Overall, the benefit of our framework is that it retains most of the information in the subspace while improving the robustness of the noise. In this paper, we employ an iterative optimization algorithm to efficiently solve our model. To verify the reliability of the proposed method, we conduct a convergence analysis, noise robustness analysis, and multi-cluster experiments. Furthermore, comparative experiments are conducted on both synthetic and real benchmark datasets. The experimental results show that the P_SFCM is competitive with comparable methods.
The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that introduces the concept of membership. In this method, the fuzzy membership matrix is obtained by calculating the distance between data points in the original space. However, these methods may yield suboptimal results owing to the influence of redundant features. Moreover, FCM is always sensitive to noise points and heavily subject to outliers. In this article, we propose a method called sparsity FCM clustering with principal component analysis embedding (P_SFCM). We simultaneously conduct principal component analysis and membership learning, and then add an additional weighting factor for each data point. The goal of this operation is to identify the noise or outliers. Overall, the benefit of our framework is that it retains most of the information in the subspace while improving the robustness of the noise. In this article, we employ an iterative optimization algorithm to efficiently solve our model. To verify the reliability of the proposed method, we conduct a convergence analysis, noise robustness analysis, and multicluster experiments. Furthermore, comparative experiments are conducted on both synthetic and real benchmark datasets. The experimental results show that the P_SFCM is competitive with comparable methods.
Author Chen, Jingwei
Zhu, Jianyong
Nie, Feiping
Jiang, Hongyun
Yang, Hui
Author_xml – sequence: 1
  givenname: Jingwei
  orcidid: 0000-0002-9868-8936
  surname: Chen
  fullname: Chen, Jingwei
  organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, Jiangxi, P.R. China
– sequence: 2
  givenname: Jianyong
  orcidid: 0000-0002-4830-632X
  surname: Zhu
  fullname: Zhu, Jianyong
  organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, Jiangxi, P.R. China
– sequence: 3
  givenname: Hongyun
  surname: Jiang
  fullname: Jiang, Hongyun
  organization: China Railway Conservancy & Hydropower Planning and Design Group Co., Ltd, Nangchang, Jiang'xi, P.R. China
– sequence: 4
  givenname: Hui
  orcidid: 0000-0003-2560-9528
  surname: Yang
  fullname: Yang, Hui
  organization: School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang, Jiangxi, P.R. China
– sequence: 5
  givenname: Feiping
  orcidid: 0000-0002-0871-6519
  surname: Nie
  fullname: Nie, Feiping
  organization: School of Artificial Intelligence, OPtics and ElectroNics (iOPEN), School of Computer Science, Northwestern Polytechnical University, Xi'an, P.R. China
BookMark eNp9kLFOwzAQhi1UJNrCC8BiiTnF9iWOPVZRC0itQKJdukRO4oCrNAm2K5Q-PSmtGBiY7h_-7-70jdCgbmqN0C0lE0qJfFjN15vNhBHGJsBoDCFcoCGVIQ0IgXDQZ8Ih4DHhV2jk3JYQGkZUDNHyrVXWGd_h-f5w6HASLLWqHU6qvfPamvodfxn_gV_7mJtWVThpdm1_vPZ4Wquqc8bh2S7TRdF3r9FlqSqnb85zjNbz2Sp5ChYvj8_JdBHkTEY-UFxHuSyiksUAJANVMuB5CaUMteI05lpIEAAgdCaLnBCuRCFUQTMlwhgUjNH9aW9rm8-9dj7dNnvbv-NSJoBGjIYk6lvs1Mpt45zVZdpas1O2SylJj9rSH23pUVt61tZD4g-UG6-8aWpvlan-R-9OqNFa_96SEgiPYvgGdWJ9Sw
CODEN IEFSEV
CitedBy_id crossref_primary_10_1109_TKDE_2024_3419184
crossref_primary_10_1109_TIM_2025_3527611
crossref_primary_10_3390_w16203001
crossref_primary_10_3390_sym16101370
crossref_primary_10_1109_TAES_2024_3408139
crossref_primary_10_1080_23311916_2024_2430430
Cites_doi 10.1016/j.neucom.2019.10.108
10.1007/11811305_30
10.1007/s11432-014-5146-0
10.1080/00401706.1990.10484648
10.1016/j.neucom.2009.03.011
10.1145/1273496.1273562
10.1109/FUZZY.1994.343658
10.1007/s00521-016-2786-6
10.1109/TSMC.1987.6499296
10.1016/S0218-4885(00)00053-8
10.1016/j.fss.2014.12.007
10.1109/CloudCom.2011.86
10.1007/s00500-007-0231-6
10.1007/s11704-010-0393-8
10.1016/j.compmedimag.2010.12.001
10.1016/j.cviu.2013.05.001
10.1109/TKDE.2008.88
10.1016/j.patcog.2012.12.007
10.1109/ACCESS.2020.3015270
10.1145/1015330.1015408
10.1016/0169-7439(87)80084-9
10.1109/TFUZZ.2004.840099
10.1016/j.neucom.2015.01.106
10.1016/j.asoc.2016.12.049
10.14569/IJACSA.2013.040406
10.1016/j.neucom.2015.09.127
10.1109/TPAMI.1980.4766964
10.1016/0098-3004(84)90020-7
10.1016/j.fss.2019.03.017
10.1145/2623330.2623726
10.1109/TKDE.2020.2995748
10.1109/NAFIPS.2000.877408
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2022.3217343
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 13
ExternalDocumentID 10_1109_TFUZZ_2022_3217343
9930657
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-a6e5c9d5f27330b3af236cf3f94ea6176e89383338eb9dc006a8d8ad1ba8473a3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Mon Jun 30 02:34:27 EDT 2025
Wed Oct 01 02:37:30 EDT 2025
Thu Apr 24 23:02:23 EDT 2025
Wed Aug 27 02:29:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-a6e5c9d5f27330b3af236cf3f94ea6176e89383338eb9dc006a8d8ad1ba8473a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9868-8936
0000-0002-4830-632X
0000-0003-2560-9528
0000-0002-0871-6519
PQID 2831521405
PQPubID 85428
PageCount 13
ParticipantIDs proquest_journals_2831521405
ieee_primary_9930657
crossref_primary_10_1109_TFUZZ_2022_3217343
crossref_citationtrail_10_1109_TFUZZ_2022_3217343
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-07-01
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: 2023-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref32
ref1
ref17
ref39
ref16
ref38
ref19
ref18
balakrishnama (ref9) 1998
ref24
ref23
ref20
zhang (ref25) 0; 4
ref22
ref21
xu (ref26) 0
ref28
ref27
ref29
ref8
ref7
wang (ref5) 2019; 20
ref4
hou (ref10) 2014; 26
ref6
ng (ref3) 0
macqueen (ref2) 0; 1
nie (ref40) 0
References_xml – ident: ref23
  doi: 10.1016/j.neucom.2019.10.108
– ident: ref16
  doi: 10.1007/11811305_30
– ident: ref35
  doi: 10.1007/s11432-014-5146-0
– ident: ref1
  doi: 10.1080/00401706.1990.10484648
– volume: 26
  start-page: 1287
  year: 2014
  ident: ref10
  article-title: Discriminative embedded clustering: A framework for grouping high-dimensional data
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: ref20
  doi: 10.1016/j.neucom.2009.03.011
– ident: ref4
  doi: 10.1145/1273496.1273562
– start-page: 1
  year: 1998
  ident: ref9
  article-title: Linear discriminant analysis-A brief tutorial
  publication-title: Inst Signal Inf Process Dept Elect Comput Eng Mississippi State Univ
– ident: ref13
  doi: 10.1109/FUZZY.1994.343658
– ident: ref31
  doi: 10.1007/s00521-016-2786-6
– volume: 20
  start-page: 431
  year: 2019
  ident: ref5
  article-title: Scalable kernel k-means clustering with Nyström approximation: Relative-error bounds
  publication-title: J Mach Learn Res
– ident: ref39
  doi: 10.1109/TSMC.1987.6499296
– ident: ref30
  doi: 10.1016/S0218-4885(00)00053-8
– ident: ref33
  doi: 10.1016/j.fss.2014.12.007
– ident: ref37
  doi: 10.1109/CloudCom.2011.86
– volume: 1
  start-page: 281
  year: 0
  ident: ref2
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proc 5th Berkeley Symp Math Statist Probability
– ident: ref17
  doi: 10.1007/s00500-007-0231-6
– ident: ref15
  doi: 10.1007/s11704-010-0393-8
– ident: ref14
  doi: 10.1016/j.compmedimag.2010.12.001
– start-page: 1433
  year: 0
  ident: ref40
  article-title: Robust principal component analysis with non-greedy L1-norm maximization
  publication-title: Proc 22nd Int Joint Conf Artif Intell
– ident: ref24
  doi: 10.1016/j.cviu.2013.05.001
– ident: ref27
  doi: 10.1109/TKDE.2008.88
– ident: ref21
  doi: 10.1016/j.patcog.2012.12.007
– ident: ref28
  doi: 10.1109/ACCESS.2020.3015270
– ident: ref6
  doi: 10.1145/1015330.1015408
– ident: ref8
  doi: 10.1016/0169-7439(87)80084-9
– ident: ref19
  doi: 10.1109/TFUZZ.2004.840099
– ident: ref12
  doi: 10.1016/j.neucom.2015.01.106
– ident: ref18
  doi: 10.1016/j.asoc.2016.12.049
– ident: ref36
  doi: 10.14569/IJACSA.2013.040406
– start-page: 849
  year: 0
  ident: ref3
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Proc Adv Neural Inf Process Syst
– volume: 4
  start-page: 2189
  year: 0
  ident: ref25
  article-title: Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation
  publication-title: Proc Int Conf Mach Learn Cybern
– start-page: 2224
  year: 0
  ident: ref26
  article-title: Robust and sparse fuzzy k-means clustering
  publication-title: Proc 25th Int Joint Conf Artif Intell
– ident: ref32
  doi: 10.1016/j.neucom.2015.09.127
– ident: ref38
  doi: 10.1109/TPAMI.1980.4766964
– ident: ref7
  doi: 10.1016/0098-3004(84)90020-7
– ident: ref34
  doi: 10.1016/j.fss.2019.03.017
– ident: ref11
  doi: 10.1145/2623330.2623726
– ident: ref22
  doi: 10.1109/TKDE.2020.2995748
– ident: ref29
  doi: 10.1109/NAFIPS.2000.877408
SSID ssj0014518
Score 2.499913
Snippet The clustering method has been widely used in data mining, pattern recognition, and image identification. Fuzzy c-means (FCM) is a soft clustering method that...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Clustering
Clustering algorithms
Clustering methods
Data analysis
Data mining
Data points
Dimensionality reduction
Embedding
Feature extraction
Fuzzy c-means (FCM)
Iterative methods
Noise sensitivity
Optimization
outliers
Outliers (statistics)
Pattern recognition
Principal component analysis
principal component analysis (PCA)
Principal components analysis
Robustness
Sparsity
Title Sparsity Fuzzy C-Means Clustering with Principal Component Analysis Embedding
URI https://ieeexplore.ieee.org/document/9930657
https://www.proquest.com/docview/2831521405
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH5qmWDgaEGUSx7YwMGJEyceUUWFkIqQoFLFEtmxs1BaBM1Afz3PucQlxJbBl_TZ-b5nvwPglDEdJ1bm1M9MQENfcSo11zT3hYlziYQmXbzz-FZcT8KbaTTtwHkbC2OtLZ3PrOc-y7d8s8gKd1V2gVyKjBl3oRsnoorVal8Mwsivwt4EpyJmogmQYfLiYTR5fERTMAg8jgqch_wLCZVVVX78ikt-GW3BuFlZ5Vby5BVL7WWrb0kb_7v0bdishSa5rHbGDnTsvAdbTREHUp_pHmx8ykjYh_H9iyrdNMioWK3eyZCOLZIZGc4Kl1EB2xB3c0vuqjt6nMCNuJjj5KTJb0KunrU1jhN3YTK6ehhe07riAs0CGS2pEjbKpIlyFDWcaa7ygIss57kMrUKtIyzKm4SjWWu1NBmeWJWYRBlfK2Q5rvgerM1xzn0gaJdyLXhutUhCw0QiFRrbLLQ68SPF2QD8BoI0q9ORu6oYs7Q0S5hMS9hSB1tawzaAs7bPS5WM48_WfYdD27KGYABHDdJpfV7fUtyTTsigej34vdchrLtC85Wj7hGsLV8Le4xyZKlPyn34AXY92v8
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9swGH4F3WFwoINuolA2H3ZjLk7suPERVa26jSAkWqniEtmxc1kpCJoD_fW8zkcFY0K75eAv6bHzPK_9fgB8Z8wMYqdyGmQ2pCLQnCrDDc0DaQe5QkJTPt45uZSTmfg1j-Zb8GMTC-OcK53PXN9_lm_59i4r_FXZGXIpMuZgGz5EQoioitbavBmIKKgC3ySncsBkEyLD1Nl0PLu5QWMwDPscNTgX_BUNlXVV3vyMS4YZtyFp1lY5lvzpFyvTz9Z_pW3838V_gr1aapLzam_sw5ZbHkC7KeNA6lN9ALsvchJ2ILm-16WjBhkX6_UTGdLEIZ2R4aLwORWwDfF3t-SquqXHCfyId0ucnDQZTsjo1jjrWfEzzMaj6XBC65oLNAtVtKJauihTNspR1nBmuM5DLrOc50o4jWpHOhQ4MUfD1hllMzyzOraxtoHRyHNc8y_QWuKch0DQMuVG8twZGQvLZKw0mttMOBMHkeasC0EDQZrVCcl9XYxFWhomTKUlbKmHLa1h68Lpps99lY7j3dYdj8OmZQ1BF3oN0ml9Yh9T3JVeyqB-Pfp3r2_wcTJNLtKLn5e_j2HHl52v3HZ70Fo9FO4ExcnKfC335DMXMt5M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparsity+Fuzzy+C-Means+Clustering+With+Principal+Component+Analysis+Embedding&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Chen%2C+Jingwei&rft.au=Zhu%2C+Jianyong&rft.au=Jiang%2C+Hongyun&rft.au=Yang%2C+Hui&rft.date=2023-07-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=31&rft.issue=7&rft.spage=2099&rft_id=info:doi/10.1109%2FTFUZZ.2022.3217343&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon