LightSleepNet: Design of a Personalized Portable Sleep Staging System Based on Single-Channel EEG

This brief proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which can be implemented on various mobile platforms with limited hardware resources. The proposed architecture only requires an input of 30s single...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems. II, Express briefs Vol. 69; no. 1; pp. 224 - 228
Main Authors Liao, Yiqiao, Zhang, Chao, Zhang, Milin, Wang, Zhihua, Xie, Xiang
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1549-7747
1558-3791
DOI10.1109/TCSII.2021.3086981

Cover

Abstract This brief proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which can be implemented on various mobile platforms with limited hardware resources. The proposed architecture only requires an input of 30s single-channel EEG signal for the classification. Two residual blocks consisting of group 1-d convolution are used instead of the traditional convolution layers to remove the redundancy in the CNN. Channel shuffles are inserted into each convolution layer to improve the accuracy. In order to avoid over-fitting to the training set, a Global Average Pooling (GAP) layer is used to replace the fully connected layer, which further reduces the total number of the model parameters significantly. A personalized algorithm combining Adaptive Batch Normalization (AdaBN) and gradient re-weighting is proposed for unsupervised domain adaptation. A higher priority is given to examples that are easy to transfer to the new subject, and the algorithm could be personalized for new subjects without re-training. Experimental results show a state-of-the-art overall accuracy of 83.8% with only 45.76 Million Floating-point Operations per Second (MFLOPs) computation and 43.08 K parameters.
AbstractList This brief proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which can be implemented on various mobile platforms with limited hardware resources. The proposed architecture only requires an input of 30s single-channel EEG signal for the classification. Two residual blocks consisting of group 1-d convolution are used instead of the traditional convolution layers to remove the redundancy in the CNN. Channel shuffles are inserted into each convolution layer to improve the accuracy. In order to avoid over-fitting to the training set, a Global Average Pooling (GAP) layer is used to replace the fully connected layer, which further reduces the total number of the model parameters significantly. A personalized algorithm combining Adaptive Batch Normalization (AdaBN) and gradient re-weighting is proposed for unsupervised domain adaptation. A higher priority is given to examples that are easy to transfer to the new subject, and the algorithm could be personalized for new subjects without re-training. Experimental results show a state-of-the-art overall accuracy of 83.8% with only 45.76 Million Floating-point Operations per Second (MFLOPs) computation and 43.08 K parameters.
Author Zhang, Milin
Wang, Zhihua
Liao, Yiqiao
Xie, Xiang
Zhang, Chao
Author_xml – sequence: 1
  givenname: Yiqiao
  surname: Liao
  fullname: Liao, Yiqiao
  organization: Institute of Microelectronics, Tsinghua University, Beijing, China
– sequence: 2
  givenname: Chao
  orcidid: 0000-0002-9583-0722
  surname: Zhang
  fullname: Zhang, Chao
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 3
  givenname: Milin
  orcidid: 0000-0001-6915-0734
  surname: Zhang
  fullname: Zhang, Milin
  email: zhangmilin@tsinghua.edu.cn
  organization: Department of Electronic Engineering, Tsinghua University, Beijing, China
– sequence: 4
  givenname: Zhihua
  orcidid: 0000-0001-6567-0759
  surname: Wang
  fullname: Wang, Zhihua
  organization: Institute of Microelectronics, Tsinghua University, Beijing, China
– sequence: 5
  givenname: Xiang
  orcidid: 0000-0002-6895-3145
  surname: Xie
  fullname: Xie, Xiang
  organization: Institute of Microelectronics, Tsinghua University, Beijing, China
BookMark eNp9kE1PAjEQQBuDiYD-Ab008bzYr9223hQRSYiarJ43ZZmFkqXFth7017uI8eDBUyfNe5PJG6Ce8w4QOqdkRCnRVy_jcjYbMcLoiBNVaEWPUJ_mucq41LS3n4XOpBTyBA1i3BDCNOGsj8zcrtapbAF2j5Cu8R1Eu3LYN9jgZwjRO9PaT1jiZx-SWbSAv1lcJrOyboXLj5hgi29N7BjvcNl9tpCN18Y5aPFkMj1Fx41pI5z9vEP0ej95GT9k86fpbHwzz2qm85TpZS20NIoyoDRvOKNk2Yhc5qY2shG1kFwpViwUXxTEsCVoLYBpxnMCpFaMD9HlYe8u-Ld3iKna-PfQnR8rVtBCMqqKoqPUgaqDjzFAU9U2mWS9S8HYtqKk2getvoNW-6DVT9BOZX_UXbBbEz7-ly4OkgWAX0ELIRWT_AvM-YIO
CODEN ITCSFK
CitedBy_id crossref_primary_10_1109_TNSRE_2022_3220372
crossref_primary_10_1109_JBHI_2024_3403878
crossref_primary_10_1109_ACCESS_2024_3428435
crossref_primary_10_1109_TCSII_2023_3318814
crossref_primary_10_1088_1741_2552_aca2de
crossref_primary_10_1109_ACCESS_2024_3524267
crossref_primary_10_1109_LSENS_2023_3239343
crossref_primary_10_1109_TNSRE_2022_3173994
Cites_doi 10.1109/TNSRE.2017.2721116
10.5664/jcsm.6456
10.1109/BSN.2019.8771091
10.1109/TBME.2020.3020381
10.5455/medarh.2011.65.225-227
10.1109/JSSC.2017.2647923
10.1007/s00521-017-2919-6
10.1109/EMBC.2012.6346412
10.1016/j.cmpb.2013.07.006
10.1016/j.patcog.2018.03.005
10.1093/sleep/zsx003
10.1109/TNSRE.2018.2813138
10.1109/TNSRE.2019.2896659
10.1109/TCSII.2018.2799821
10.1609/aaai.v33i01.33018577
10.1109/ICCV.2017.469
10.1109/JSEN.2019.2956072
10.4018/AHISA
10.1007/978-3-030-30367-9_12
10.1109/TBME.2018.2872652
10.1109/TCSI.2019.2927839
10.1109/10.867928
10.1109/ISCAS45731.2020.9180501
10.1109/EMBC.2018.8512286
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TCSII.2021.3086981
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3791
EndPage 228
ExternalDocumentID 10_1109_TCSII_2021_3086981
9447827
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2018YFB220200*
  funderid: 10.13039/501100012166
– fundername: Beijing National Research Center for Information Science and Technology
  funderid: 10.13039/501100017582
– fundername: Beijing Innovation Center for Future Chip
  funderid: 10.13039/501100012282
GroupedDBID 0R~
29I
4.4
5VS
6IK
6J9
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PZZ
RIA
RIE
RNS
RXW
TAE
TAF
VJK
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c295t-9dc497a812e115f3210df4575aca7f4c4738826b83b60a2de994e292350e0c823
IEDL.DBID RIE
ISSN 1549-7747
IngestDate Mon Jun 30 06:10:24 EDT 2025
Wed Oct 01 01:50:29 EDT 2025
Thu Apr 24 22:52:35 EDT 2025
Wed Aug 27 03:03:36 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-9dc497a812e115f3210df4575aca7f4c4738826b83b60a2de994e292350e0c823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6895-3145
0000-0002-9583-0722
0000-0001-6567-0759
0000-0001-6915-0734
PQID 2616721866
PQPubID 85412
PageCount 5
ParticipantIDs ieee_primary_9447827
crossref_citationtrail_10_1109_TCSII_2021_3086981
proquest_journals_2616721866
crossref_primary_10_1109_TCSII_2021_3086981
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-Jan.
2022-1-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. II, Express briefs
PublicationTitleAbbrev TCSII
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref20
ref22
ref21
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Kaiser (ref25) 2017
References_xml – ident: ref10
  doi: 10.1109/TNSRE.2017.2721116
– ident: ref4
  doi: 10.5664/jcsm.6456
– ident: ref17
  doi: 10.1109/BSN.2019.8771091
– ident: ref13
  doi: 10.1109/TBME.2020.3020381
– ident: ref1
  doi: 10.5455/medarh.2011.65.225-227
– ident: ref6
  doi: 10.1109/JSSC.2017.2647923
– ident: ref5
  doi: 10.1007/s00521-017-2919-6
– ident: ref20
  doi: 10.1109/EMBC.2012.6346412
– ident: ref7
  doi: 10.1016/j.cmpb.2013.07.006
– ident: ref22
  doi: 10.1016/j.patcog.2018.03.005
– ident: ref3
  doi: 10.1093/sleep/zsx003
– volume-title: Depthwise separable convolutions for neural machine translation
  year: 2017
  ident: ref25
– ident: ref14
  doi: 10.1109/TNSRE.2018.2813138
– ident: ref11
  doi: 10.1109/TNSRE.2019.2896659
– ident: ref19
  doi: 10.1109/TCSII.2018.2799821
– ident: ref21
  doi: 10.1609/aaai.v33i01.33018577
– ident: ref24
  doi: 10.1109/ICCV.2017.469
– ident: ref8
  doi: 10.1109/JSEN.2019.2956072
– ident: ref9
  doi: 10.4018/AHISA
– ident: ref2
  doi: 10.1007/978-3-030-30367-9_12
– ident: ref16
  doi: 10.1109/TBME.2018.2872652
– ident: ref18
  doi: 10.1109/TCSI.2019.2927839
– ident: ref23
  doi: 10.1109/10.867928
– ident: ref12
  doi: 10.1109/ISCAS45731.2020.9180501
– ident: ref15
  doi: 10.1109/EMBC.2018.8512286
SSID ssj0029032
Score 2.4047668
Snippet This brief proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 224
SubjectTerms Accuracy
Adaptive algorithms
Artificial neural networks
channel shuffle
CNN
Convolution
Customization
Electroencephalography
Feature extraction
Floating point arithmetic
light-weight architecture
Neurons
Parameters
personalized healthy equipment
Real-time systems
Redundancy
Signal classification
Sleep
Sleep staging
Training
Weight reduction
Title LightSleepNet: Design of a Personalized Portable Sleep Staging System Based on Single-Channel EEG
URI https://ieeexplore.ieee.org/document/9447827
https://www.proquest.com/docview/2616721866
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3791
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029032
  issn: 1549-7747
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SnNJD0zxKt02DDrm1drS2rEdv7XbzohsCm4W9GVkaX2K8S-q95NdHkh-kTSi9GTMCwSd5vhnPzAdwSrlmMimzqDSlC1CEsJE0aRpxw4yUpdaZ9nnI2Q2_XLDrZbbcgq9DLwwihuIzjP1j-JdvV2bjU2VnijHn0MQ2bAvJ216tIbhSNIiR-YljjjEy0TfIUHV2N5lfXblQMBnHqWPwSo7_cEJBVeXFpzj4l_M9mPU7a8tK7uNNU8Tm8a-hjf-79XfwtiOa5Ht7MvZhC-sDePNs_OAh6F8-Mp9XiOsbbL6Rn6Gag6xKosltT9If0ZJQblpUSIItcQTVSxuRdto5-eEcoSWrmszdywoj37BQY0Wm04sjWJxP7yaXUSe5EJlEZU2krGFKaOf10VHF0jf42JI5SqeNFiUzTKSOkvNCpgWnOrGoFMPEkcSMIjUySd_DTr2q8QMQkwlDLS20lQXjXBd0bNMMUTLNFE_sCMY9Brnp5pF7WYwqD3EJVXnALfe45R1uI_gyrFm30zj-aX3ogRgsOwxGcNxDnXcX9nfuAkkuvD4X__j6qk-wm_jOh5B9OYad5mGDnx0faYqTcBCfAISj2nc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2V9lA40EJBBArsoTdwurH3k1spKQlNIqSkUm_Wend8wXKq1rn017O7tiOgCHGzrFlppbfreTOemQdwQoVhKi15UtrSByhSukTZLEuEZVap0hhuQh5yvhCTK_btml_vwMdtLwwixuIzHIbH-C_fre0mpMpONWPeoclHsMcZY7zt1tqGV5pGObIwc8xzRib7FhmqT1fny-nUB4PpaJh5Dq_V6Dc3FHVVHnyMo4e5OIB5v7e2sOTHcNMUQ3v_x9jG_938ITztqCY5a8_GM9jB-jk8-WUA4RGYWYjNlxXizQKbT-RLrOcg65IY8r2n6ffoSCw4LSok0ZZ4ihrEjUg775x89q7QkXVNlv5lhUloWaixIuPx1xdwdTFenU-STnQhsanmTaKdZVoa7_fRk8UytPi4knlSZ6yRJbNMZp6Ui0JlhaAmdag1w9TTRE6RWpVmL2G3Xtf4Cojl0lJHC-NUwYQwBR25jCMqZpgWqRvAqMcgt91E8iCMUeUxMqE6j7jlAbe8w20AH7Zrbtp5HP-0PgpAbC07DAZw3EOdd1f2LvehpJBBoUu8_vuq97A_Wc1n-Wy6uHwDj9PQBxFzMcew29xu8K1nJ03xLh7KnyBT3cQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LightSleepNet%3A+Design+of+a+Personalized+Portable+Sleep+Staging+System+Based+on+Single-Channel+EEG&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Liao%2C+Yiqiao&rft.au=Zhang%2C+Chao&rft.au=Zhang%2C+Milin&rft.au=Wang%2C+Zhihua&rft.date=2022-01-01&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=69&rft.issue=1&rft.spage=224&rft.epage=228&rft_id=info:doi/10.1109%2FTCSII.2021.3086981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSII_2021_3086981
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon