LightSleepNet: Design of a Personalized Portable Sleep Staging System Based on Single-Channel EEG
This brief proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which can be implemented on various mobile platforms with limited hardware resources. The proposed architecture only requires an input of 30s single...
Saved in:
| Published in | IEEE transactions on circuits and systems. II, Express briefs Vol. 69; no. 1; pp. 224 - 228 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1549-7747 1558-3791 |
| DOI | 10.1109/TCSII.2021.3086981 |
Cover
| Abstract | This brief proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which can be implemented on various mobile platforms with limited hardware resources. The proposed architecture only requires an input of 30s single-channel EEG signal for the classification. Two residual blocks consisting of group 1-d convolution are used instead of the traditional convolution layers to remove the redundancy in the CNN. Channel shuffles are inserted into each convolution layer to improve the accuracy. In order to avoid over-fitting to the training set, a Global Average Pooling (GAP) layer is used to replace the fully connected layer, which further reduces the total number of the model parameters significantly. A personalized algorithm combining Adaptive Batch Normalization (AdaBN) and gradient re-weighting is proposed for unsupervised domain adaptation. A higher priority is given to examples that are easy to transfer to the new subject, and the algorithm could be personalized for new subjects without re-training. Experimental results show a state-of-the-art overall accuracy of 83.8% with only 45.76 Million Floating-point Operations per Second (MFLOPs) computation and 43.08 K parameters. |
|---|---|
| AbstractList | This brief proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which can be implemented on various mobile platforms with limited hardware resources. The proposed architecture only requires an input of 30s single-channel EEG signal for the classification. Two residual blocks consisting of group 1-d convolution are used instead of the traditional convolution layers to remove the redundancy in the CNN. Channel shuffles are inserted into each convolution layer to improve the accuracy. In order to avoid over-fitting to the training set, a Global Average Pooling (GAP) layer is used to replace the fully connected layer, which further reduces the total number of the model parameters significantly. A personalized algorithm combining Adaptive Batch Normalization (AdaBN) and gradient re-weighting is proposed for unsupervised domain adaptation. A higher priority is given to examples that are easy to transfer to the new subject, and the algorithm could be personalized for new subjects without re-training. Experimental results show a state-of-the-art overall accuracy of 83.8% with only 45.76 Million Floating-point Operations per Second (MFLOPs) computation and 43.08 K parameters. |
| Author | Zhang, Milin Wang, Zhihua Liao, Yiqiao Xie, Xiang Zhang, Chao |
| Author_xml | – sequence: 1 givenname: Yiqiao surname: Liao fullname: Liao, Yiqiao organization: Institute of Microelectronics, Tsinghua University, Beijing, China – sequence: 2 givenname: Chao orcidid: 0000-0002-9583-0722 surname: Zhang fullname: Zhang, Chao organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 3 givenname: Milin orcidid: 0000-0001-6915-0734 surname: Zhang fullname: Zhang, Milin email: zhangmilin@tsinghua.edu.cn organization: Department of Electronic Engineering, Tsinghua University, Beijing, China – sequence: 4 givenname: Zhihua orcidid: 0000-0001-6567-0759 surname: Wang fullname: Wang, Zhihua organization: Institute of Microelectronics, Tsinghua University, Beijing, China – sequence: 5 givenname: Xiang orcidid: 0000-0002-6895-3145 surname: Xie fullname: Xie, Xiang organization: Institute of Microelectronics, Tsinghua University, Beijing, China |
| BookMark | eNp9kE1PAjEQQBuDiYD-Ab008bzYr9223hQRSYiarJ43ZZmFkqXFth7017uI8eDBUyfNe5PJG6Ce8w4QOqdkRCnRVy_jcjYbMcLoiBNVaEWPUJ_mucq41LS3n4XOpBTyBA1i3BDCNOGsj8zcrtapbAF2j5Cu8R1Eu3LYN9jgZwjRO9PaT1jiZx-SWbSAv1lcJrOyboXLj5hgi29N7BjvcNl9tpCN18Y5aPFkMj1Fx41pI5z9vEP0ej95GT9k86fpbHwzz2qm85TpZS20NIoyoDRvOKNk2Yhc5qY2shG1kFwpViwUXxTEsCVoLYBpxnMCpFaMD9HlYe8u-Ld3iKna-PfQnR8rVtBCMqqKoqPUgaqDjzFAU9U2mWS9S8HYtqKk2getvoNW-6DVT9BOZX_UXbBbEz7-ly4OkgWAX0ELIRWT_AvM-YIO |
| CODEN | ITCSFK |
| CitedBy_id | crossref_primary_10_1109_TNSRE_2022_3220372 crossref_primary_10_1109_JBHI_2024_3403878 crossref_primary_10_1109_ACCESS_2024_3428435 crossref_primary_10_1109_TCSII_2023_3318814 crossref_primary_10_1088_1741_2552_aca2de crossref_primary_10_1109_ACCESS_2024_3524267 crossref_primary_10_1109_LSENS_2023_3239343 crossref_primary_10_1109_TNSRE_2022_3173994 |
| Cites_doi | 10.1109/TNSRE.2017.2721116 10.5664/jcsm.6456 10.1109/BSN.2019.8771091 10.1109/TBME.2020.3020381 10.5455/medarh.2011.65.225-227 10.1109/JSSC.2017.2647923 10.1007/s00521-017-2919-6 10.1109/EMBC.2012.6346412 10.1016/j.cmpb.2013.07.006 10.1016/j.patcog.2018.03.005 10.1093/sleep/zsx003 10.1109/TNSRE.2018.2813138 10.1109/TNSRE.2019.2896659 10.1109/TCSII.2018.2799821 10.1609/aaai.v33i01.33018577 10.1109/ICCV.2017.469 10.1109/JSEN.2019.2956072 10.4018/AHISA 10.1007/978-3-030-30367-9_12 10.1109/TBME.2018.2872652 10.1109/TCSI.2019.2927839 10.1109/10.867928 10.1109/ISCAS45731.2020.9180501 10.1109/EMBC.2018.8512286 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TCSII.2021.3086981 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-3791 |
| EndPage | 228 |
| ExternalDocumentID | 10_1109_TCSII_2021_3086981 9447827 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2018YFB220200* funderid: 10.13039/501100012166 – fundername: Beijing National Research Center for Information Science and Technology funderid: 10.13039/501100017582 – fundername: Beijing Innovation Center for Future Chip funderid: 10.13039/501100012282 |
| GroupedDBID | 0R~ 29I 4.4 5VS 6IK 6J9 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PZZ RIA RIE RNS RXW TAE TAF VJK AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c295t-9dc497a812e115f3210df4575aca7f4c4738826b83b60a2de994e292350e0c823 |
| IEDL.DBID | RIE |
| ISSN | 1549-7747 |
| IngestDate | Mon Jun 30 06:10:24 EDT 2025 Wed Oct 01 01:50:29 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 Wed Aug 27 03:03:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-9dc497a812e115f3210df4575aca7f4c4738826b83b60a2de994e292350e0c823 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6895-3145 0000-0002-9583-0722 0000-0001-6567-0759 0000-0001-6915-0734 |
| PQID | 2616721866 |
| PQPubID | 85412 |
| PageCount | 5 |
| ParticipantIDs | ieee_primary_9447827 crossref_citationtrail_10_1109_TCSII_2021_3086981 proquest_journals_2616721866 crossref_primary_10_1109_TCSII_2021_3086981 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-Jan. 2022-1-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems. II, Express briefs |
| PublicationTitleAbbrev | TCSII |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref20 ref22 ref21 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Kaiser (ref25) 2017 |
| References_xml | – ident: ref10 doi: 10.1109/TNSRE.2017.2721116 – ident: ref4 doi: 10.5664/jcsm.6456 – ident: ref17 doi: 10.1109/BSN.2019.8771091 – ident: ref13 doi: 10.1109/TBME.2020.3020381 – ident: ref1 doi: 10.5455/medarh.2011.65.225-227 – ident: ref6 doi: 10.1109/JSSC.2017.2647923 – ident: ref5 doi: 10.1007/s00521-017-2919-6 – ident: ref20 doi: 10.1109/EMBC.2012.6346412 – ident: ref7 doi: 10.1016/j.cmpb.2013.07.006 – ident: ref22 doi: 10.1016/j.patcog.2018.03.005 – ident: ref3 doi: 10.1093/sleep/zsx003 – volume-title: Depthwise separable convolutions for neural machine translation year: 2017 ident: ref25 – ident: ref14 doi: 10.1109/TNSRE.2018.2813138 – ident: ref11 doi: 10.1109/TNSRE.2019.2896659 – ident: ref19 doi: 10.1109/TCSII.2018.2799821 – ident: ref21 doi: 10.1609/aaai.v33i01.33018577 – ident: ref24 doi: 10.1109/ICCV.2017.469 – ident: ref8 doi: 10.1109/JSEN.2019.2956072 – ident: ref9 doi: 10.4018/AHISA – ident: ref2 doi: 10.1007/978-3-030-30367-9_12 – ident: ref16 doi: 10.1109/TBME.2018.2872652 – ident: ref18 doi: 10.1109/TCSI.2019.2927839 – ident: ref23 doi: 10.1109/10.867928 – ident: ref12 doi: 10.1109/ISCAS45731.2020.9180501 – ident: ref15 doi: 10.1109/EMBC.2018.8512286 |
| SSID | ssj0029032 |
| Score | 2.4047668 |
| Snippet | This brief proposed LightSleepNet - a light-weight, 1-d Convolutional Neural Network (CNN) based personalized architecture for real-time sleep staging, which... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 224 |
| SubjectTerms | Accuracy Adaptive algorithms Artificial neural networks channel shuffle CNN Convolution Customization Electroencephalography Feature extraction Floating point arithmetic light-weight architecture Neurons Parameters personalized healthy equipment Real-time systems Redundancy Signal classification Sleep Sleep staging Training Weight reduction |
| Title | LightSleepNet: Design of a Personalized Portable Sleep Staging System Based on Single-Channel EEG |
| URI | https://ieeexplore.ieee.org/document/9447827 https://www.proquest.com/docview/2616721866 |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-3791 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0029032 issn: 1549-7747 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SnNJD0zxKt02DDrm1drS2rEdv7XbzohsCm4W9GVkaX2K8S-q95NdHkh-kTSi9GTMCwSd5vhnPzAdwSrlmMimzqDSlC1CEsJE0aRpxw4yUpdaZ9nnI2Q2_XLDrZbbcgq9DLwwihuIzjP1j-JdvV2bjU2VnijHn0MQ2bAvJ216tIbhSNIiR-YljjjEy0TfIUHV2N5lfXblQMBnHqWPwSo7_cEJBVeXFpzj4l_M9mPU7a8tK7uNNU8Tm8a-hjf-79XfwtiOa5Ht7MvZhC-sDePNs_OAh6F8-Mp9XiOsbbL6Rn6Gag6xKosltT9If0ZJQblpUSIItcQTVSxuRdto5-eEcoSWrmszdywoj37BQY0Wm04sjWJxP7yaXUSe5EJlEZU2krGFKaOf10VHF0jf42JI5SqeNFiUzTKSOkvNCpgWnOrGoFMPEkcSMIjUySd_DTr2q8QMQkwlDLS20lQXjXBd0bNMMUTLNFE_sCMY9Brnp5pF7WYwqD3EJVXnALfe45R1uI_gyrFm30zj-aX3ogRgsOwxGcNxDnXcX9nfuAkkuvD4X__j6qk-wm_jOh5B9OYad5mGDnx0faYqTcBCfAISj2nc |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9NAEB2V9lA40EJBBArsoTdwurH3k1spKQlNIqSkUm_Wend8wXKq1rn017O7tiOgCHGzrFlppbfreTOemQdwQoVhKi15UtrSByhSukTZLEuEZVap0hhuQh5yvhCTK_btml_vwMdtLwwixuIzHIbH-C_fre0mpMpONWPeoclHsMcZY7zt1tqGV5pGObIwc8xzRib7FhmqT1fny-nUB4PpaJh5Dq_V6Dc3FHVVHnyMo4e5OIB5v7e2sOTHcNMUQ3v_x9jG_938ITztqCY5a8_GM9jB-jk8-WUA4RGYWYjNlxXizQKbT-RLrOcg65IY8r2n6ffoSCw4LSok0ZZ4ihrEjUg775x89q7QkXVNlv5lhUloWaixIuPx1xdwdTFenU-STnQhsanmTaKdZVoa7_fRk8UytPi4knlSZ6yRJbNMZp6Ui0JlhaAmdag1w9TTRE6RWpVmL2G3Xtf4Cojl0lJHC-NUwYQwBR25jCMqZpgWqRvAqMcgt91E8iCMUeUxMqE6j7jlAbe8w20AH7Zrbtp5HP-0PgpAbC07DAZw3EOdd1f2LvehpJBBoUu8_vuq97A_Wc1n-Wy6uHwDj9PQBxFzMcew29xu8K1nJ03xLh7KnyBT3cQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LightSleepNet%3A+Design+of+a+Personalized+Portable+Sleep+Staging+System+Based+on+Single-Channel+EEG&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+II%2C+Express+briefs&rft.au=Liao%2C+Yiqiao&rft.au=Zhang%2C+Chao&rft.au=Zhang%2C+Milin&rft.au=Wang%2C+Zhihua&rft.date=2022-01-01&rft.issn=1549-7747&rft.eissn=1558-3791&rft.volume=69&rft.issue=1&rft.spage=224&rft.epage=228&rft_id=info:doi/10.1109%2FTCSII.2021.3086981&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSII_2021_3086981 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-7747&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-7747&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-7747&client=summon |