Generic Disjunctive Belief-Rule-Base Modeling, Inferencing, and Optimization

The combinatorial explosion problem is a great challenge for belief rule base (BRB) when a complex system has overnumbered attributes and/or referenced values for the attributes. This is because the BRB is conventionally constructed under the conjunctive assumption, conjunctive BRB, which requires c...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 27; no. 9; pp. 1866 - 1880
Main Authors Chang, Lei-Lei, Zhou, Zhi-Jie, Liao, Huchang, Chen, Yu-Wang, Tan, Xu, Herrera, Francisco
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2019.2892348

Cover

Abstract The combinatorial explosion problem is a great challenge for belief rule base (BRB) when a complex system has overnumbered attributes and/or referenced values for the attributes. This is because the BRB is conventionally constructed under the conjunctive assumption, conjunctive BRB, which requires covering each possible combination of all referenced values for all attributes. To solve this challenge, this study proposes a generic modeling, inferencing, and optimization approach for BRB under the disjunctive assumption, disjunctive BRB, that can significantly reduce its size. First, a disjunctive BRB is defined based on the mathematical description of the BRB space. The minimum size requirement for a disjunctive BRB is also discussed in comparison to a conjunctive one. Building on this, the generic disjunctive BRB modeling and inferencing procedures are proposed. Furthermore, an improved optimization model with further relaxed restrictions is constructed, and an optimization algorithm is developed in which only the new rule is optimized and its referenced values range is determined by the optimal solution in the former round optimization. The new optimization algorithm is more efficient with fewer variables and a more concise solution space. The results of three case studies confirm that by integrating both experts' knowledge and historic data, the modeling and inferencing processes can be well understood. Moreover, optimization can further improve the modeling accuracy while it facilitates downsizing the BRB in comparison with previous studies and other approaches.
AbstractList The combinatorial explosion problem is a great challenge for belief rule base (BRB) when a complex system has overnumbered attributes and/or referenced values for the attributes. This is because the BRB is conventionally constructed under the conjunctive assumption, conjunctive BRB, which requires covering each possible combination of all referenced values for all attributes. To solve this challenge, this study proposes a generic modeling, inferencing, and optimization approach for BRB under the disjunctive assumption, disjunctive BRB, that can significantly reduce its size. First, a disjunctive BRB is defined based on the mathematical description of the BRB space. The minimum size requirement for a disjunctive BRB is also discussed in comparison to a conjunctive one. Building on this, the generic disjunctive BRB modeling and inferencing procedures are proposed. Furthermore, an improved optimization model with further relaxed restrictions is constructed, and an optimization algorithm is developed in which only the new rule is optimized and its referenced values range is determined by the optimal solution in the former round optimization. The new optimization algorithm is more efficient with fewer variables and a more concise solution space. The results of three case studies confirm that by integrating both experts' knowledge and historic data, the modeling and inferencing processes can be well understood. Moreover, optimization can further improve the modeling accuracy while it facilitates downsizing the BRB in comparison with previous studies and other approaches.
Author Zhou, Zhi-Jie
Chang, Lei-Lei
Herrera, Francisco
Tan, Xu
Chen, Yu-Wang
Liao, Huchang
Author_xml – sequence: 1
  givenname: Lei-Lei
  orcidid: 0000-0002-0126-0635
  surname: Chang
  fullname: Chang, Lei-Lei
  email: leileichang@hotmail.com
  organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China
– sequence: 2
  givenname: Zhi-Jie
  orcidid: 0000-0003-0508-4648
  surname: Zhou
  fullname: Zhou, Zhi-Jie
  email: zhouzj04@tsinghua.org.cn
  organization: Department of Control Engineering, High-Tech Institute of Xi'an, Xi'an, China
– sequence: 3
  givenname: Huchang
  orcidid: 0000-0001-8278-3384
  surname: Liao
  fullname: Liao, Huchang
  email: liaohuchang@163.com
  organization: Business School, Sichuan University, Chengdu, China
– sequence: 4
  givenname: Yu-Wang
  surname: Chen
  fullname: Chen, Yu-Wang
  email: yu-wang.chen@manchester.uk.ac
  organization: Manchester Business School, University of Manchester, Manchester, U.K
– sequence: 5
  givenname: Xu
  surname: Tan
  fullname: Tan, Xu
  email: tanxu_nudt@yahoo.com
  organization: Shenzhen Institute of Information Technology, Shenzhen, China
– sequence: 6
  givenname: Francisco
  orcidid: 0000-0002-7283-312X
  surname: Herrera
  fullname: Herrera, Francisco
  email: herre-ra@decsai.ugr.es
  organization: Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain
BookMark eNp9kDtPwzAQgC0EEm3hD8ASiZWUs2M7zkgLLZWKKqF26WIlzgW5Sp3iJEjw60kfYmBguofuuzt9fXLuKoeE3FAYUgrJw3KyWq-HDGgyZCphEVdnpEcTTkOAiJ93OcgolDHIS9Kv6w0A5YKqHplP0aG3Jniy9aZ1prGfGIywtFiEb22J4SitMXit8q7l3u-DmSvQozOHInV5sNg1dmu_08ZW7opcFGlZ4_UpDshq8rwcv4TzxXQ2fpyHhiWiCZNIZLEBJVIJkNEizjnnuVEgWC5QYS6EiiKglOUZMFrIgmaxSoHTTMrMZNGA3B337nz10WLd6E3Veted1IwpzhgDEXdT6jhlfFXXHgttbHP4s_GpLTUFvXenD-703p0-uetQ9gfdebtN_df_0O0Rsoj4CygJMpE0-gHCT3vR
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s10489_021_02514_z
crossref_primary_10_1109_TAES_2022_3232597
crossref_primary_10_1016_j_eswa_2024_125517
crossref_primary_10_1016_j_asoc_2023_110160
crossref_primary_10_1038_s41598_021_82594_6
crossref_primary_10_1016_j_asoc_2024_112189
crossref_primary_10_1016_j_dss_2021_113558
crossref_primary_10_1007_s13042_021_01485_4
crossref_primary_10_1038_s41598_025_86851_w
crossref_primary_10_1016_j_ssaho_2024_100944
crossref_primary_10_1016_j_asoc_2024_112135
crossref_primary_10_1109_TFUZZ_2024_3416448
crossref_primary_10_3390_a14070213
crossref_primary_10_32604_cmc_2023_035743
crossref_primary_10_1109_ACCESS_2019_2924945
crossref_primary_10_1016_j_conengprac_2025_106298
crossref_primary_10_1016_j_ins_2022_05_068
crossref_primary_10_1016_j_eswa_2019_113161
crossref_primary_10_1016_j_eswa_2022_119065
crossref_primary_10_1016_j_eswa_2023_119567
crossref_primary_10_1109_TASE_2024_3402099
crossref_primary_10_1016_j_ress_2020_107055
crossref_primary_10_1109_JSYST_2021_3112523
crossref_primary_10_1109_TCYB_2021_3063285
crossref_primary_10_1016_j_cie_2020_106355
crossref_primary_10_1109_JSYST_2019_2958874
crossref_primary_10_1016_j_knosys_2022_110233
crossref_primary_10_1016_j_ress_2024_110614
crossref_primary_10_1016_j_cja_2022_08_003
crossref_primary_10_1186_s12938_023_01063_5
crossref_primary_10_1109_JSYST_2021_3066337
crossref_primary_10_1109_TSMC_2023_3279286
crossref_primary_10_1109_JSYST_2020_2991161
crossref_primary_10_1016_j_ins_2023_119748
crossref_primary_10_1109_TFUZZ_2020_3024024
crossref_primary_10_1109_TIM_2022_3173638
crossref_primary_10_1016_j_aei_2024_102852
crossref_primary_10_1007_s11227_024_06363_8
crossref_primary_10_1016_j_ins_2024_120462
crossref_primary_10_32604_cmc_2023_037686
crossref_primary_10_1016_j_ijar_2019_02_006
crossref_primary_10_1016_j_eswa_2023_122587
crossref_primary_10_1016_j_knosys_2021_107553
crossref_primary_10_1016_j_knosys_2020_106484
crossref_primary_10_1109_TSMC_2021_3095524
crossref_primary_10_1002_int_22500
crossref_primary_10_1016_j_knosys_2021_107713
crossref_primary_10_1016_j_cie_2021_107633
crossref_primary_10_1007_s11432_020_3001_7
crossref_primary_10_1016_j_ins_2020_09_035
crossref_primary_10_1016_j_aei_2024_102504
crossref_primary_10_1016_j_ijar_2024_109300
crossref_primary_10_1016_j_ress_2024_110796
crossref_primary_10_1109_ACCESS_2024_3476314
crossref_primary_10_1109_TSMC_2022_3183625
crossref_primary_10_1016_j_asoc_2021_107581
Cites_doi 10.1016/j.cie.2017.09.027
10.1016/j.ins.2015.12.009
10.1109/TSMCB.2007.903536
10.1016/j.knosys.2017.11.039
10.1007/978-3-662-44354-5
10.1109/TFUZZ.2017.2718483
10.1016/j.knosys.2012.10.016
10.1016/j.neunet.2004.12.003
10.1038/nature16961
10.1109/TFUZZ.2017.2788881
10.1109/ICIF.2002.1021218
10.1109/TFUZZ.2015.2426207
10.1016/j.ssci.2016.11.011
10.1016/j.eswa.2008.09.032
10.1109/TSMC.2017.2678607
10.1016/j.knosys.2015.07.026
10.1016/j.eswa.2009.07.067
10.1016/j.knosys.2013.08.019
10.1109/TSMC.2015.2504047
10.1016/j.eswa.2005.11.015
10.1016/j.ejor.2004.09.059
10.1016/j.knosys.2016.01.003
10.1016/j.knosys.2018.07.029
10.1109/TSMCA.2002.802809
10.1016/j.knosys.2016.11.001
10.1016/j.knosys.2014.09.010
10.1109/SMC.2013.237
10.1109/TSMCA.2005.851270
10.1007/s12559-018-9554-0
10.1016/j.neunet.2014.09.003
10.1016/j.eswa.2011.04.077
10.1016/j.ins.2013.01.022
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2019.2892348
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1941-0034
EndPage 1880
ExternalDocumentID 10_1109_TFUZZ_2019_2892348
8606961
Genre orig-research
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 71601180; 71501135; 71771156; 61773388; 61751304; 61702142; U1709215
  funderid: 10.13039/501100001809
– fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China
  grantid: 2017YFB120700
  funderid: 10.13039/501100012166
– fundername: Pengcheng Scholar Funded Scheme
– fundername: Natural Science Foundation of Hainan Province
  grantid: 617120
  funderid: 10.13039/501100004761
– fundername: Ministry of Education in China Liberal Arts and Social Sciences Foundation
  grantid: 17YJCZH157
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-935b7c085a600b1f7d444dc8052d5e8ed558330112db021f6f1b78a041b66bcb3
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Sun Sep 07 03:40:04 EDT 2025
Wed Oct 01 02:37:24 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Wed Aug 27 08:30:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-935b7c085a600b1f7d444dc8052d5e8ed558330112db021f6f1b78a041b66bcb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0126-0635
0000-0002-7283-312X
0000-0003-0508-4648
0000-0001-8278-3384
PQID 2284222057
PQPubID 85428
PageCount 15
ParticipantIDs proquest_journals_2284222057
ieee_primary_8606961
crossref_citationtrail_10_1109_TFUZZ_2019_2892348
crossref_primary_10_1109_TFUZZ_2019_2892348
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-09-01
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: 2019-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
bogachev (ref2) 2010
rohitha (ref21) 2007; 37
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref10
akaike (ref1) 2011
ref38
ref16
ref19
ref18
silver (ref24) 2016; 529
denux (ref13) 2014; 44
witten (ref27) 2016
ref23
ref26
ref25
ref22
xu (ref28) 0
liu (ref17) 2015
price (ref20) 2006
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref33
  doi: 10.1016/j.cie.2017.09.027
– ident: ref7
  doi: 10.1016/j.ins.2015.12.009
– volume: 37
  start-page: 1446
  year: 2007
  ident: ref21
  article-title: Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections
  publication-title: IEEE Trans Syst Man Cybern B Cybern
  doi: 10.1109/TSMCB.2007.903536
– ident: ref34
  doi: 10.1016/j.knosys.2017.11.039
– year: 2015
  ident: ref17
  publication-title: Uncertainty Theory
  doi: 10.1007/978-3-662-44354-5
– ident: ref19
  doi: 10.1109/TFUZZ.2017.2718483
– start-page: 1486
  year: 0
  ident: ref28
  article-title: Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR
  publication-title: Proc Int Joint Conf Neural Netw
– ident: ref4
  doi: 10.1016/j.knosys.2012.10.016
– ident: ref3
  doi: 10.1016/j.neunet.2004.12.003
– volume: 529
  start-page: 484
  year: 2016
  ident: ref24
  article-title: Mastering the game of Go with deep neural networks and thee search
  publication-title: Nature
  doi: 10.1038/nature16961
– year: 2010
  ident: ref2
  publication-title: Measure Theory
– ident: ref16
  doi: 10.1109/TFUZZ.2017.2788881
– year: 2016
  ident: ref27
  publication-title: Data Mining Practical Machine Learning Tools and Techniques
– ident: ref12
  doi: 10.1109/ICIF.2002.1021218
– ident: ref36
  doi: 10.1109/TFUZZ.2015.2426207
– ident: ref15
  doi: 10.1016/j.ssci.2016.11.011
– ident: ref38
  doi: 10.1016/j.eswa.2008.09.032
– ident: ref5
  doi: 10.1109/TSMC.2017.2678607
– ident: ref8
  doi: 10.1016/j.knosys.2015.07.026
– ident: ref37
  doi: 10.1016/j.eswa.2009.07.067
– ident: ref18
  doi: 10.1016/j.knosys.2013.08.019
– ident: ref35
  doi: 10.1109/TSMC.2015.2504047
– ident: ref29
  doi: 10.1016/j.eswa.2005.11.015
– ident: ref26
  doi: 10.1016/j.ejor.2004.09.059
– ident: ref25
  doi: 10.1016/j.knosys.2016.01.003
– volume: 44
  start-page: 2521
  year: 2014
  ident: ref13
  article-title: Optimal object association in the Dempster-Shafer framework
  publication-title: IEEE Trans Syst Man Cybern B Cybern
– ident: ref6
  doi: 10.1016/j.knosys.2018.07.029
– ident: ref32
  doi: 10.1109/TSMCA.2002.802809
– year: 2011
  ident: ref1
  publication-title: Akaike Information Criterion Statistics
– ident: ref30
  doi: 10.1016/j.knosys.2016.11.001
– ident: ref9
  doi: 10.1016/j.knosys.2014.09.010
– year: 2006
  ident: ref20
  publication-title: Differential Evolution&#x2014 A Practical Approach to Global Optimization
– ident: ref22
  doi: 10.1109/SMC.2013.237
– ident: ref31
  doi: 10.1109/TSMCA.2005.851270
– ident: ref14
  doi: 10.1007/s12559-018-9554-0
– ident: ref23
  doi: 10.1016/j.neunet.2014.09.003
– ident: ref11
  doi: 10.1016/j.eswa.2011.04.077
– ident: ref10
  doi: 10.1016/j.ins.2013.01.022
SSID ssj0014518
Score 2.5418231
Snippet The combinatorial explosion problem is a great challenge for belief rule base (BRB) when a complex system has overnumbered attributes and/or referenced values...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1866
SubjectTerms Algorithms
Belief rule base (BRB)
Business
Combinatorial analysis
Complex systems
disjunctive assumption
Downsizing
Expert systems
Explosions
Extraterrestrial measurements
inferencing
Mathematical model
Model accuracy
modeling
Optimization
Optimization algorithms
Solution space
Title Generic Disjunctive Belief-Rule-Base Modeling, Inferencing, and Optimization
URI https://ieeexplore.ieee.org/document/8606961
https://www.proquest.com/docview/2284222057
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ug-jBR1WsVtmDN03d3SbZ5mjVomIVxIJ4WTaPgq8q2l789c5ks6WoiLdd2CyBL5lHMt98AHsZgoqORDJq_cG4igumC64Y58LGutAi1nQ00LuSZ31-cSfuZuBgwoVxzvniM9ekR3-Xb1_NmI7KDtsYbSvKdWaztiy5WpMbAy6SkvYmW0xmsawIMrE6vO327--piks1Mb1IW6T1M-WEvKrKD1Ps_Ut3GXrVzMqykqfmeKSb5vNb08b_Tn0FlkKgGR2VK2MVZtywBvNVnXsNlis9hyhs7xosTjUnXINL35H6wUQnDx-P6P3ILkYdhzHrgN2Mnx3roAOMSEuNGO0H0XmgDvqXYmija7RGL4HmuQ797unt8RkL2gvMpEqMmGoJnRmMxwqMiHQyyCzn3BoSQLDCtZ0VRNdC45BajWHCQA4SnbWLmCdaSm10awPmhq9DtwkRputKCZ3YzFmOu1ynheBGovvkwuGCqENSgZGb0Jic9DGec5-gxCr3AOYEYB4ArMP-ZMxb2Zbjz6_XCJHJlwGMOjQqzPOwcz_yFP11SuzjbOv3UduwQP8u68waMDd6H7sdDExGetevyC_gmdzP
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB6hVCrlAG1S1PBo99AbcbK7sb3xkUejAAlIVSIhLqv1I1IoBATJpb-eGa83QoCq3nYle9fyZ8_Dnm8G4GeGoKIikYxSfzCu4oLpgivGubCxLrSINR0NjC7kYMLPrsTVGrRWXBjnnA8-c2169Hf59t4s6ais00NrW5Gv80Fw_FjJ1lrdGXCRlMQ32WUyi2VFkYlVZ9yfXF9THJdqo4ORdqnazws15OuqvBHGXsP0t2BUja0MLPnTXi502_x9lbbxfwf_GTaDqRkdlmvjC6y5eR0-VpHuddiqKjpEYYPXYeNFesIGDH1O6pmJTmZPN6j_SDJGRw6t1in7vbx17AhVYETV1IjT3opOA3nQvxRzG12iPLoLRM-vMOn_Gh8PWKi-wEyqxIKprtCZQYusQJtIJ9PM4pxbQyUQrHA9ZwURtlA8pFajoTCV00RnvSLmiZZSG93dhtr8fu6-QYQOu1JCJzZzluM-12khuJGoQLlwuCSakFRg5CakJqcKGbe5d1FilXsAcwIwDwA24WDV56FMzPHP1g1CZNUygNGEvQrzPOzdpzxFjZ0S_zjbeb_XD1gfjEfDfHh6cb4Ln-g_ZdTZHtQWj0u3j2bKQn_3q_MZmULgHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+Disjunctive+Belief-Rule-Base+Modeling%2C+Inferencing%2C+and+Optimization&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Chang%2C+Lei-Lei&rft.au=Zhou%2C+Zhi-Jie&rft.au=Liao%2C+Huchang&rft.au=Chen%2C+Yu-Wang&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=27&rft.issue=9&rft.spage=1866&rft.epage=1880&rft_id=info:doi/10.1109%2FTFUZZ.2019.2892348&rft.externalDocID=8606961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon