Generic Disjunctive Belief-Rule-Base Modeling, Inferencing, and Optimization
The combinatorial explosion problem is a great challenge for belief rule base (BRB) when a complex system has overnumbered attributes and/or referenced values for the attributes. This is because the BRB is conventionally constructed under the conjunctive assumption, conjunctive BRB, which requires c...
        Saved in:
      
    
          | Published in | IEEE transactions on fuzzy systems Vol. 27; no. 9; pp. 1866 - 1880 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.09.2019
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1063-6706 1941-0034  | 
| DOI | 10.1109/TFUZZ.2019.2892348 | 
Cover
| Abstract | The combinatorial explosion problem is a great challenge for belief rule base (BRB) when a complex system has overnumbered attributes and/or referenced values for the attributes. This is because the BRB is conventionally constructed under the conjunctive assumption, conjunctive BRB, which requires covering each possible combination of all referenced values for all attributes. To solve this challenge, this study proposes a generic modeling, inferencing, and optimization approach for BRB under the disjunctive assumption, disjunctive BRB, that can significantly reduce its size. First, a disjunctive BRB is defined based on the mathematical description of the BRB space. The minimum size requirement for a disjunctive BRB is also discussed in comparison to a conjunctive one. Building on this, the generic disjunctive BRB modeling and inferencing procedures are proposed. Furthermore, an improved optimization model with further relaxed restrictions is constructed, and an optimization algorithm is developed in which only the new rule is optimized and its referenced values range is determined by the optimal solution in the former round optimization. The new optimization algorithm is more efficient with fewer variables and a more concise solution space. The results of three case studies confirm that by integrating both experts' knowledge and historic data, the modeling and inferencing processes can be well understood. Moreover, optimization can further improve the modeling accuracy while it facilitates downsizing the BRB in comparison with previous studies and other approaches. | 
    
|---|---|
| AbstractList | The combinatorial explosion problem is a great challenge for belief rule base (BRB) when a complex system has overnumbered attributes and/or referenced values for the attributes. This is because the BRB is conventionally constructed under the conjunctive assumption, conjunctive BRB, which requires covering each possible combination of all referenced values for all attributes. To solve this challenge, this study proposes a generic modeling, inferencing, and optimization approach for BRB under the disjunctive assumption, disjunctive BRB, that can significantly reduce its size. First, a disjunctive BRB is defined based on the mathematical description of the BRB space. The minimum size requirement for a disjunctive BRB is also discussed in comparison to a conjunctive one. Building on this, the generic disjunctive BRB modeling and inferencing procedures are proposed. Furthermore, an improved optimization model with further relaxed restrictions is constructed, and an optimization algorithm is developed in which only the new rule is optimized and its referenced values range is determined by the optimal solution in the former round optimization. The new optimization algorithm is more efficient with fewer variables and a more concise solution space. The results of three case studies confirm that by integrating both experts' knowledge and historic data, the modeling and inferencing processes can be well understood. Moreover, optimization can further improve the modeling accuracy while it facilitates downsizing the BRB in comparison with previous studies and other approaches. | 
    
| Author | Zhou, Zhi-Jie Chang, Lei-Lei Herrera, Francisco Tan, Xu Chen, Yu-Wang Liao, Huchang  | 
    
| Author_xml | – sequence: 1 givenname: Lei-Lei orcidid: 0000-0002-0126-0635 surname: Chang fullname: Chang, Lei-Lei email: leileichang@hotmail.com organization: School of Automation, Hangzhou Dianzi University, Hangzhou, China – sequence: 2 givenname: Zhi-Jie orcidid: 0000-0003-0508-4648 surname: Zhou fullname: Zhou, Zhi-Jie email: zhouzj04@tsinghua.org.cn organization: Department of Control Engineering, High-Tech Institute of Xi'an, Xi'an, China – sequence: 3 givenname: Huchang orcidid: 0000-0001-8278-3384 surname: Liao fullname: Liao, Huchang email: liaohuchang@163.com organization: Business School, Sichuan University, Chengdu, China – sequence: 4 givenname: Yu-Wang surname: Chen fullname: Chen, Yu-Wang email: yu-wang.chen@manchester.uk.ac organization: Manchester Business School, University of Manchester, Manchester, U.K – sequence: 5 givenname: Xu surname: Tan fullname: Tan, Xu email: tanxu_nudt@yahoo.com organization: Shenzhen Institute of Information Technology, Shenzhen, China – sequence: 6 givenname: Francisco orcidid: 0000-0002-7283-312X surname: Herrera fullname: Herrera, Francisco email: herre-ra@decsai.ugr.es organization: Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada, Spain  | 
    
| BookMark | eNp9kDtPwzAQgC0EEm3hD8ASiZWUs2M7zkgLLZWKKqF26WIlzgW5Sp3iJEjw60kfYmBguofuuzt9fXLuKoeE3FAYUgrJw3KyWq-HDGgyZCphEVdnpEcTTkOAiJ93OcgolDHIS9Kv6w0A5YKqHplP0aG3Jniy9aZ1prGfGIywtFiEb22J4SitMXit8q7l3u-DmSvQozOHInV5sNg1dmu_08ZW7opcFGlZ4_UpDshq8rwcv4TzxXQ2fpyHhiWiCZNIZLEBJVIJkNEizjnnuVEgWC5QYS6EiiKglOUZMFrIgmaxSoHTTMrMZNGA3B337nz10WLd6E3Veted1IwpzhgDEXdT6jhlfFXXHgttbHP4s_GpLTUFvXenD-703p0-uetQ9gfdebtN_df_0O0Rsoj4CygJMpE0-gHCT3vR | 
    
| CODEN | IEFSEV | 
    
| CitedBy_id | crossref_primary_10_1007_s10489_021_02514_z crossref_primary_10_1109_TAES_2022_3232597 crossref_primary_10_1016_j_eswa_2024_125517 crossref_primary_10_1016_j_asoc_2023_110160 crossref_primary_10_1038_s41598_021_82594_6 crossref_primary_10_1016_j_asoc_2024_112189 crossref_primary_10_1016_j_dss_2021_113558 crossref_primary_10_1007_s13042_021_01485_4 crossref_primary_10_1038_s41598_025_86851_w crossref_primary_10_1016_j_ssaho_2024_100944 crossref_primary_10_1016_j_asoc_2024_112135 crossref_primary_10_1109_TFUZZ_2024_3416448 crossref_primary_10_3390_a14070213 crossref_primary_10_32604_cmc_2023_035743 crossref_primary_10_1109_ACCESS_2019_2924945 crossref_primary_10_1016_j_conengprac_2025_106298 crossref_primary_10_1016_j_ins_2022_05_068 crossref_primary_10_1016_j_eswa_2019_113161 crossref_primary_10_1016_j_eswa_2022_119065 crossref_primary_10_1016_j_eswa_2023_119567 crossref_primary_10_1109_TASE_2024_3402099 crossref_primary_10_1016_j_ress_2020_107055 crossref_primary_10_1109_JSYST_2021_3112523 crossref_primary_10_1109_TCYB_2021_3063285 crossref_primary_10_1016_j_cie_2020_106355 crossref_primary_10_1109_JSYST_2019_2958874 crossref_primary_10_1016_j_knosys_2022_110233 crossref_primary_10_1016_j_ress_2024_110614 crossref_primary_10_1016_j_cja_2022_08_003 crossref_primary_10_1186_s12938_023_01063_5 crossref_primary_10_1109_JSYST_2021_3066337 crossref_primary_10_1109_TSMC_2023_3279286 crossref_primary_10_1109_JSYST_2020_2991161 crossref_primary_10_1016_j_ins_2023_119748 crossref_primary_10_1109_TFUZZ_2020_3024024 crossref_primary_10_1109_TIM_2022_3173638 crossref_primary_10_1016_j_aei_2024_102852 crossref_primary_10_1007_s11227_024_06363_8 crossref_primary_10_1016_j_ins_2024_120462 crossref_primary_10_32604_cmc_2023_037686 crossref_primary_10_1016_j_ijar_2019_02_006 crossref_primary_10_1016_j_eswa_2023_122587 crossref_primary_10_1016_j_knosys_2021_107553 crossref_primary_10_1016_j_knosys_2020_106484 crossref_primary_10_1109_TSMC_2021_3095524 crossref_primary_10_1002_int_22500 crossref_primary_10_1016_j_knosys_2021_107713 crossref_primary_10_1016_j_cie_2021_107633 crossref_primary_10_1007_s11432_020_3001_7 crossref_primary_10_1016_j_ins_2020_09_035 crossref_primary_10_1016_j_aei_2024_102504 crossref_primary_10_1016_j_ijar_2024_109300 crossref_primary_10_1016_j_ress_2024_110796 crossref_primary_10_1109_ACCESS_2024_3476314 crossref_primary_10_1109_TSMC_2022_3183625 crossref_primary_10_1016_j_asoc_2021_107581  | 
    
| Cites_doi | 10.1016/j.cie.2017.09.027 10.1016/j.ins.2015.12.009 10.1109/TSMCB.2007.903536 10.1016/j.knosys.2017.11.039 10.1007/978-3-662-44354-5 10.1109/TFUZZ.2017.2718483 10.1016/j.knosys.2012.10.016 10.1016/j.neunet.2004.12.003 10.1038/nature16961 10.1109/TFUZZ.2017.2788881 10.1109/ICIF.2002.1021218 10.1109/TFUZZ.2015.2426207 10.1016/j.ssci.2016.11.011 10.1016/j.eswa.2008.09.032 10.1109/TSMC.2017.2678607 10.1016/j.knosys.2015.07.026 10.1016/j.eswa.2009.07.067 10.1016/j.knosys.2013.08.019 10.1109/TSMC.2015.2504047 10.1016/j.eswa.2005.11.015 10.1016/j.ejor.2004.09.059 10.1016/j.knosys.2016.01.003 10.1016/j.knosys.2018.07.029 10.1109/TSMCA.2002.802809 10.1016/j.knosys.2016.11.001 10.1016/j.knosys.2014.09.010 10.1109/SMC.2013.237 10.1109/TSMCA.2005.851270 10.1007/s12559-018-9554-0 10.1016/j.neunet.2014.09.003 10.1016/j.eswa.2011.04.077 10.1016/j.ins.2013.01.022  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TFUZZ.2019.2892348 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science Business  | 
    
| EISSN | 1941-0034 | 
    
| EndPage | 1880 | 
    
| ExternalDocumentID | 10_1109_TFUZZ_2019_2892348 8606961  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China; National Science Foundation of China grantid: 71601180; 71501135; 71771156; 61773388; 61751304; 61702142; U1709215 funderid: 10.13039/501100001809 – fundername: National Basic Research Program of China (973 Program); National Key Research and Development Program of China grantid: 2017YFB120700 funderid: 10.13039/501100012166 – fundername: Pengcheng Scholar Funded Scheme – fundername: Natural Science Foundation of Hainan Province grantid: 617120 funderid: 10.13039/501100004761 – fundername: Ministry of Education in China Liberal Arts and Social Sciences Foundation grantid: 17YJCZH157  | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c295t-935b7c085a600b1f7d444dc8052d5e8ed558330112db021f6f1b78a041b66bcb3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1063-6706 | 
    
| IngestDate | Sun Sep 07 03:40:04 EDT 2025 Wed Oct 01 02:37:24 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Wed Aug 27 08:30:57 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c295t-935b7c085a600b1f7d444dc8052d5e8ed558330112db021f6f1b78a041b66bcb3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0126-0635 0000-0002-7283-312X 0000-0003-0508-4648 0000-0001-8278-3384  | 
    
| PQID | 2284222057 | 
    
| PQPubID | 85428 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_journals_2284222057 ieee_primary_8606961 crossref_citationtrail_10_1109_TFUZZ_2019_2892348 crossref_primary_10_1109_TFUZZ_2019_2892348  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-09-01 | 
    
| PublicationDateYYYYMMDD | 2019-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2019 text: 2019-09-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on fuzzy systems | 
    
| PublicationTitleAbbrev | TFUZZ | 
    
| PublicationYear | 2019 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref35 ref34 ref12 ref37 ref15 bogachev (ref2) 2010 rohitha (ref21) 2007; 37 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref10 akaike (ref1) 2011 ref38 ref16 ref19 ref18 silver (ref24) 2016; 529 denux (ref13) 2014; 44 witten (ref27) 2016 ref23 ref26 ref25 ref22 xu (ref28) 0 liu (ref17) 2015 price (ref20) 2006 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref33 doi: 10.1016/j.cie.2017.09.027 – ident: ref7 doi: 10.1016/j.ins.2015.12.009 – volume: 37 start-page: 1446 year: 2007 ident: ref21 article-title: Rule mining and classification in a situation assessment application: A belief-theoretic approach for handling data imperfections publication-title: IEEE Trans Syst Man Cybern B Cybern doi: 10.1109/TSMCB.2007.903536 – ident: ref34 doi: 10.1016/j.knosys.2017.11.039 – year: 2015 ident: ref17 publication-title: Uncertainty Theory doi: 10.1007/978-3-662-44354-5 – ident: ref19 doi: 10.1109/TFUZZ.2017.2718483 – start-page: 1486 year: 0 ident: ref28 article-title: Kernel MSE algorithm: a unified framework for KFD, LS-SVM and KRR publication-title: Proc Int Joint Conf Neural Netw – ident: ref4 doi: 10.1016/j.knosys.2012.10.016 – ident: ref3 doi: 10.1016/j.neunet.2004.12.003 – volume: 529 start-page: 484 year: 2016 ident: ref24 article-title: Mastering the game of Go with deep neural networks and thee search publication-title: Nature doi: 10.1038/nature16961 – year: 2010 ident: ref2 publication-title: Measure Theory – ident: ref16 doi: 10.1109/TFUZZ.2017.2788881 – year: 2016 ident: ref27 publication-title: Data Mining Practical Machine Learning Tools and Techniques – ident: ref12 doi: 10.1109/ICIF.2002.1021218 – ident: ref36 doi: 10.1109/TFUZZ.2015.2426207 – ident: ref15 doi: 10.1016/j.ssci.2016.11.011 – ident: ref38 doi: 10.1016/j.eswa.2008.09.032 – ident: ref5 doi: 10.1109/TSMC.2017.2678607 – ident: ref8 doi: 10.1016/j.knosys.2015.07.026 – ident: ref37 doi: 10.1016/j.eswa.2009.07.067 – ident: ref18 doi: 10.1016/j.knosys.2013.08.019 – ident: ref35 doi: 10.1109/TSMC.2015.2504047 – ident: ref29 doi: 10.1016/j.eswa.2005.11.015 – ident: ref26 doi: 10.1016/j.ejor.2004.09.059 – ident: ref25 doi: 10.1016/j.knosys.2016.01.003 – volume: 44 start-page: 2521 year: 2014 ident: ref13 article-title: Optimal object association in the Dempster-Shafer framework publication-title: IEEE Trans Syst Man Cybern B Cybern – ident: ref6 doi: 10.1016/j.knosys.2018.07.029 – ident: ref32 doi: 10.1109/TSMCA.2002.802809 – year: 2011 ident: ref1 publication-title: Akaike Information Criterion Statistics – ident: ref30 doi: 10.1016/j.knosys.2016.11.001 – ident: ref9 doi: 10.1016/j.knosys.2014.09.010 – year: 2006 ident: ref20 publication-title: Differential Evolution— A Practical Approach to Global Optimization – ident: ref22 doi: 10.1109/SMC.2013.237 – ident: ref31 doi: 10.1109/TSMCA.2005.851270 – ident: ref14 doi: 10.1007/s12559-018-9554-0 – ident: ref23 doi: 10.1016/j.neunet.2014.09.003 – ident: ref11 doi: 10.1016/j.eswa.2011.04.077 – ident: ref10 doi: 10.1016/j.ins.2013.01.022  | 
    
| SSID | ssj0014518 | 
    
| Score | 2.5418231 | 
    
| Snippet | The combinatorial explosion problem is a great challenge for belief rule base (BRB) when a complex system has overnumbered attributes and/or referenced values... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1866 | 
    
| SubjectTerms | Algorithms Belief rule base (BRB) Business Combinatorial analysis Complex systems disjunctive assumption Downsizing Expert systems Explosions Extraterrestrial measurements inferencing Mathematical model Model accuracy modeling Optimization Optimization algorithms Solution space  | 
    
| Title | Generic Disjunctive Belief-Rule-Base Modeling, Inferencing, and Optimization | 
    
| URI | https://ieeexplore.ieee.org/document/8606961 https://www.proquest.com/docview/2284222057  | 
    
| Volume | 27 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LSwMxEB7Ug-jBR1WsVtmDN03d3SbZ5mjVomIVxIJ4WTaPgq8q2l789c5ks6WoiLdd2CyBL5lHMt98AHsZgoqORDJq_cG4igumC64Y58LGutAi1nQ00LuSZ31-cSfuZuBgwoVxzvniM9ekR3-Xb1_NmI7KDtsYbSvKdWaztiy5WpMbAy6SkvYmW0xmsawIMrE6vO327--piks1Mb1IW6T1M-WEvKrKD1Ps_Ut3GXrVzMqykqfmeKSb5vNb08b_Tn0FlkKgGR2VK2MVZtywBvNVnXsNlis9hyhs7xosTjUnXINL35H6wUQnDx-P6P3ILkYdhzHrgN2Mnx3roAOMSEuNGO0H0XmgDvqXYmija7RGL4HmuQ797unt8RkL2gvMpEqMmGoJnRmMxwqMiHQyyCzn3BoSQLDCtZ0VRNdC45BajWHCQA4SnbWLmCdaSm10awPmhq9DtwkRputKCZ3YzFmOu1ynheBGovvkwuGCqENSgZGb0Jic9DGec5-gxCr3AOYEYB4ArMP-ZMxb2Zbjz6_XCJHJlwGMOjQqzPOwcz_yFP11SuzjbOv3UduwQP8u68waMDd6H7sdDExGetevyC_gmdzP | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB6hVCrlAG1S1PBo99AbcbK7sb3xkUejAAlIVSIhLqv1I1IoBATJpb-eGa83QoCq3nYle9fyZ8_Dnm8G4GeGoKIikYxSfzCu4oLpgivGubCxLrSINR0NjC7kYMLPrsTVGrRWXBjnnA8-c2169Hf59t4s6ais00NrW5Gv80Fw_FjJ1lrdGXCRlMQ32WUyi2VFkYlVZ9yfXF9THJdqo4ORdqnazws15OuqvBHGXsP0t2BUja0MLPnTXi502_x9lbbxfwf_GTaDqRkdlmvjC6y5eR0-VpHuddiqKjpEYYPXYeNFesIGDH1O6pmJTmZPN6j_SDJGRw6t1in7vbx17AhVYETV1IjT3opOA3nQvxRzG12iPLoLRM-vMOn_Gh8PWKi-wEyqxIKprtCZQYusQJtIJ9PM4pxbQyUQrHA9ZwURtlA8pFajoTCV00RnvSLmiZZSG93dhtr8fu6-QYQOu1JCJzZzluM-12khuJGoQLlwuCSakFRg5CakJqcKGbe5d1FilXsAcwIwDwA24WDV56FMzPHP1g1CZNUygNGEvQrzPOzdpzxFjZ0S_zjbeb_XD1gfjEfDfHh6cb4Ln-g_ZdTZHtQWj0u3j2bKQn_3q_MZmULgHA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generic+Disjunctive+Belief-Rule-Base+Modeling%2C+Inferencing%2C+and+Optimization&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Chang%2C+Lei-Lei&rft.au=Zhou%2C+Zhi-Jie&rft.au=Liao%2C+Huchang&rft.au=Chen%2C+Yu-Wang&rft.date=2019-09-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=27&rft.issue=9&rft.spage=1866&rft.epage=1880&rft_id=info:doi/10.1109%2FTFUZZ.2019.2892348&rft.externalDocID=8606961 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |