Passenger Flow Prediction for New Line Using Region Dividing and Fuzzy Boundary Processing

Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport network. This paper proposes a new prediction model by exploring the relationship between the passenger flow of a station and its surrounding ar...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on fuzzy systems Vol. 27; no. 5; pp. 994 - 1007
Main Authors Yu, Hai-Tao, Jiang, Chang-Jun, Xiao, Ran-Dong, Liu, Hang-Ou, Lv, Weifeng
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6706
1941-0034
DOI10.1109/TFUZZ.2018.2825950

Cover

Abstract Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport network. This paper proposes a new prediction model by exploring the relationship between the passenger flow of a station and its surrounding area's factors. First, in order to obtain more accurate factors affecting the passenger flow, the city is divided into multiple regions with similar internal traffic properties and moderate spatial size using the data of urban road network and buildings. Second, to effectively solve the problem of fuzziness of the station's attraction scope, the concept of the membership degree and fuzzy processing method is proposed. Finally, the station's passenger flow prediction model is launched based on Xgboost. The experimental results on three districts in Beijing show that our method outperforms all baselines significantly, which improves the accuracy by more than 20%.
AbstractList Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport network. This paper proposes a new prediction model by exploring the relationship between the passenger flow of a station and its surrounding are's factors. First, in order to obtain more accurate factors affecting the passenger flow, the city is divided into multiple regions with similar internal traffic properties and moderate spatial size using the data of urban road network and buildings. Second, to effectively solve the problem of fuzziness of the station's attraction scope, the concept of the membership degree and fuzzy processing method is proposed. Finally, the station's passenger flow prediction model is launched based on Xgboost. The experimental results on three districts in Beijing show that our method outperforms all baselines significantly, which improves the accuracy by more than 20%.
Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport network. This paper proposes a new prediction model by exploring the relationship between the passenger flow of a station and its surrounding area's factors. First, in order to obtain more accurate factors affecting the passenger flow, the city is divided into multiple regions with similar internal traffic properties and moderate spatial size using the data of urban road network and buildings. Second, to effectively solve the problem of fuzziness of the station's attraction scope, the concept of the membership degree and fuzzy processing method is proposed. Finally, the station's passenger flow prediction model is launched based on Xgboost. The experimental results on three districts in Beijing show that our method outperforms all baselines significantly, which improves the accuracy by more than 20%.
Author Lv, Weifeng
Yu, Hai-Tao
Xiao, Ran-Dong
Liu, Hang-Ou
Jiang, Chang-Jun
Author_xml – sequence: 1
  givenname: Hai-Tao
  orcidid: 0000-0003-3939-7984
  surname: Yu
  fullname: Yu, Hai-Tao
  email: yuhaitao@bjjtw.gov.cn
  organization: School of Computer Science and Engineering, Beihang University, Beijing, China
– sequence: 2
  givenname: Chang-Jun
  surname: Jiang
  fullname: Jiang, Chang-Jun
  email: 185021203@qq.com
  organization: College of Software Engineering, Beihang University, Beijing, China
– sequence: 3
  givenname: Ran-Dong
  surname: Xiao
  fullname: Xiao, Ran-Dong
  email: xiaorandong@bjjtw.gov.cn
  organization: Beijing Transportation Information Center, and Beijing Key Laboratory for Comprehensive Traffic Operation Monitoring and Service, BeijingChina
– sequence: 4
  givenname: Hang-Ou
  orcidid: 0000-0003-4514-9370
  surname: Liu
  fullname: Liu, Hang-Ou
  email: 455051265@qq.com
  organization: College of Software Engineering, Beihang University, Beijing, China
– sequence: 5
  givenname: Weifeng
  orcidid: 0000-0002-7061-9509
  surname: Lv
  fullname: Lv, Weifeng
  email: lwf@buaa.edu.cn
  organization: School of Computer Science and Engineering, Beihang University, Beijing, China
BookMark eNp9kE1PAjEQhhujiYD-Ab008bzYz6U9KoqaECUGLlw2-zFLSrDFdpHAr7crxIMHT9NJ32cm83TRqXUWELqipE8p0bfT0Ww-7zNCVZ8pJrUkJ6hDtaAJIVycxjdJeZIOSHqOuiEsCaFCUtVB80keAtgFeDxauS2eeKhM2Rhnce08foUtHhsLeBaMXeB3WLQ_D-bLVG2f2wqPNvv9Dt-7ja1yv4sDXAmhTV-gszpfBbg81h6ajR6nw-dk_Pb0MrwbJyXTsklUKetaKCpyoqGqiJRQUK5iS1NexyIHogIyYBXVuS50wQtRClbUNRswJlLeQzeHuWvvPjcQmmzpNt7GlRljUQnjXOiYUodU6V0IHuqsNE3eHtr43KwySrLWZPZjMmtNZkeTEWV_0LU3H_HY_6HrA2QA4BdQnKdKS_4NTZGBSA
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s10489_022_03264_2
crossref_primary_10_1080_03081079_2023_2231133
crossref_primary_10_3233_JCM_247338
crossref_primary_10_1016_j_tra_2021_07_001
crossref_primary_10_1109_TITS_2021_3095547
crossref_primary_10_1016_j_trc_2020_102951
crossref_primary_10_1016_j_ins_2022_06_088
crossref_primary_10_3390_app14073100
crossref_primary_10_3390_app14177880
crossref_primary_10_1109_TITS_2021_3137446
Cites_doi 10.1109/TFUZZ.2015.2396078
10.1016/j.trc.2010.05.019
10.2991/aiea-16.2016.20
10.1145/2939672.2939785
10.1016/j.trc.2011.06.009
10.1007/978-3-319-59105-6_57
10.4236/jtts.2012.23024
10.1177/1687814016675999
10.1109/ICMLA.2016.0187
10.1016/j.eswa.2005.11.007
10.1016/j.apgeog.2012.09.006
10.1109/TFUZZ.2016.2593500
10.1140/epjb/e2012-30697-5
10.1109/TFUZZ.2013.2246571
10.1109/TFUZZ.2011.2164256
10.1109/TFUZZ.2008.917289
10.1109/TFUZZ.2016.2566812
10.1109/TFUZZ.2016.2604003
10.3390/en10081168
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2018.2825950
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 1007
ExternalDocumentID 10_1109_TFUZZ_2018_2825950
8336895
Genre orig-research
GrantInformation_xml – fundername: Science and Technology Plan Project of Beijing
  grantid: Z161100001116094
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYOK
AAYXX
CITATION
RIG
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-8c5ff4814a09edd055eb1384a0163f4a0574de072d19a9b9b3b4c42bff2722463
IEDL.DBID RIE
ISSN 1063-6706
IngestDate Sun Jun 29 12:52:45 EDT 2025
Thu Apr 24 23:12:04 EDT 2025
Tue Jul 01 01:55:27 EDT 2025
Wed Aug 27 02:46:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-8c5ff4814a09edd055eb1384a0163f4a0574de072d19a9b9b3b4c42bff2722463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7061-9509
0000-0003-3939-7984
0000-0003-4514-9370
PQID 2220123349
PQPubID 85428
PageCount 14
ParticipantIDs crossref_primary_10_1109_TFUZZ_2018_2825950
crossref_citationtrail_10_1109_TFUZZ_2018_2825950
proquest_journals_2220123349
ieee_primary_8336895
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
narayanam (ref20) 0
ref23
ref15
ref14
(ref24) 2012
lancichinetti (ref21) 2008; 11
ref11
ref22
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ying (ref3) 2007; 7
ref7
ref9
ref4
ref6
ref5
pekel (ref8) 2017; 31
References_xml – ident: ref10
  doi: 10.1109/TFUZZ.2015.2396078
– ident: ref1
  doi: 10.1016/j.trc.2010.05.019
– ident: ref23
  doi: 10.2991/aiea-16.2016.20
– start-page: 1072
  year: 0
  ident: ref20
  article-title: Game theoretic, decentralized, local information based algorithm for community detection in social graphs
  publication-title: Proc 21st IEEE Int Conf Pattern Recognit
– ident: ref14
  doi: 10.1145/2939672.2939785
– ident: ref5
  doi: 10.1016/j.trc.2011.06.009
– ident: ref19
  doi: 10.1007/978-3-319-59105-6_57
– ident: ref13
  doi: 10.4236/jtts.2012.23024
– year: 2012
  ident: ref24
  article-title: CJJ 37-2012 code for design of urban engineering
– ident: ref4
  doi: 10.1177/1687814016675999
– ident: ref7
  doi: 10.1109/ICMLA.2016.0187
– ident: ref6
  doi: 10.1016/j.eswa.2005.11.007
– ident: ref2
  doi: 10.1016/j.apgeog.2012.09.006
– ident: ref15
  doi: 10.1109/TFUZZ.2016.2593500
– volume: 31
  start-page: 64
  year: 2017
  ident: ref8
  article-title: Passenger flow prediction based on newly adopted algorithms
  publication-title: Appl Artif Intell
– ident: ref22
  doi: 10.1140/epjb/e2012-30697-5
– ident: ref9
  doi: 10.1109/TFUZZ.2013.2246571
– ident: ref11
  doi: 10.1109/TFUZZ.2011.2164256
– volume: 7
  start-page: 64
  year: 2007
  ident: ref3
  article-title: Continuous optimization method for integrated land use/trans-portation models
  publication-title: J Transp Syst Eng and Inform Technol
– ident: ref12
  doi: 10.1109/TFUZZ.2008.917289
– ident: ref17
  doi: 10.1109/TFUZZ.2016.2566812
– ident: ref16
  doi: 10.1109/TFUZZ.2016.2604003
– volume: 11
  start-page: 19
  year: 2008
  ident: ref21
  article-title: Detecting the overlapping and hierarchical community structure of complex networks
  publication-title: New J Phys
– ident: ref18
  doi: 10.3390/en10081168
SSID ssj0014518
Score 2.3592284
Snippet Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 994
SubjectTerms Airports
Buildings
Clustering algorithms
Fuzzy boundary processing
Mathematical models
Neural networks
passenger flow prediction
Passengers
Prediction algorithms
Prediction models
Predictive models
Public transportation
region dividing
Spatial data
Transportation networks
Urban areas
Title Passenger Flow Prediction for New Line Using Region Dividing and Fuzzy Boundary Processing
URI https://ieeexplore.ieee.org/document/8336895
https://www.proquest.com/docview/2220123349
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_oTnpw6hTnFzl4086sTdrm6FcZgiKywdilJE16UTqZK-L-evPSdgwV8dSGJhD45eO9vt_vPYAzP49yrZXwYmlQkmOxEIZhujttfTHJJc1QjfzwGA5G7H7Mx2twsdTCGGMc-cz08NXF8vU0K_FX2WUcBGEs-Dqs22VWabWWEQPG-5XsLQy8MKJhI5Ch4nKYjCYTZHHFPVRqCtTYr1xCrqrKj6PY3S9JGx6amVW0kpdeOVe9bPEtaeN_p74NW7WhSa6qlbEDa6bYhXZTxIHUe3oXNlcyEnZg8mSNaSS6zkjyOv0gTzMM5CB4xFq3xB6JxHqvhjimAXk2yGYmtyjpwrYsNEnKxeKTXLtqTbNPUgsR7Nc9GCV3w5uBV5df8DJf8LkXZzzPWdxnkgqjNeXcnutBbJvWhsvtg0dMGxr5ui-kUEIFimXMV3nuR5imLtiHVjEtzAEQRnWsjMlDidluKKphFVO-lNq6dxkzXeg3eKRZnZscS2S8ps5HoSJ1GKaIYVpj2IXz5Zi3KjPHn707CMqyZ41HF44b2NN6876n1mRCSzNg4vD3UUewYXuIivd4DK35rDQn1jaZq1O3KL8AYTLf6w
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0BewAO26WA6NJdfNjbkuImdmIf2Y-oCxRVqJVQL5EdOxdQi0qrVfvr1-MkVQUI7SmxYkuWnj9mMvPeAHwLi6QwRstAKIuUHIeFtAzl7ozzxRRXNEc2cv827o3Y1T2_34LzNRfGWuuTz2wHX30s30zzBf4quxBRFAvJt-EDd16FKNla65gB492S-BZHQZzQuKbIUHkxTEfjMeZxiQ5yNSWy7DeuIV9X5dVh7G-YtAH9em5lYslDZzHXnXz1Qrbxfyf_CT5Wpia5LNfGAWzZSRMadRkHUu3qJuxvaBIewnjgzGlMdZ2R9HH6lwxmGMpB-Iizb4k7FInzXy3xuQbkzmI-M_mFpC5sq4kh6WK1WpIfvl7TbEkqKoL7egSj9PfwZy-oCjAEeSj5PBA5LwomukxRaY2hnLuTPRKu6ay4wj14woylSWi6UkktdaRZzkJdFGGCQnXRMexMphN7AoRRI7S1RaxQ74YiH1YzHSplnIOXM9uCbo1Hllfq5Fgk4zHzXgqVmccwQwyzCsMWfF-PeSq1Od7tfYigrHtWeLSgXcOeVdv3OXNGE9qaEZOf3x51Bru9Yf8mu_lze30Ke663LLMg27Azny3sF2epzPVXv0D_AVJ24z4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passenger+Flow+Prediction+for+New+Line+Using+Region+Dividing+and+Fuzzy+Boundary+Processing&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Hai-Tao%2C+Yu&rft.au=Chang-Jun%2C+Jiang&rft.au=Ran-Dong%2C+Xiao&rft.au=Hang-Ou%2C+Liu&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=27&rft.issue=5&rft.spage=994&rft_id=info:doi/10.1109%2FTFUZZ.2018.2825950&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon