Passenger Flow Prediction for New Line Using Region Dividing and Fuzzy Boundary Processing
Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport network. This paper proposes a new prediction model by exploring the relationship between the passenger flow of a station and its surrounding ar...
Saved in:
Published in | IEEE transactions on fuzzy systems Vol. 27; no. 5; pp. 994 - 1007 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.05.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1063-6706 1941-0034 |
DOI | 10.1109/TFUZZ.2018.2825950 |
Cover
Abstract | Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport network. This paper proposes a new prediction model by exploring the relationship between the passenger flow of a station and its surrounding area's factors. First, in order to obtain more accurate factors affecting the passenger flow, the city is divided into multiple regions with similar internal traffic properties and moderate spatial size using the data of urban road network and buildings. Second, to effectively solve the problem of fuzziness of the station's attraction scope, the concept of the membership degree and fuzzy processing method is proposed. Finally, the station's passenger flow prediction model is launched based on Xgboost. The experimental results on three districts in Beijing show that our method outperforms all baselines significantly, which improves the accuracy by more than 20%. |
---|---|
AbstractList | Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport network. This paper proposes a new prediction model by exploring the relationship between the passenger flow of a station and its surrounding are's factors. First, in order to obtain more accurate factors affecting the passenger flow, the city is divided into multiple regions with similar internal traffic properties and moderate spatial size using the data of urban road network and buildings. Second, to effectively solve the problem of fuzziness of the station's attraction scope, the concept of the membership degree and fuzzy processing method is proposed. Finally, the station's passenger flow prediction model is launched based on Xgboost. The experimental results on three districts in Beijing show that our method outperforms all baselines significantly, which improves the accuracy by more than 20%. Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport network. This paper proposes a new prediction model by exploring the relationship between the passenger flow of a station and its surrounding area's factors. First, in order to obtain more accurate factors affecting the passenger flow, the city is divided into multiple regions with similar internal traffic properties and moderate spatial size using the data of urban road network and buildings. Second, to effectively solve the problem of fuzziness of the station's attraction scope, the concept of the membership degree and fuzzy processing method is proposed. Finally, the station's passenger flow prediction model is launched based on Xgboost. The experimental results on three districts in Beijing show that our method outperforms all baselines significantly, which improves the accuracy by more than 20%. |
Author | Lv, Weifeng Yu, Hai-Tao Xiao, Ran-Dong Liu, Hang-Ou Jiang, Chang-Jun |
Author_xml | – sequence: 1 givenname: Hai-Tao orcidid: 0000-0003-3939-7984 surname: Yu fullname: Yu, Hai-Tao email: yuhaitao@bjjtw.gov.cn organization: School of Computer Science and Engineering, Beihang University, Beijing, China – sequence: 2 givenname: Chang-Jun surname: Jiang fullname: Jiang, Chang-Jun email: 185021203@qq.com organization: College of Software Engineering, Beihang University, Beijing, China – sequence: 3 givenname: Ran-Dong surname: Xiao fullname: Xiao, Ran-Dong email: xiaorandong@bjjtw.gov.cn organization: Beijing Transportation Information Center, and Beijing Key Laboratory for Comprehensive Traffic Operation Monitoring and Service, BeijingChina – sequence: 4 givenname: Hang-Ou orcidid: 0000-0003-4514-9370 surname: Liu fullname: Liu, Hang-Ou email: 455051265@qq.com organization: College of Software Engineering, Beihang University, Beijing, China – sequence: 5 givenname: Weifeng orcidid: 0000-0002-7061-9509 surname: Lv fullname: Lv, Weifeng email: lwf@buaa.edu.cn organization: School of Computer Science and Engineering, Beihang University, Beijing, China |
BookMark | eNp9kE1PAjEQhhujiYD-Ab008bzYz6U9KoqaECUGLlw2-zFLSrDFdpHAr7crxIMHT9NJ32cm83TRqXUWELqipE8p0bfT0Ww-7zNCVZ8pJrUkJ6hDtaAJIVycxjdJeZIOSHqOuiEsCaFCUtVB80keAtgFeDxauS2eeKhM2Rhnce08foUtHhsLeBaMXeB3WLQ_D-bLVG2f2wqPNvv9Dt-7ja1yv4sDXAmhTV-gszpfBbg81h6ajR6nw-dk_Pb0MrwbJyXTsklUKetaKCpyoqGqiJRQUK5iS1NexyIHogIyYBXVuS50wQtRClbUNRswJlLeQzeHuWvvPjcQmmzpNt7GlRljUQnjXOiYUodU6V0IHuqsNE3eHtr43KwySrLWZPZjMmtNZkeTEWV_0LU3H_HY_6HrA2QA4BdQnKdKS_4NTZGBSA |
CODEN | IEFSEV |
CitedBy_id | crossref_primary_10_1007_s10489_022_03264_2 crossref_primary_10_1080_03081079_2023_2231133 crossref_primary_10_3233_JCM_247338 crossref_primary_10_1016_j_tra_2021_07_001 crossref_primary_10_1109_TITS_2021_3095547 crossref_primary_10_1016_j_trc_2020_102951 crossref_primary_10_1016_j_ins_2022_06_088 crossref_primary_10_3390_app14073100 crossref_primary_10_3390_app14177880 crossref_primary_10_1109_TITS_2021_3137446 |
Cites_doi | 10.1109/TFUZZ.2015.2396078 10.1016/j.trc.2010.05.019 10.2991/aiea-16.2016.20 10.1145/2939672.2939785 10.1016/j.trc.2011.06.009 10.1007/978-3-319-59105-6_57 10.4236/jtts.2012.23024 10.1177/1687814016675999 10.1109/ICMLA.2016.0187 10.1016/j.eswa.2005.11.007 10.1016/j.apgeog.2012.09.006 10.1109/TFUZZ.2016.2593500 10.1140/epjb/e2012-30697-5 10.1109/TFUZZ.2013.2246571 10.1109/TFUZZ.2011.2164256 10.1109/TFUZZ.2008.917289 10.1109/TFUZZ.2016.2566812 10.1109/TFUZZ.2016.2604003 10.3390/en10081168 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TFUZZ.2018.2825950 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1941-0034 |
EndPage | 1007 |
ExternalDocumentID | 10_1109_TFUZZ_2018_2825950 8336895 |
Genre | orig-research |
GrantInformation_xml | – fundername: Science and Technology Plan Project of Beijing grantid: Z161100001116094 |
GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYOK AAYXX CITATION RIG 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-8c5ff4814a09edd055eb1384a0163f4a0574de072d19a9b9b3b4c42bff2722463 |
IEDL.DBID | RIE |
ISSN | 1063-6706 |
IngestDate | Sun Jun 29 12:52:45 EDT 2025 Thu Apr 24 23:12:04 EDT 2025 Tue Jul 01 01:55:27 EDT 2025 Wed Aug 27 02:46:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-8c5ff4814a09edd055eb1384a0163f4a0574de072d19a9b9b3b4c42bff2722463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7061-9509 0000-0003-3939-7984 0000-0003-4514-9370 |
PQID | 2220123349 |
PQPubID | 85428 |
PageCount | 14 |
ParticipantIDs | crossref_primary_10_1109_TFUZZ_2018_2825950 crossref_citationtrail_10_1109_TFUZZ_2018_2825950 proquest_journals_2220123349 ieee_primary_8336895 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE transactions on fuzzy systems |
PublicationTitleAbbrev | TFUZZ |
PublicationYear | 2019 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 narayanam (ref20) 0 ref23 ref15 ref14 (ref24) 2012 lancichinetti (ref21) 2008; 11 ref11 ref22 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ying (ref3) 2007; 7 ref7 ref9 ref4 ref6 ref5 pekel (ref8) 2017; 31 |
References_xml | – ident: ref10 doi: 10.1109/TFUZZ.2015.2396078 – ident: ref1 doi: 10.1016/j.trc.2010.05.019 – ident: ref23 doi: 10.2991/aiea-16.2016.20 – start-page: 1072 year: 0 ident: ref20 article-title: Game theoretic, decentralized, local information based algorithm for community detection in social graphs publication-title: Proc 21st IEEE Int Conf Pattern Recognit – ident: ref14 doi: 10.1145/2939672.2939785 – ident: ref5 doi: 10.1016/j.trc.2011.06.009 – ident: ref19 doi: 10.1007/978-3-319-59105-6_57 – ident: ref13 doi: 10.4236/jtts.2012.23024 – year: 2012 ident: ref24 article-title: CJJ 37-2012 code for design of urban engineering – ident: ref4 doi: 10.1177/1687814016675999 – ident: ref7 doi: 10.1109/ICMLA.2016.0187 – ident: ref6 doi: 10.1016/j.eswa.2005.11.007 – ident: ref2 doi: 10.1016/j.apgeog.2012.09.006 – ident: ref15 doi: 10.1109/TFUZZ.2016.2593500 – volume: 31 start-page: 64 year: 2017 ident: ref8 article-title: Passenger flow prediction based on newly adopted algorithms publication-title: Appl Artif Intell – ident: ref22 doi: 10.1140/epjb/e2012-30697-5 – ident: ref9 doi: 10.1109/TFUZZ.2013.2246571 – ident: ref11 doi: 10.1109/TFUZZ.2011.2164256 – volume: 7 start-page: 64 year: 2007 ident: ref3 article-title: Continuous optimization method for integrated land use/trans-portation models publication-title: J Transp Syst Eng and Inform Technol – ident: ref12 doi: 10.1109/TFUZZ.2008.917289 – ident: ref17 doi: 10.1109/TFUZZ.2016.2566812 – ident: ref16 doi: 10.1109/TFUZZ.2016.2604003 – volume: 11 start-page: 19 year: 2008 ident: ref21 article-title: Detecting the overlapping and hierarchical community structure of complex networks publication-title: New J Phys – ident: ref18 doi: 10.3390/en10081168 |
SSID | ssj0014518 |
Score | 2.3592284 |
Snippet | Predicting the passenger flow of public transport in a newly developed area of a city is very urgent for designing a precise and efficient public transport... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 994 |
SubjectTerms | Airports Buildings Clustering algorithms Fuzzy boundary processing Mathematical models Neural networks passenger flow prediction Passengers Prediction algorithms Prediction models Predictive models Public transportation region dividing Spatial data Transportation networks Urban areas |
Title | Passenger Flow Prediction for New Line Using Region Dividing and Fuzzy Boundary Processing |
URI | https://ieeexplore.ieee.org/document/8336895 https://www.proquest.com/docview/2220123349 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_oTnpw6hTnFzl4086sTdrm6FcZgiKywdilJE16UTqZK-L-evPSdgwV8dSGJhD45eO9vt_vPYAzP49yrZXwYmlQkmOxEIZhujttfTHJJc1QjfzwGA5G7H7Mx2twsdTCGGMc-cz08NXF8vU0K_FX2WUcBGEs-Dqs22VWabWWEQPG-5XsLQy8MKJhI5Ch4nKYjCYTZHHFPVRqCtTYr1xCrqrKj6PY3S9JGx6amVW0kpdeOVe9bPEtaeN_p74NW7WhSa6qlbEDa6bYhXZTxIHUe3oXNlcyEnZg8mSNaSS6zkjyOv0gTzMM5CB4xFq3xB6JxHqvhjimAXk2yGYmtyjpwrYsNEnKxeKTXLtqTbNPUgsR7Nc9GCV3w5uBV5df8DJf8LkXZzzPWdxnkgqjNeXcnutBbJvWhsvtg0dMGxr5ui-kUEIFimXMV3nuR5imLtiHVjEtzAEQRnWsjMlDidluKKphFVO-lNq6dxkzXeg3eKRZnZscS2S8ps5HoSJ1GKaIYVpj2IXz5Zi3KjPHn707CMqyZ41HF44b2NN6876n1mRCSzNg4vD3UUewYXuIivd4DK35rDQn1jaZq1O3KL8AYTLf6w |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB0BewAO26WA6NJdfNjbkuImdmIf2Y-oCxRVqJVQL5EdOxdQi0qrVfvr1-MkVQUI7SmxYkuWnj9mMvPeAHwLi6QwRstAKIuUHIeFtAzl7ozzxRRXNEc2cv827o3Y1T2_34LzNRfGWuuTz2wHX30s30zzBf4quxBRFAvJt-EDd16FKNla65gB492S-BZHQZzQuKbIUHkxTEfjMeZxiQ5yNSWy7DeuIV9X5dVh7G-YtAH9em5lYslDZzHXnXz1Qrbxfyf_CT5Wpia5LNfGAWzZSRMadRkHUu3qJuxvaBIewnjgzGlMdZ2R9HH6lwxmGMpB-Iizb4k7FInzXy3xuQbkzmI-M_mFpC5sq4kh6WK1WpIfvl7TbEkqKoL7egSj9PfwZy-oCjAEeSj5PBA5LwomukxRaY2hnLuTPRKu6ay4wj14woylSWi6UkktdaRZzkJdFGGCQnXRMexMphN7AoRRI7S1RaxQ74YiH1YzHSplnIOXM9uCbo1Hllfq5Fgk4zHzXgqVmccwQwyzCsMWfF-PeSq1Od7tfYigrHtWeLSgXcOeVdv3OXNGE9qaEZOf3x51Bru9Yf8mu_lze30Ke663LLMg27Azny3sF2epzPVXv0D_AVJ24z4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Passenger+Flow+Prediction+for+New+Line+Using+Region+Dividing+and+Fuzzy+Boundary+Processing&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Hai-Tao%2C+Yu&rft.au=Chang-Jun%2C+Jiang&rft.au=Ran-Dong%2C+Xiao&rft.au=Hang-Ou%2C+Liu&rft.date=2019-05-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6706&rft.eissn=1941-0034&rft.volume=27&rft.issue=5&rft.spage=994&rft_id=info:doi/10.1109%2FTFUZZ.2018.2825950&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |