Heart Disease Detection Based on Feature Fusion Technique with Augmented Classification Using Deep Learning Technology

An accurate prediction of cardiac disease is a crucial task for medical and research organizations. Cardiac patients are usually facing heart attacks sometimes tends to death. Therefore, a prior stage of heart diagnosis is compulsory, so that model of optimal Deep learning technology is prosperous f...

Full description

Saved in:
Bibliographic Details
Published inTraitement du signal Vol. 39; no. 1; pp. 31 - 42
Main Authors Saikumar, Kayam, Rajesh, Vullanki, Babu, Bulepe Sankara
Format Journal Article
LanguageEnglish
Published Edmonton International Information and Engineering Technology Association (IIETA) 01.02.2022
Subjects
Online AccessGet full text
ISSN0765-0019
1958-5608
1958-5608
DOI10.18280/ts.390104

Cover

Abstract An accurate prediction of cardiac disease is a crucial task for medical and research organizations. Cardiac patients are usually facing heart attacks sometimes tends to death. Therefore, a prior stage of heart diagnosis is compulsory, so that model of optimal Deep learning technology is prosperous for the healthcare sector. The earlier models related to this research work are outdated, some applications cannot provide efficient outcomes. The available conventional models like the Genetic algorithm (GA), PSO (particle swarm optimization), RFO (Random Forest optimization), X-boosting. KNN and many available technologies are only dispensing abnormality information but they are not providing location, depth, and affected area dimensions. Moreover, earlier models only supported fixed scanning in radiology not supporting cloud-level deployment. The sensitivity and robustness of diagnosis are very low therefore a DCAlexNet CNN deep learning technology is needed. The deep learning-based classification is performed through the DCAlexNet CNN (convolutional Neural networks) technique. The implementing application is loading training samples from Kaggle or ANDI dataset. The uploaded image samples are pre-processed through resolution, intensity, and brightness adjustment in the python NumPy tool. The. CSV file (text file) is processed through clustering as well as dimensionality adjusting technique. The processed images are segmented through RRF (Restrictive Random Field) technology. The segmentation on images provides features that are loaded in the local server after that saved into CNN memory. Now the .csv file and trained features are applied to DCAlexNet CNN deep learning architecture. The training processing can give information about diseases in the heart and dimensionality of the affected area (depth and location). Now the application is waiting for real-time samples which is nothing but testing, in this testing part locally available affected and healthy heart ultrasound images are given to DCAlexNet CNN. The designed application can easily be identified whether the uploaded image has abnormality or not. The test-based and image-oriented feature fusion can help the application detect heart abnormalities in an easy way. To this feature fusion-based DCAlexNet CNN confusion matrix generates performance measures like accuracy 98.67%, sensitivity 97.45%, Recall 99.34%, and F1 Score 99.34%, these numerical comparison results compete with present technology and outperformance application robustness.
AbstractList An accurate prediction of cardiac disease is a crucial task for medical and research organizations. Cardiac patients are usually facing heart attacks sometimes tends to death. Therefore, a prior stage of heart diagnosis is compulsory, so that model of optimal Deep learning technology is prosperous for the healthcare sector. The earlier models related to this research work are outdated, some applications cannot provide efficient outcomes. The available conventional models like the Genetic algorithm (GA), PSO (particle swarm optimization), RFO (Random Forest optimization), X-boosting. KNN and many available technologies are only dispensing abnormality information but they are not providing location, depth, and affected area dimensions. Moreover, earlier models only supported fixed scanning in radiology not supporting cloud-level deployment. The sensitivity and robustness of diagnosis are very low therefore a DCAlexNet CNN deep learning technology is needed. The deep learning-based classification is performed through the DCAlexNet CNN (convolutional Neural networks) technique. The implementing application is loading training samples from Kaggle or ANDI dataset. The uploaded image samples are pre-processed through resolution, intensity, and brightness adjustment in the python NumPy tool. The. CSV file (text file) is processed through clustering as well as dimensionality adjusting technique. The processed images are segmented through RRF (Restrictive Random Field) technology. The segmentation on images provides features that are loaded in the local server after that saved into CNN memory. Now the .csv file and trained features are applied to DCAlexNet CNN deep learning architecture. The training processing can give information about diseases in the heart and dimensionality of the affected area (depth and location). Now the application is waiting for real-time samples which is nothing but testing, in this testing part locally available affected and healthy heart ultrasound images are given to DCAlexNet CNN. The designed application can easily be identified whether the uploaded image has abnormality or not. The test-based and image-oriented feature fusion can help the application detect heart abnormalities in an easy way. To this feature fusion-based DCAlexNet CNN confusion matrix generates performance measures like accuracy 98.67%, sensitivity 97.45%, Recall 99.34%, and F1 Score 99.34%, these numerical comparison results compete with present technology and outperformance application robustness.
Author Babu, Bulepe Sankara
Rajesh, Vullanki
Saikumar, Kayam
Author_xml – sequence: 1
  givenname: Kayam
  surname: Saikumar
  fullname: Saikumar, Kayam
– sequence: 2
  givenname: Vullanki
  surname: Rajesh
  fullname: Rajesh, Vullanki
– sequence: 3
  givenname: Bulepe Sankara
  surname: Babu
  fullname: Babu, Bulepe Sankara
BookMark eNp9kM9PwjAUxxuDiYhc_AuWeNMM263rtiOCiAmJFzgvpXuFktHNtpPw31s2T8b4Ln2v-Xy_78ctGuhaA0L3BE9IFmX42dlJnGOC6RUakjzJwoThbICGOGVJiDHJb9DY2gP2ERPKWDxEX0vgxgVzZYFbCObgQDhV6-DFl2XgkwVw1xoIFq29_K9B7LX6bCE4KbcPpu3uCNp5dFZxa5VUgnf6jVV65_2gCVa-hb5Unbau6t35Dl1LXlkY_7wjtFm8rmfLcPXx9j6brkIR5YkLGZPAKZV5SrOIl1RstzTCCYtinMq4TBghqaQ8ickWSpKmGYnLFGOQJSUsE3k8Qk-9b6sbfj7xqioao47cnAuCi-5qhbNFfzVPP_R0Y2q_oXXFoW6N9gMWHkxxRFhCPIV7SpjaWgOyEMp1SzvDVfW38eMvyT9TfAOynovu
CitedBy_id crossref_primary_10_1007_s13198_022_01681_7
crossref_primary_10_53759_7669_jmc202404006
crossref_primary_10_20517_2574_1209_2023_140
crossref_primary_10_4018_IJFSA_306279
crossref_primary_10_3233_WEB_230063
crossref_primary_10_1016_j_aej_2024_09_037
crossref_primary_10_1049_cit2_12356
crossref_primary_10_1007_s11468_023_01886_x
crossref_primary_10_3389_fncom_2022_964686
crossref_primary_10_1007_s11042_023_18061_3
crossref_primary_10_1016_j_asoc_2024_111273
ContentType Journal Article
Copyright 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AFKRA
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L6V
M7S
PHGZM
PHGZT
PKEHL
PQBIZ
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ADTOC
UNPAY
DOI 10.18280/ts.390104
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central UK/Ireland
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
ProQuest Engineering Collection
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ProQuest One Business
Engineering Database
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest One Academic UKI Edition
ProQuest Central Korea
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (New)
Engineering Collection
ProQuest One Academic (New)
DatabaseTitleList CrossRef
ProQuest One Business
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1958-5608
EndPage 42
ExternalDocumentID 10.18280/ts.390104
10_18280_ts_390104
GroupedDBID 123
2WC
77J
8FE
8FG
AABCJ
AAYXX
ABJCF
AENEX
AFKRA
AHQJS
AKVCP
ALMA_UNASSIGNED_HOLDINGS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IEFQH
KBL
L6V
M7S
OK1
PHGZM
PHGZT
PQBIZ
PQGLB
PTHSS
PUEGO
TH9
~02
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
ID FETCH-LOGICAL-c295t-66fea44f97482ad4cbb420562307f3d56117f4a531bed177813d700efd4168c93
IEDL.DBID UNPAY
ISSN 0765-0019
1958-5608
IngestDate Wed Oct 01 15:52:21 EDT 2025
Fri Jul 25 12:12:35 EDT 2025
Wed Oct 01 03:35:06 EDT 2025
Thu Apr 24 22:50:30 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-66fea44f97482ad4cbb420562307f3d56117f4a531bed177813d700efd4168c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.iieta.org/download/file/fid/70774
PQID 2807021651
PQPubID 2069443
PageCount 12
ParticipantIDs unpaywall_primary_10_18280_ts_390104
proquest_journals_2807021651
crossref_citationtrail_10_18280_ts_390104
crossref_primary_10_18280_ts_390104
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Edmonton
PublicationPlace_xml – name: Edmonton
PublicationTitle Traitement du signal
PublicationYear 2022
Publisher International Information and Engineering Technology Association (IIETA)
Publisher_xml – name: International Information and Engineering Technology Association (IIETA)
SSID ssj0000314663
Score 2.4275203
Snippet An accurate prediction of cardiac disease is a crucial task for medical and research organizations. Cardiac patients are usually facing heart attacks sometimes...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 31
SubjectTerms Abnormalities
Artificial neural networks
Cardiovascular disease
Classification
Clustering
Deep learning
Diagnosis
Electrocardiography
Fields (mathematics)
Genetic algorithms
Heart
Heart diseases
Image segmentation
Internet of Things
Machine learning
Medical imaging
Medical research
Particle swarm optimization
Robustness (mathematics)
Sensitivity
Skin
Training
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3PT8IwFG4QDsaD8WdE0TSRi4eG_WzHwRgQCPFAjIGE29KtnRcyJmwa_3v7um5wMNy2pOnhvbbve6-v34dQVx_6vstI7KlMx4sjSgLBGPEcrgCqyzgXukF2RqcL723pLxtoVr2FgbbK6kzUB7VYx1Aj7wFri4pH1Ldfsi8CqlFwu1pJaHAjrSCeNcXYEWo5wIzVRK3hePb-UVddgKydlvJqjPoEAI7hLFWZh9XLt7oGYFTb6ii1g57HRZrx3x--Wu1FockZOjXwEQ9Kf5-jhkwv0MkeqeAl-p6qxZvjUXnzgkcy191WKR6qX4HVB8C-YiPxpIBSGZ5XNK4YirJ4UHxqok6BtWAmtBJp72HdXaDmkxk2rKyfeFeZv0KLyXj-OiVGXYHETt_PCaWJ5J6XqIQicLhQboo8R8MhiyWuULjKZonH1R6NpLAZC2xXMMuSiVAYLoj77jVqputU3iAcMSpFIOJ-AGx8Cq4HTqzSKnjfwCzpRG30VFkzjA31OChgrEJIQcDyYb4NS8u30WM9NisJN_4d1amcEppNtw13S6SNurWjDsxye3iWO0jigcAbmlc6qJlvCnmvIEgePZh19Qf91NkG
  priority: 102
  providerName: ProQuest
Title Heart Disease Detection Based on Feature Fusion Technique with Augmented Classification Using Deep Learning Technology
URI https://www.proquest.com/docview/2807021651
https://www.iieta.org/download/file/fid/70774
UnpaywallVersion publishedVersion
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1958-5608
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314663
  issn: 0765-0019
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1958-5608
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314663
  issn: 0765-0019
  databaseCode: 8FG
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1dS8MwFL3o9qA--C1O5wjoiw91Xb-SPc6POXwYIg70qaRNOoajGy5V9Nd7k2ZTRGQvpYUQAuemOTc5ORfgzPz0Q586aYCZTpAmkcMEpU7gcSSoPuVcGIFsP-oNgrun8MleVp9ZWeVoJBU3p_hCG8ZPuGhqkyJ8iCZ1ka-sQjUKkXpXoDro33eejdVmFDqar5hT5JA5uJIza0eKSYXbVDOT3tuCbIsF6JtVrhX5lH-88_H4xwLT3YL-fGilruTlolDJRfr5y7Vx6bFvw6almqRTxsYOrMh8FzZ-GBDuwVsPA12R6_KUhlxLZZRZObnET0HwRVPE4lWSbqG31cjj3PKV6A1c0imGxtRTEFNcU8uODNLEKBGwPzkl1sF1SL538fdh0L15vOo5thKDk3rtUDlRlEkeBBkmH8zjAiFNAs9QJ5dmvkAO1qJZwHE-J1K0KGUtX1DXlZlAvsfStn8AlXySy0MgCY2kYCJtM-3ch9SeeSmmYPouBHWll9TgfA5PnFqbcl0tYxzrdEVDGatZXEJZg9NF22lpzvFnq_oc5dhO0FmsTYCQ3kRhqwZnC-T_6eVouWbHsO7pCxJG112Hinot5AnSFpU0YJV1bxtQvbzp3z80bOh-ARLX7bE
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT-MwEB0hOAAHxPIhysJiCfbAISJ1nDg9IASUqnxVK1QkbsGJHS5V6NIExJ_b37YzjtNyQNy4JZJlReOJ_WY88x7Agd30w0B6mcBIR2Rp5MVaSk9whQA1kEppWyA7iPr34uohfJiDf00vDJVVNnui3aj1c0Y58iNibcHzKArbJ-O_HqlG0e1qI6GhnLSCPrYUY66x49q8v2EINzm-7OJ6_-a8dzE873tOZcDLeCcsvSjKjRIiR2Adc6Xxc1PBLSzwZR5oxBdtmQuFvpoa3ZYybgda-r7JNWKZOCMyJjwCFkQgOhj8LZxdDP7cTbM8RA4f1XJuMgo9AlSOIxUjHf-onNicg1OJm56KM6i7WBVj9f6mRqMPp15vFVYcXGWntX_9gDlTrMHyBxLDdXjtoxVK1q1veljXlLa6q2Bn-KoZPhDMrF4M61WUmmPDhjaWURKYnVZPlhhUMyvQSaVL1luYrWbA-cyYORbYJza7CdiA-2-x8ybMF8-F2QKWysjoWGedmNj_MDyIeYZhHPVTSN_wtAWHjTWTzFGdk-LGKKGQhyyflJOktnwL9qdjxzXBx6ejdppFSdxPPklmLtmCg-lCfTHL9tez7MFif3h7k9xcDq5_whKnRgtbH74D8-VLZXYR_pTpL-djDB6_263_A2o-FLc
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFH7odlAP_hanUwJ68VDX9Vey4_wxhofhwYGeStqkIo5urKmif70vaTqHiHgpLYQQ-F6a7yVfvgdwbn76oU-dNMBMJ0iTyGGCUifwOBJUn3IujEB2FA3Hwd1j-GgvqxdWVvnyIhU3p_hCG8ZPuehokyJ8iA51ka-sQjMKkXo3oDke3fefjNVmFDqar5hT5JA5uJIza0eKSYXbUYVJ721BtsUC9M0q18p8xj_e-WSytMAMtmBUD63Slbxeliq5TD9_uDb-e-zbsGmpJulXsbEDKzLfhY0lA8I9eBtioCtyU53SkBupjDIrJ1f4KQi-aIpYziUZlHpbjTzUlq9Eb-CSfvlsTD0FMcU1tezIIE2MEgH7kzNiHVyfyfcu_j6MB7cP10PHVmJwUq8XKieKMsmDIMPkg3lcIKRJ4Bnq5NLMF8jBujQLOM7nRIoupazrC-q6MhPI91ja8w-gkU9zeQgkoZEUTKQ9pp37kNozL8UUTN-FoK70khZc1PDEqbUp19UyJrFOVzSUsSriCsoWnC3azipzjl9btWuUYztBi1ibACG9icJuC84XyP_Ry9H_mh3DuqcvSBhddxsaal7KE6QtKjm1wfoFKlPrMQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heart+Disease+Detection+Based+on+Feature+Fusion+Technique+with+Augmented+Classification+Using+Deep+Learning+Technology&rft.jtitle=Traitement+du+signal&rft.au=Saikumar%2C+Kayam&rft.au=Rajesh%2C+Vullanki&rft.au=Babu%2C+Bulepe+Sankara&rft.date=2022-02-01&rft.issn=0765-0019&rft.eissn=1958-5608&rft.volume=39&rft.issue=1&rft.spage=31&rft.epage=42&rft_id=info:doi/10.18280%2Fts.390104&rft.externalDBID=n%2Fa&rft.externalDocID=10_18280_ts_390104
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0765-0019&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0765-0019&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0765-0019&client=summon