1-Bit DOA Estimation Using Expectation-Maximization Generalized Approximate Message Passing With Two L-Shaped Arrays
The 1-Bit analog-to-digital converters can drastically reduce the complexity in sampling, storage and processing progresses, which is the urgent technology for large amount of antenna elements. In this letter, we propose a compressed sensing (CS)-based method for 1-Bit direction of arrival (DOA) est...
        Saved in:
      
    
          | Published in | IEEE communications letters Vol. 25; no. 8; pp. 2554 - 2558 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.08.2021
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1089-7798 1558-2558  | 
| DOI | 10.1109/LCOMM.2021.3079307 | 
Cover
| Abstract | The 1-Bit analog-to-digital converters can drastically reduce the complexity in sampling, storage and processing progresses, which is the urgent technology for large amount of antenna elements. In this letter, we propose a compressed sensing (CS)-based method for 1-Bit direction of arrival (DOA) estimation with two L-shaped arrays. An expectation-maximization generalized approximate message passing (EM-GAMP) algorithm is proposed, where the Gaussian mixture is utilised to model the signal's prior, and an expectation maximization (EM) method is embedded in the algorithm to iteratively estimate the unknown prior distribution. It can recovery complex-valued data directly. In addition, the block sparsity structure of sparse signal is used for solving high-dimensional DOA estimation. Simulation results demonstrate that the EM-GAMP method outperforms the other CS-based methods in terms of both DOA estimation performance and running time, especially for scenarios with large amount of antenna elements and single snapshot. | 
    
|---|---|
| AbstractList | The 1-Bit analog-to-digital converters can drastically reduce the complexity in sampling, storage and processing progresses, which is the urgent technology for large amount of antenna elements. In this letter, we propose a compressed sensing (CS)-based method for 1-Bit direction of arrival (DOA) estimation with two L-shaped arrays. An expectation-maximization generalized approximate message passing (EM-GAMP) algorithm is proposed, where the Gaussian mixture is utilised to model the signal's prior, and an expectation maximization (EM) method is embedded in the algorithm to iteratively estimate the unknown prior distribution. It can recovery complex-valued data directly. In addition, the block sparsity structure of sparse signal is used for solving high-dimensional DOA estimation. Simulation results demonstrate that the EM-GAMP method outperforms the other CS-based methods in terms of both DOA estimation performance and running time, especially for scenarios with large amount of antenna elements and single snapshot. | 
    
| Author | Li, Chenyu Chen, Hua Wang, Qing Teng, Liping  | 
    
| Author_xml | – sequence: 1 givenname: Chenyu orcidid: 0000-0001-8423-6288 surname: Li fullname: Li, Chenyu organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 2 givenname: Qing orcidid: 0000-0003-3767-5266 surname: Wang fullname: Wang, Qing email: wangq@tju.edu.cn organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China – sequence: 3 givenname: Hua orcidid: 0000-0002-2918-8735 surname: Chen fullname: Chen, Hua email: dkchenhua0714@hotmail.com organization: Faculty of Electrical Engineering and Computer Science, Ningbo University, Ningbo, China – sequence: 4 givenname: Liping orcidid: 0000-0003-0236-5268 surname: Teng fullname: Teng, Liping organization: School of Electrical and Information Engineering, Tianjin University, Tianjin, China  | 
    
| BookMark | eNp9kE1PwjAYxxujiYB-Ab008Tzsy7qXIyKiyQgmQjwuZXsGJbDNtkTg09sx4sGDh77k6f_3tP110WVZlYDQHSV9Skn8mAynk0mfEUb7nISxGxeoQ4WIPOamS7cnUeyFYRxdo64xa0JIxATtIEu9J2Xx83SAR8aqrbSqKvHcqHKJR_saMnuqeBO5V1t1bI_HUIKWG3WEHA_qWlf7BgQ8AWPkEvC7NKcGn8qu8Oy7won3sZJ1k9ZaHswNuirkxsDtee2h-ctoNnz1kun4bThIvIzFwnqBHxSBCEXOMyJCShacBgtKJRUsClwFKMmLeEF5IECCCGWRS84zn8V5Hi1Yznvooe3rnvi1A2PTdbXTpbsyZSIglPthwFwqalOZrozRUKSZan9ttVSblJK0cZyeHKeN4_Ts2KHsD1prp0If_ofuW0gBwC8Q-5wLTvgPRvaJ1A | 
    
| CODEN | ICLEF6 | 
    
| CitedBy_id | crossref_primary_10_1007_s00034_022_02157_6 crossref_primary_10_1109_TVT_2024_3357868 crossref_primary_10_1016_j_phycom_2023_102239 crossref_primary_10_1109_TAES_2022_3197392  | 
    
| Cites_doi | 10.1109/IEEECONF44664.2019.9048961 10.1109/LSP.2019.2913452 10.1109/ISIT.2011.6033942 10.1109/JSTSP.2009.2039176 10.1109/ICASSP.2017.7952732 10.1109/LCOMM.2018.2834904 10.1109/ICCCAS.2009.5250503 10.1109/TVT.2017.2704610 10.1111/j.2517-6161.1977.tb01600.x 10.1109/TSP.2010.2044837 10.1109/TSP.2012.2203124 10.1049/iet-spr.2017.0568 10.1109/SPAWC.2015.7227037 10.1109/MSP.2007.914731 10.1109/TAES.2020.2978374 10.1109/TSP.2013.2272287  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M  | 
    
| DOI | 10.1109/LCOMM.2021.3079307 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace  | 
    
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | Technology Research Database  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) (F) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-2558 | 
    
| EndPage | 2558 | 
    
| ExternalDocumentID | 10_1109_LCOMM_2021_3079307 9433530  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Zhejiang Provincial Natural Science Foundation of China grantid: LQ19F010002 funderid: 10.13039/501100004731 – fundername: National Natural Science Foundation grantid: 61871282; 62001256 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV AZLTO BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IES IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 8FD L7M  | 
    
| ID | FETCH-LOGICAL-c295t-646f6575d3c05710b316b11a15286057e10df9b1365eae57afda33c429dd8b2d3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1089-7798 | 
    
| IngestDate | Mon Jun 30 10:25:38 EDT 2025 Thu Apr 24 22:53:59 EDT 2025 Wed Oct 01 03:18:33 EDT 2025 Wed Aug 27 02:39:25 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 8 | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c295t-646f6575d3c05710b316b11a15286057e10df9b1365eae57afda33c429dd8b2d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2918-8735 0000-0001-8423-6288 0000-0003-0236-5268 0000-0003-3767-5266  | 
    
| PQID | 2560134762 | 
    
| PQPubID | 85419 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | proquest_journals_2560134762 ieee_primary_9433530 crossref_citationtrail_10_1109_LCOMM_2021_3079307 crossref_primary_10_1109_LCOMM_2021_3079307  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-08-01 | 
    
| PublicationDateYYYYMMDD | 2021-08-01 | 
    
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE communications letters | 
    
| PublicationTitleAbbrev | LCOMM | 
    
| PublicationYear | 2021 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 dempster (ref14) 1977; 39 ref12 ref15 papageorgiou (ref18) 2020 ref11 ref10 ref2 ref1 ref17 ref16 ref8 ref9 ref4 ref3 ref6 ref5 guo (ref7) 2015  | 
    
| References_xml | – ident: ref4 doi: 10.1109/IEEECONF44664.2019.9048961 – ident: ref3 doi: 10.1109/LSP.2019.2913452 – ident: ref8 doi: 10.1109/ISIT.2011.6033942 – ident: ref5 doi: 10.1109/JSTSP.2009.2039176 – ident: ref1 doi: 10.1109/ICASSP.2017.7952732 – ident: ref10 doi: 10.1109/LCOMM.2018.2834904 – start-page: 1 year: 2015 ident: ref7 article-title: Direction of arrival estimation via approximate message passing publication-title: Proc 2nd IET Int Conf Intell Signal Process (ISP) – ident: ref12 doi: 10.1109/ICCCAS.2009.5250503 – ident: ref17 doi: 10.1109/TVT.2017.2704610 – volume: 39 start-page: 1 year: 1977 ident: ref14 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J Roy Stat Soc doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref13 doi: 10.1109/TSP.2010.2044837 – year: 2020 ident: ref18 article-title: Deep networks for direction-of-arrival estimation in low SNR publication-title: arXiv 2011 08848 – ident: ref6 doi: 10.1109/TSP.2012.2203124 – ident: ref16 doi: 10.1049/iet-spr.2017.0568 – ident: ref9 doi: 10.1109/SPAWC.2015.7227037 – ident: ref2 doi: 10.1109/MSP.2007.914731 – ident: ref11 doi: 10.1109/TAES.2020.2978374 – ident: ref15 doi: 10.1109/TSP.2013.2272287  | 
    
| SSID | ssj0008251 | 
    
| Score | 2.3714046 | 
    
| Snippet | The 1-Bit analog-to-digital converters can drastically reduce the complexity in sampling, storage and processing progresses, which is the urgent technology for... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2554 | 
    
| SubjectTerms | 1-bit direction of arrival (DOA) Algorithms Analog to digital conversion Analog to digital converters Antennas block sparsity Complexity Compressed sensing compressed sensing (CS) Data recovery Direction of arrival Direction-of-arrival estimation Estimation Expectation-maximization generalized approximate message passing (EM-GAMP) Matching pursuit algorithms Maximization Message passing Optimization Quantization (signal) Sensors two L-shaped arrays  | 
    
| Title | 1-Bit DOA Estimation Using Expectation-Maximization Generalized Approximate Message Passing With Two L-Shaped Arrays | 
    
| URI | https://ieeexplore.ieee.org/document/9433530 https://www.proquest.com/docview/2560134762  | 
    
| Volume | 25 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) (F) customDbUrl: eissn: 1558-2558 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008251 issn: 1089-7798 databaseCode: RIE dateStart: 19970101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwELUoJ3roB7Tqlg_5wK31Esd2dn0EBEKI0EoFlVvk2JOyot1FS1ZQfj0zdnaFWoS45TC2LI3tmRe_ecPYNoKKgAcQhISBFtpkmXAgnci1I-xjnE0E2dPi6FwfX5iLJfZ1UQsDAJF8Bn36jG_5YeJn9Ktsx2qljEKA_mowLFKt1uLWpRLMRKa3mDHa4bxAJrM7J_vfyhKhYC77ivTgqHXsoyAUu6r8dxXH-HL4lpXzlSVayVV_1tZ9f_-PaONLl_6OvekSTb6bdsZ7tgTjVfb6kfzgGmul2Bu1HOEhP8CTnooYeSQRcJJA9umZXpTubvSnq9fknU716B4C3yVB8jsaCLykXiq_gH_HbJwm-DlqL_nZ7YSfiB-X7pqsp1P39-YDOz88ONs_El0XBuFza1pR6KKh15mgPOZ2MquVLGopHQb-IWKhAcgsNLYmuhw4MAPXBKeUxzgXwrDOg_rIlseTMXxivDHeG7SxChM3lWeu0VAY73JtZI3Qr8fk3C2V7yTKqVPG7ypClcxW0ZUVubLqXNljXxZjrpNAx7PWa-SbhWXnlh7bmHu_6s7wTRXBqtIYLT4_PWqdrdDciQ64wZbb6Qw2MUVp6624Nx8Aa3fggw | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELam7QF4YIOBKGzgB97AXRzbaf04pk0FmoFEJ_YWOfaFVUA7dakY-_Xc2Wk1AUK85eGcWPps333x3XeMvURSEXADgpAw0EKbLBMOpBO5dsR9jLMpQfa0GJ3pd-fmfIO9XtfCAEBMPoM-Pca7_DD3S_pVdmC1UkYhQd8yWmuTqrXW5y4VYaZ0eosxox2uSmQyezA--lCWSAZz2VekCEfNY2-5odhX5Y_DOHqYk21WruaWEku-9pdt3fc3v8k2_u_kd9j9LtTkh2ltPGAbMHvI7t0SINxlrRRvpi1HgsiPca-nMkYe0wg4iSD7dFEvSnc9_d5VbPJOqXp6A4EfkiT5NQ0EXlI3lS_AP2I8Ti_4PG0v-OTHnI_Fpwt3SdaLhft59YidnRxPjkai68MgfG5NKwpdNHQ_E5TH6E5mtZJFLaVD1z9ENjQAmYXG1pQwBw7MwDXBKeXR04UwrPOgHrPN2XwGTxhvjPcGbazC0E3lmWs0FMa7XBtZI_nrMbmCpfKdSDn1yvhWRbKS2SpCWRGUVQdlj71aj7lMEh3_tN4lbNaWHSw9trdCv-p28VUV6arS6C-e_n3UC3ZnNCnH1fjt6ftn7C59JyUH7rHNdrGEfQxY2vp5XKe_AFSY49A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=1-Bit+DOA+Estimation+Using+Expectation-Maximization+Generalized+Approximate+Message+Passing+With+Two+L-Shaped+Arrays&rft.jtitle=IEEE+communications+letters&rft.au=Li%2C+Chenyu&rft.au=Wang%2C+Qing&rft.au=Chen%2C+Hua&rft.au=Teng%2C+Liping&rft.date=2021-08-01&rft.issn=1089-7798&rft.eissn=1558-2558&rft.volume=25&rft.issue=8&rft.spage=2554&rft.epage=2558&rft_id=info:doi/10.1109%2FLCOMM.2021.3079307&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_LCOMM_2021_3079307 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1089-7798&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1089-7798&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1089-7798&client=summon |