Wavelet-Based Deep Auto Encoder-Decoder (WDAED)-Based Image Compression
In this work, we propose a Wavelet-based Deep Auto Encoder-Decoder Network (WDAED) based image compression which takes care of the various frequency components present in an image. Specifically, we demonstrate improvements over prior approaches utilizing this framework by introducing: (a) wavelet tr...
Saved in:
| Published in | IEEE transactions on circuits and systems for video technology Vol. 31; no. 4; pp. 1452 - 1462 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1051-8215 1558-2205 |
| DOI | 10.1109/TCSVT.2020.3010627 |
Cover
| Abstract | In this work, we propose a Wavelet-based Deep Auto Encoder-Decoder Network (WDAED) based image compression which takes care of the various frequency components present in an image. Specifically, we demonstrate improvements over prior approaches utilizing this framework by introducing: (a) wavelet transform pre-processing for decomposing image into different frequencies for their separate processing (b) a very deep super-resolution network as a decoder of the convolutional autoencoder in order to achieve a good quality decompressed image. The end-to-end learning is performed for four wavelet sub-bands in parallel, minimizing the computational time. The encoder compresses the image by generating the latent space representations, whereas the decoder transforms the latent space to image space. The algorithm has been tested on various standard datasets i.e., ImageNet, Set 5, Set 14, Live 1, Kodak, Classic 5, General 100 and CLIC 2019 dataset. The proposed algorithm clearly exhibited the compression performance improvement of approximately 5%, 5.5%, and 13% in terms of PSNR, PSNRB and SSIM respectively. |
|---|---|
| AbstractList | In this work, we propose a Wavelet-based Deep Auto Encoder-Decoder Network (WDAED) based image compression which takes care of the various frequency components present in an image. Specifically, we demonstrate improvements over prior approaches utilizing this framework by introducing: (a) wavelet transform pre-processing for decomposing image into different frequencies for their separate processing (b) a very deep super-resolution network as a decoder of the convolutional autoencoder in order to achieve a good quality decompressed image. The end-to-end learning is performed for four wavelet sub-bands in parallel, minimizing the computational time. The encoder compresses the image by generating the latent space representations, whereas the decoder transforms the latent space to image space. The algorithm has been tested on various standard datasets i.e., ImageNet, Set 5, Set 14, Live 1, Kodak, Classic 5, General 100 and CLIC 2019 dataset. The proposed algorithm clearly exhibited the compression performance improvement of approximately 5%, 5.5%, and 13% in terms of PSNR, PSNRB and SSIM respectively. |
| Author | Mishra, Dipti Singh, Rajat Kumar Singh, Satish Kumar |
| Author_xml | – sequence: 1 givenname: Dipti orcidid: 0000-0002-9271-7660 surname: Mishra fullname: Mishra, Dipti email: dipti.mishra28@gmail.com organization: Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Allahabad, India – sequence: 2 givenname: Satish Kumar orcidid: 0000-0002-8536-4991 surname: Singh fullname: Singh, Satish Kumar email: sk.singh@iiita.ac.in organization: Indian Institute of Information Technology, Allahabad, India – sequence: 3 givenname: Rajat Kumar surname: Singh fullname: Singh, Rajat Kumar email: rajatsingh@iiita.ac.in organization: Indian Institute of Information Technology, Allahabad, India |
| BookMark | eNp9kD1PwzAQhi1UJNrCH4AlEgsMKbZjJ_ZYklIqVWKg0NFy7CtK1cbBTpH496QfYmBgem94n7vTM0C92tWA0DXBI0KwfFjkr--LEcUUjxJMcEqzM9QnnIuYUsx73Yw5iQUl_AINQlhjTJhgWR9Nl_oLNtDGjzqAjQqAJhrvWhdNauMs-LiAQ0Z3y2I8Ke5PvdlWf0CUu23jIYTK1ZfofKU3Aa5OOURvT5NF_hzPX6azfDyPDZW8jRmIMmNMlkxabnXKM8GE4XxlGNPUlsamGejU8IQKbSXFkmoiM0NsUjLKIRmi2-PexrvPHYRWrd3O191JRXnXlpRT0bXEsWW8C8HDSpmq1W33Z-t1tVEEq702ddCm9trUSVuH0j9o46ut9t__QzdHqAKAX0ASxnjCkh9HVHia |
| CODEN | ITCTEM |
| CitedBy_id | crossref_primary_10_1109_TCSVT_2023_3237274 crossref_primary_10_1109_TCSVT_2022_3218735 crossref_primary_10_1145_3580499 crossref_primary_10_3390_e24091199 crossref_primary_10_55525_tjst_1428424 crossref_primary_10_1007_s00530_022_01026_1 crossref_primary_10_1109_TCSVT_2022_3199472 crossref_primary_10_1016_j_sigpro_2021_108346 crossref_primary_10_1109_TIP_2024_3484173 crossref_primary_10_1109_TCSVT_2021_3082521 crossref_primary_10_1117_1_JEI_33_3_033028 crossref_primary_10_1016_j_neucom_2024_128989 crossref_primary_10_3390_rs15030621 crossref_primary_10_1016_j_cja_2021_10_003 crossref_primary_10_1109_JOE_2023_3249243 crossref_primary_10_1109_TCSVT_2022_3216713 crossref_primary_10_1007_s00371_022_02418_0 crossref_primary_10_1109_TCSVT_2024_3493254 crossref_primary_10_1109_TCSVT_2023_3253702 crossref_primary_10_1007_s42835_024_01803_0 crossref_primary_10_1109_TCSVT_2024_3419575 crossref_primary_10_1109_TMM_2024_3366765 crossref_primary_10_35784_iapgos_6131 crossref_primary_10_1145_3661311 crossref_primary_10_1016_j_dsp_2024_104953 crossref_primary_10_3390_rs14102472 crossref_primary_10_1109_TCSVT_2024_3415823 crossref_primary_10_1016_j_cviu_2023_103881 crossref_primary_10_1109_TCSVT_2024_3383072 crossref_primary_10_1016_j_neucom_2021_07_012 crossref_primary_10_3390_healthcare11010123 crossref_primary_10_1016_j_engappai_2023_106361 crossref_primary_10_1016_j_neucom_2022_08_009 crossref_primary_10_1109_JIOT_2022_3150417 crossref_primary_10_1016_j_jcp_2022_111457 |
| Cites_doi | 10.1109/TIP.2010.2061859 10.1109/IJCNN.2017.7965927 10.1109/ICCV.2017.517 10.1109/CVPRW.2018.00114 10.1109/ICCV.2015.73 10.1109/CVPR.2018.00461 10.1109/ICCV.2015.123 10.1109/TMM.2017.2766889 10.1109/TPAMI.2015.2439281 10.1109/PCS.2018.8456278 10.1109/30.125072 10.1109/30.920468 10.1109/ICIP.2018.8451502 10.1109/TIP.2016.2515985 10.1109/CVPR.2017.517 10.1109/ICCV.2009.5459271 10.1109/83.855427 10.1109/ICCV.2019.00031 10.2307/2283832 10.1109/CVPR.2016.182 10.1007/s00034-019-01110-4 10.1109/76.735380 10.1109/TIP.2017.2662206 10.1109/CVPR.2017.577 10.1109/CVPR.2018.00339 10.1016/1049-9652(91)90045-L 10.1109/TPAMI.2016.2596743 10.1109/TIP.2007.891788 10.1023/A:1026501619075 10.1109/ICMEW.2018.8551532 10.1109/TIP.2016.2526910 10.3354/cr030079 10.1007/BF02946148 10.1109/TASSP.1981.1163711 10.1109/TCSVT.2017.2734838 10.1109/CVPRW.2018.00121 10.1109/TIP.2020.2963956 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TCSVT.2020.3010627 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2205 |
| EndPage | 1462 |
| ExternalDocumentID | 10_1109_TCSVT_2020_3010627 9144534 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c295t-4e8b7449b49d5da657848c55fc44a2dbcd67ea6c5328ad92092a197c1d3b425e3 |
| IEDL.DBID | RIE |
| ISSN | 1051-8215 |
| IngestDate | Mon Jun 30 05:41:48 EDT 2025 Wed Oct 01 01:07:01 EDT 2025 Thu Apr 24 23:10:13 EDT 2025 Wed Aug 27 02:44:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-4e8b7449b49d5da657848c55fc44a2dbcd67ea6c5328ad92092a197c1d3b425e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9271-7660 0000-0002-8536-4991 |
| PQID | 2509292528 |
| PQPubID | 85433 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_2509292528 ieee_primary_9144534 crossref_citationtrail_10_1109_TCSVT_2020_3010627 crossref_primary_10_1109_TCSVT_2020_3010627 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-04-01 |
| PublicationDateYYYYMMDD | 2021-04-01 |
| PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on circuits and systems for video technology |
| PublicationTitleAbbrev | TCSVT |
| PublicationYear | 2021 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref56 ref12 ref59 ref15 ref58 ref14 (ref49) 2019 ref11 ref16 theis (ref19) 2017 ref46 ref45 (ref53) 2019 hamilton (ref6) 2004 ref42 ref44 ref43 kyrki (ref3) 1999 kingma (ref57) 2015; abs 1412 (ref48) 2019 ref8 rippel (ref18) 2017; 70 (ref50) 2019 ref9 ref4 ref5 ref35 bellard (ref7) 2014 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref38 (ref54) 2019 dong (ref55) 2016 minnen (ref24) 2018 agustsson (ref21) 2017 (ref51) 2019 ref23 krizhevsky (ref41) 2012 ref26 ref25 ref20 ballé (ref17) 2017 akyazi (ref39) 2019 dong (ref34) 2014 ref22 ballé (ref40) 2018 ref28 ref27 ref29 (ref47) 2019 ref60 gonzalez (ref10) 2018 (ref52) 2019 |
| References_xml | – ident: ref60 doi: 10.1109/TIP.2010.2061859 – start-page: 10771 year: 2018 ident: ref24 article-title: Joint autoregressive and hierarchical priors for learned image compression publication-title: Proc Adv Neural Inf Proc Syst – ident: ref35 doi: 10.1109/IJCNN.2017.7965927 – start-page: 2598 year: 2018 ident: ref10 article-title: Joint denoising and decompression using CNN regularization publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) Workshops – ident: ref37 doi: 10.1109/ICCV.2017.517 – start-page: 1097 year: 2012 ident: ref41 article-title: ImageNet classification with deep convolutional neural networks publication-title: Proc Adv Neural Inf Proc Syst – year: 2019 ident: ref50 publication-title: LIVE image quality assessment database release 2 (2005) – ident: ref20 doi: 10.1109/CVPRW.2018.00114 – year: 2014 ident: ref7 publication-title: BPG image format – year: 2019 ident: ref54 publication-title: Clic 2019 Dataset – start-page: 391 year: 2016 ident: ref55 article-title: Accelerating the Super-Resolution Convolutional Neural Network publication-title: Proc Eur Conf Comput Vis – year: 2019 ident: ref51 publication-title: General 100 Dataset – ident: ref14 doi: 10.1109/ICCV.2015.73 – ident: ref25 doi: 10.1109/CVPR.2018.00461 – ident: ref59 doi: 10.1109/ICCV.2015.123 – year: 2004 ident: ref6 publication-title: JPEG File Interchange Format – year: 2017 ident: ref19 article-title: Lossy image compression with compressive autoencoders publication-title: Proc Int Conf Learn Represent – ident: ref12 doi: 10.1109/TMM.2017.2766889 – ident: ref33 doi: 10.1109/TPAMI.2015.2439281 – ident: ref27 doi: 10.1109/PCS.2018.8456278 – year: 2019 ident: ref53 publication-title: Kodak Lossless True Color Image Suite – year: 2019 ident: ref47 publication-title: The ImageNet dataset – year: 2018 ident: ref40 article-title: Variational image compression with a scale hyperprior publication-title: arXiv 1802 01436 – ident: ref1 doi: 10.1109/30.125072 – ident: ref2 doi: 10.1109/30.920468 – year: 2019 ident: ref48 publication-title: Set 5 Dataset – ident: ref26 doi: 10.1109/ICIP.2018.8451502 – ident: ref13 doi: 10.1109/TIP.2016.2515985 – year: 2019 ident: ref52 publication-title: Classic3 Dataset – ident: ref15 doi: 10.1109/CVPR.2017.517 – ident: ref31 doi: 10.1109/ICCV.2009.5459271 – ident: ref5 doi: 10.1109/83.855427 – ident: ref23 doi: 10.1109/ICCV.2019.00031 – ident: ref58 doi: 10.2307/2283832 – ident: ref45 doi: 10.1109/CVPR.2016.182 – start-page: 1141 year: 2017 ident: ref21 article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations publication-title: Proc Adv Neural Inf Proc Syst – ident: ref29 doi: 10.1007/s00034-019-01110-4 – volume: abs 1412 year: 2015 ident: ref57 article-title: Adam: A method for stochastic optimization publication-title: CoRR – start-page: 1 year: 2019 ident: ref39 article-title: Learning-Based Image Compression using Convolutional Autoencoder and Wavelet Decomposition publication-title: Proc IEEE Conf Comp Vis Pattern Recognit – ident: ref4 doi: 10.1109/76.735380 – year: 2019 ident: ref49 publication-title: Set 14 Dataset – ident: ref36 doi: 10.1109/TIP.2017.2662206 – ident: ref16 doi: 10.1109/CVPR.2017.577 – ident: ref22 doi: 10.1109/CVPR.2018.00339 – ident: ref32 doi: 10.1016/1049-9652(91)90045-L – ident: ref11 doi: 10.1109/TPAMI.2016.2596743 – start-page: 184 year: 2014 ident: ref34 article-title: Learning a deep convolutional network for image super-resolution publication-title: Proc Eur Conf Comput Vis – ident: ref9 doi: 10.1109/TIP.2007.891788 – year: 1999 ident: ref3 publication-title: Standard for Image Compression – ident: ref30 doi: 10.1023/A:1026501619075 – ident: ref28 doi: 10.1109/ICMEW.2018.8551532 – year: 2017 ident: ref17 article-title: End-to-end optimized image compression publication-title: Proc Int Conf Learn Represent – ident: ref8 doi: 10.1109/TIP.2016.2526910 – ident: ref46 doi: 10.3354/cr030079 – ident: ref56 doi: 10.1007/BF02946148 – volume: 70 start-page: 2922 year: 2017 ident: ref18 article-title: Real-time adaptive image compression publication-title: Proc 34th Int Conf Mach Learn (JMLR) – ident: ref44 doi: 10.1109/TASSP.1981.1163711 – ident: ref38 doi: 10.1109/TCSVT.2017.2734838 – ident: ref42 doi: 10.1109/CVPRW.2018.00121 – ident: ref43 doi: 10.1109/TIP.2020.2963956 |
| SSID | ssj0014847 |
| Score | 2.549588 |
| Snippet | In this work, we propose a Wavelet-based Deep Auto Encoder-Decoder Network (WDAED) based image compression which takes care of the various frequency components... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1452 |
| SubjectTerms | Algorithms autoencoder CNN Coders compression Computing time Convolutional codes Datasets Decoding deep DWT Encoders-Decoders frequency Haar Image coding Image compression Image quality Image resolution Machine learning Wavelet Wavelet transforms |
| Title | Wavelet-Based Deep Auto Encoder-Decoder (WDAED)-Based Image Compression |
| URI | https://ieeexplore.ieee.org/document/9144534 https://www.proquest.com/docview/2509292528 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 1558-2205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014847 issn: 1051-8215 databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4FUR5KQMDCNwmjpPYY6EtDwkWCnSL_MoCpBUkC78e20mjChBiihWdJcvne9l39wEcS26BQpRCyogDIsbGIKEFQb6vKeWZYspdZd_dx9eP5HYSTZbgvKmF0Vq75DPdtUP3lq-msrRXZT1mvP8oJMuwnNC4qtVqXgwIdWBixl0IEDV2bF4g47Pe-PLhaWxCQWwiVBsCWQSZBSPkUFV-qGJnX0brcDdfWZVW8tItC9GVn9-aNv536RuwVjuaXr86GZuwpPMtWF1oP9iGq2duYScKdGFMmfIGWs-8fllMvWFuK93f0UC7r3fyPOgPB6c13c2b0UGeVSRVDm2-DY-j4fjyGtXACkhiFhWIaCoSQpggTEWKx0ZqCZVRlElCOFZCqjjRPJZRiClXDPsM84AlMlChMDKuwx1o5dNc74KXhSRLBNZJKAJr5wTl3JdxFnLz089YB4L5Tqey7jpuwS9eUxd9-Cx13Ektd9KaOx04a-bMqp4bf1K37XY3lPVOd-BgztC0FsuP1Ph7xh3EEaZ7v8_ahxVsk1Zcas4BtIr3Uh8ar6MQR-64fQEJh9DZ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iGICBG1HODAwgcEkcO7HHQgvlKAvl2CJfWYAUQbrw67GdtEKAEFOs6Fmy_Pwu-733Aewp4YBCtEbaigMi1sYgaSRBYWgYE7nm2l9l926S7h25fKSPE3A0roUxxvjkM9N0Q_-Wrwdq6K7Kjrn1_mlMJmGaEjuqqrXGbwaEeTgx6zBEiFlLNiqRCflx__T2vm-DQWxjVBcEOQyZL2bI46r8UMbewpwtQG-0tiqx5Kk5LGVTfXxr2_jfxS_CfO1qBq3qbCzBhCmWYe5LA8IVOH8QDniiRCfWmOmgbcxr0BqWg6BTuFr3N9Q2_hvsP7RbnfZBTXfxYrVQ4FRJlUVbrMLdWad_2kU1tAJSmNMSEcNkSgiXhGuqRWLlljBFaa4IEVhLpZPUiETRGDOhOQ45FhFPVaRjaaXcxGswVQwKsw5BHpM8ldiksYycpZNMiFAleSzszzDnDYhGO52puu-4g794znz8EfLMcydz3Mlq7jTgcDznteq68Sf1itvuMWW90w3YGjE0qwXzPbMen3UIMcVs4_dZuzDT7feus-uLm6tNmMUuhcUn6mzBVPk2NNvWBynljj96nydQ1CY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet-Based+Deep+Auto+Encoder-Decoder+%28WDAED%29-Based+Image+Compression&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Mishra%2C+Dipti&rft.au=Singh%2C+Satish+Kumar&rft.au=Singh%2C+Rajat+Kumar&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=4&rft.spage=1452&rft_id=info:doi/10.1109%2FTCSVT.2020.3010627&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |