Wavelet-Based Deep Auto Encoder-Decoder (WDAED)-Based Image Compression

In this work, we propose a Wavelet-based Deep Auto Encoder-Decoder Network (WDAED) based image compression which takes care of the various frequency components present in an image. Specifically, we demonstrate improvements over prior approaches utilizing this framework by introducing: (a) wavelet tr...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 31; no. 4; pp. 1452 - 1462
Main Authors Mishra, Dipti, Singh, Satish Kumar, Singh, Rajat Kumar
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2020.3010627

Cover

Abstract In this work, we propose a Wavelet-based Deep Auto Encoder-Decoder Network (WDAED) based image compression which takes care of the various frequency components present in an image. Specifically, we demonstrate improvements over prior approaches utilizing this framework by introducing: (a) wavelet transform pre-processing for decomposing image into different frequencies for their separate processing (b) a very deep super-resolution network as a decoder of the convolutional autoencoder in order to achieve a good quality decompressed image. The end-to-end learning is performed for four wavelet sub-bands in parallel, minimizing the computational time. The encoder compresses the image by generating the latent space representations, whereas the decoder transforms the latent space to image space. The algorithm has been tested on various standard datasets i.e., ImageNet, Set 5, Set 14, Live 1, Kodak, Classic 5, General 100 and CLIC 2019 dataset. The proposed algorithm clearly exhibited the compression performance improvement of approximately 5%, 5.5%, and 13% in terms of PSNR, PSNRB and SSIM respectively.
AbstractList In this work, we propose a Wavelet-based Deep Auto Encoder-Decoder Network (WDAED) based image compression which takes care of the various frequency components present in an image. Specifically, we demonstrate improvements over prior approaches utilizing this framework by introducing: (a) wavelet transform pre-processing for decomposing image into different frequencies for their separate processing (b) a very deep super-resolution network as a decoder of the convolutional autoencoder in order to achieve a good quality decompressed image. The end-to-end learning is performed for four wavelet sub-bands in parallel, minimizing the computational time. The encoder compresses the image by generating the latent space representations, whereas the decoder transforms the latent space to image space. The algorithm has been tested on various standard datasets i.e., ImageNet, Set 5, Set 14, Live 1, Kodak, Classic 5, General 100 and CLIC 2019 dataset. The proposed algorithm clearly exhibited the compression performance improvement of approximately 5%, 5.5%, and 13% in terms of PSNR, PSNRB and SSIM respectively.
Author Mishra, Dipti
Singh, Rajat Kumar
Singh, Satish Kumar
Author_xml – sequence: 1
  givenname: Dipti
  orcidid: 0000-0002-9271-7660
  surname: Mishra
  fullname: Mishra, Dipti
  email: dipti.mishra28@gmail.com
  organization: Department of Electronics and Communication Engineering, Indian Institute of Information Technology, Allahabad, India
– sequence: 2
  givenname: Satish Kumar
  orcidid: 0000-0002-8536-4991
  surname: Singh
  fullname: Singh, Satish Kumar
  email: sk.singh@iiita.ac.in
  organization: Indian Institute of Information Technology, Allahabad, India
– sequence: 3
  givenname: Rajat Kumar
  surname: Singh
  fullname: Singh, Rajat Kumar
  email: rajatsingh@iiita.ac.in
  organization: Indian Institute of Information Technology, Allahabad, India
BookMark eNp9kD1PwzAQhi1UJNrCH4AlEgsMKbZjJ_ZYklIqVWKg0NFy7CtK1cbBTpH496QfYmBgem94n7vTM0C92tWA0DXBI0KwfFjkr--LEcUUjxJMcEqzM9QnnIuYUsx73Yw5iQUl_AINQlhjTJhgWR9Nl_oLNtDGjzqAjQqAJhrvWhdNauMs-LiAQ0Z3y2I8Ke5PvdlWf0CUu23jIYTK1ZfofKU3Aa5OOURvT5NF_hzPX6azfDyPDZW8jRmIMmNMlkxabnXKM8GE4XxlGNPUlsamGejU8IQKbSXFkmoiM0NsUjLKIRmi2-PexrvPHYRWrd3O191JRXnXlpRT0bXEsWW8C8HDSpmq1W33Z-t1tVEEq702ddCm9trUSVuH0j9o46ut9t__QzdHqAKAX0ASxnjCkh9HVHia
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2023_3237274
crossref_primary_10_1109_TCSVT_2022_3218735
crossref_primary_10_1145_3580499
crossref_primary_10_3390_e24091199
crossref_primary_10_55525_tjst_1428424
crossref_primary_10_1007_s00530_022_01026_1
crossref_primary_10_1109_TCSVT_2022_3199472
crossref_primary_10_1016_j_sigpro_2021_108346
crossref_primary_10_1109_TIP_2024_3484173
crossref_primary_10_1109_TCSVT_2021_3082521
crossref_primary_10_1117_1_JEI_33_3_033028
crossref_primary_10_1016_j_neucom_2024_128989
crossref_primary_10_3390_rs15030621
crossref_primary_10_1016_j_cja_2021_10_003
crossref_primary_10_1109_JOE_2023_3249243
crossref_primary_10_1109_TCSVT_2022_3216713
crossref_primary_10_1007_s00371_022_02418_0
crossref_primary_10_1109_TCSVT_2024_3493254
crossref_primary_10_1109_TCSVT_2023_3253702
crossref_primary_10_1007_s42835_024_01803_0
crossref_primary_10_1109_TCSVT_2024_3419575
crossref_primary_10_1109_TMM_2024_3366765
crossref_primary_10_35784_iapgos_6131
crossref_primary_10_1145_3661311
crossref_primary_10_1016_j_dsp_2024_104953
crossref_primary_10_3390_rs14102472
crossref_primary_10_1109_TCSVT_2024_3415823
crossref_primary_10_1016_j_cviu_2023_103881
crossref_primary_10_1109_TCSVT_2024_3383072
crossref_primary_10_1016_j_neucom_2021_07_012
crossref_primary_10_3390_healthcare11010123
crossref_primary_10_1016_j_engappai_2023_106361
crossref_primary_10_1016_j_neucom_2022_08_009
crossref_primary_10_1109_JIOT_2022_3150417
crossref_primary_10_1016_j_jcp_2022_111457
Cites_doi 10.1109/TIP.2010.2061859
10.1109/IJCNN.2017.7965927
10.1109/ICCV.2017.517
10.1109/CVPRW.2018.00114
10.1109/ICCV.2015.73
10.1109/CVPR.2018.00461
10.1109/ICCV.2015.123
10.1109/TMM.2017.2766889
10.1109/TPAMI.2015.2439281
10.1109/PCS.2018.8456278
10.1109/30.125072
10.1109/30.920468
10.1109/ICIP.2018.8451502
10.1109/TIP.2016.2515985
10.1109/CVPR.2017.517
10.1109/ICCV.2009.5459271
10.1109/83.855427
10.1109/ICCV.2019.00031
10.2307/2283832
10.1109/CVPR.2016.182
10.1007/s00034-019-01110-4
10.1109/76.735380
10.1109/TIP.2017.2662206
10.1109/CVPR.2017.577
10.1109/CVPR.2018.00339
10.1016/1049-9652(91)90045-L
10.1109/TPAMI.2016.2596743
10.1109/TIP.2007.891788
10.1023/A:1026501619075
10.1109/ICMEW.2018.8551532
10.1109/TIP.2016.2526910
10.3354/cr030079
10.1007/BF02946148
10.1109/TASSP.1981.1163711
10.1109/TCSVT.2017.2734838
10.1109/CVPRW.2018.00121
10.1109/TIP.2020.2963956
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2020.3010627
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1462
ExternalDocumentID 10_1109_TCSVT_2020_3010627
9144534
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-4e8b7449b49d5da657848c55fc44a2dbcd67ea6c5328ad92092a197c1d3b425e3
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Mon Jun 30 05:41:48 EDT 2025
Wed Oct 01 01:07:01 EDT 2025
Thu Apr 24 23:10:13 EDT 2025
Wed Aug 27 02:44:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-4e8b7449b49d5da657848c55fc44a2dbcd67ea6c5328ad92092a197c1d3b425e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9271-7660
0000-0002-8536-4991
PQID 2509292528
PQPubID 85433
PageCount 11
ParticipantIDs proquest_journals_2509292528
ieee_primary_9144534
crossref_citationtrail_10_1109_TCSVT_2020_3010627
crossref_primary_10_1109_TCSVT_2020_3010627
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref56
ref12
ref59
ref15
ref58
ref14
(ref49) 2019
ref11
ref16
theis (ref19) 2017
ref46
ref45
(ref53) 2019
hamilton (ref6) 2004
ref42
ref44
ref43
kyrki (ref3) 1999
kingma (ref57) 2015; abs 1412
(ref48) 2019
ref8
rippel (ref18) 2017; 70
(ref50) 2019
ref9
ref4
ref5
ref35
bellard (ref7) 2014
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref38
(ref54) 2019
dong (ref55) 2016
minnen (ref24) 2018
agustsson (ref21) 2017
(ref51) 2019
ref23
krizhevsky (ref41) 2012
ref26
ref25
ref20
ballé (ref17) 2017
akyazi (ref39) 2019
dong (ref34) 2014
ref22
ballé (ref40) 2018
ref28
ref27
ref29
(ref47) 2019
ref60
gonzalez (ref10) 2018
(ref52) 2019
References_xml – ident: ref60
  doi: 10.1109/TIP.2010.2061859
– start-page: 10771
  year: 2018
  ident: ref24
  article-title: Joint autoregressive and hierarchical priors for learned image compression
  publication-title: Proc Adv Neural Inf Proc Syst
– ident: ref35
  doi: 10.1109/IJCNN.2017.7965927
– start-page: 2598
  year: 2018
  ident: ref10
  article-title: Joint denoising and decompression using CNN regularization
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit (CVPR) Workshops
– ident: ref37
  doi: 10.1109/ICCV.2017.517
– start-page: 1097
  year: 2012
  ident: ref41
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc Adv Neural Inf Proc Syst
– year: 2019
  ident: ref50
  publication-title: LIVE image quality assessment database release 2 (2005)
– ident: ref20
  doi: 10.1109/CVPRW.2018.00114
– year: 2014
  ident: ref7
  publication-title: BPG image format
– year: 2019
  ident: ref54
  publication-title: Clic 2019 Dataset
– start-page: 391
  year: 2016
  ident: ref55
  article-title: Accelerating the Super-Resolution Convolutional Neural Network
  publication-title: Proc Eur Conf Comput Vis
– year: 2019
  ident: ref51
  publication-title: General 100 Dataset
– ident: ref14
  doi: 10.1109/ICCV.2015.73
– ident: ref25
  doi: 10.1109/CVPR.2018.00461
– ident: ref59
  doi: 10.1109/ICCV.2015.123
– year: 2004
  ident: ref6
  publication-title: JPEG File Interchange Format
– year: 2017
  ident: ref19
  article-title: Lossy image compression with compressive autoencoders
  publication-title: Proc Int Conf Learn Represent
– ident: ref12
  doi: 10.1109/TMM.2017.2766889
– ident: ref33
  doi: 10.1109/TPAMI.2015.2439281
– ident: ref27
  doi: 10.1109/PCS.2018.8456278
– year: 2019
  ident: ref53
  publication-title: Kodak Lossless True Color Image Suite
– year: 2019
  ident: ref47
  publication-title: The ImageNet dataset
– year: 2018
  ident: ref40
  article-title: Variational image compression with a scale hyperprior
  publication-title: arXiv 1802 01436
– ident: ref1
  doi: 10.1109/30.125072
– ident: ref2
  doi: 10.1109/30.920468
– year: 2019
  ident: ref48
  publication-title: Set 5 Dataset
– ident: ref26
  doi: 10.1109/ICIP.2018.8451502
– ident: ref13
  doi: 10.1109/TIP.2016.2515985
– year: 2019
  ident: ref52
  publication-title: Classic3 Dataset
– ident: ref15
  doi: 10.1109/CVPR.2017.517
– ident: ref31
  doi: 10.1109/ICCV.2009.5459271
– ident: ref5
  doi: 10.1109/83.855427
– ident: ref23
  doi: 10.1109/ICCV.2019.00031
– ident: ref58
  doi: 10.2307/2283832
– ident: ref45
  doi: 10.1109/CVPR.2016.182
– start-page: 1141
  year: 2017
  ident: ref21
  article-title: Soft-to-hard vector quantization for end-to-end learning compressible representations
  publication-title: Proc Adv Neural Inf Proc Syst
– ident: ref29
  doi: 10.1007/s00034-019-01110-4
– volume: abs 1412
  year: 2015
  ident: ref57
  article-title: Adam: A method for stochastic optimization
  publication-title: CoRR
– start-page: 1
  year: 2019
  ident: ref39
  article-title: Learning-Based Image Compression using Convolutional Autoencoder and Wavelet Decomposition
  publication-title: Proc IEEE Conf Comp Vis Pattern Recognit
– ident: ref4
  doi: 10.1109/76.735380
– year: 2019
  ident: ref49
  publication-title: Set 14 Dataset
– ident: ref36
  doi: 10.1109/TIP.2017.2662206
– ident: ref16
  doi: 10.1109/CVPR.2017.577
– ident: ref22
  doi: 10.1109/CVPR.2018.00339
– ident: ref32
  doi: 10.1016/1049-9652(91)90045-L
– ident: ref11
  doi: 10.1109/TPAMI.2016.2596743
– start-page: 184
  year: 2014
  ident: ref34
  article-title: Learning a deep convolutional network for image super-resolution
  publication-title: Proc Eur Conf Comput Vis
– ident: ref9
  doi: 10.1109/TIP.2007.891788
– year: 1999
  ident: ref3
  publication-title: Standard for Image Compression
– ident: ref30
  doi: 10.1023/A:1026501619075
– ident: ref28
  doi: 10.1109/ICMEW.2018.8551532
– year: 2017
  ident: ref17
  article-title: End-to-end optimized image compression
  publication-title: Proc Int Conf Learn Represent
– ident: ref8
  doi: 10.1109/TIP.2016.2526910
– ident: ref46
  doi: 10.3354/cr030079
– ident: ref56
  doi: 10.1007/BF02946148
– volume: 70
  start-page: 2922
  year: 2017
  ident: ref18
  article-title: Real-time adaptive image compression
  publication-title: Proc 34th Int Conf Mach Learn (JMLR)
– ident: ref44
  doi: 10.1109/TASSP.1981.1163711
– ident: ref38
  doi: 10.1109/TCSVT.2017.2734838
– ident: ref42
  doi: 10.1109/CVPRW.2018.00121
– ident: ref43
  doi: 10.1109/TIP.2020.2963956
SSID ssj0014847
Score 2.549588
Snippet In this work, we propose a Wavelet-based Deep Auto Encoder-Decoder Network (WDAED) based image compression which takes care of the various frequency components...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1452
SubjectTerms Algorithms
autoencoder
CNN
Coders
compression
Computing time
Convolutional codes
Datasets
Decoding
deep
DWT
Encoders-Decoders
frequency
Haar
Image coding
Image compression
Image quality
Image resolution
Machine learning
Wavelet
Wavelet transforms
Title Wavelet-Based Deep Auto Encoder-Decoder (WDAED)-Based Image Compression
URI https://ieeexplore.ieee.org/document/9144534
https://www.proquest.com/docview/2509292528
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED5BJxh4FUR5KQMDCNwmjpPYY6EtDwkWCnSL_MoCpBUkC78e20mjChBiihWdJcvne9l39wEcS26BQpRCyogDIsbGIKEFQb6vKeWZYspdZd_dx9eP5HYSTZbgvKmF0Vq75DPdtUP3lq-msrRXZT1mvP8oJMuwnNC4qtVqXgwIdWBixl0IEDV2bF4g47Pe-PLhaWxCQWwiVBsCWQSZBSPkUFV-qGJnX0brcDdfWZVW8tItC9GVn9-aNv536RuwVjuaXr86GZuwpPMtWF1oP9iGq2duYScKdGFMmfIGWs-8fllMvWFuK93f0UC7r3fyPOgPB6c13c2b0UGeVSRVDm2-DY-j4fjyGtXACkhiFhWIaCoSQpggTEWKx0ZqCZVRlElCOFZCqjjRPJZRiClXDPsM84AlMlChMDKuwx1o5dNc74KXhSRLBNZJKAJr5wTl3JdxFnLz089YB4L5Tqey7jpuwS9eUxd9-Cx13Ektd9KaOx04a-bMqp4bf1K37XY3lPVOd-BgztC0FsuP1Ph7xh3EEaZ7v8_ahxVsk1Zcas4BtIr3Uh8ar6MQR-64fQEJh9DZ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV05T8MwFH7iGICBG1HODAwgcEkcO7HHQgvlKAvl2CJfWYAUQbrw67GdtEKAEFOs6Fmy_Pwu-733Aewp4YBCtEbaigMi1sYgaSRBYWgYE7nm2l9l926S7h25fKSPE3A0roUxxvjkM9N0Q_-Wrwdq6K7Kjrn1_mlMJmGaEjuqqrXGbwaEeTgx6zBEiFlLNiqRCflx__T2vm-DQWxjVBcEOQyZL2bI46r8UMbewpwtQG-0tiqx5Kk5LGVTfXxr2_jfxS_CfO1qBq3qbCzBhCmWYe5LA8IVOH8QDniiRCfWmOmgbcxr0BqWg6BTuFr3N9Q2_hvsP7RbnfZBTXfxYrVQ4FRJlUVbrMLdWad_2kU1tAJSmNMSEcNkSgiXhGuqRWLlljBFaa4IEVhLpZPUiETRGDOhOQ45FhFPVaRjaaXcxGswVQwKsw5BHpM8ldiksYycpZNMiFAleSzszzDnDYhGO52puu-4g794znz8EfLMcydz3Mlq7jTgcDznteq68Sf1itvuMWW90w3YGjE0qwXzPbMen3UIMcVs4_dZuzDT7feus-uLm6tNmMUuhcUn6mzBVPk2NNvWBynljj96nydQ1CY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wavelet-Based+Deep+Auto+Encoder-Decoder+%28WDAED%29-Based+Image+Compression&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Mishra%2C+Dipti&rft.au=Singh%2C+Satish+Kumar&rft.au=Singh%2C+Rajat+Kumar&rft.date=2021-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=31&rft.issue=4&rft.spage=1452&rft_id=info:doi/10.1109%2FTCSVT.2020.3010627&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon