Proposing Enhanced Feature Engineering and a Selection Model for Machine Learning Processes
Machine Learning (ML) requires a certain number of features (i.e., attributes) to train the model. One of the main challenges is to determine the right number and the type of such features out of the given dataset’s attributes. It is not uncommon for the ML process to use dataset of available featur...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 8; no. 4; p. 646 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.04.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app8040646 | 
Cover
| Abstract | Machine Learning (ML) requires a certain number of features (i.e., attributes) to train the model. One of the main challenges is to determine the right number and the type of such features out of the given dataset’s attributes. It is not uncommon for the ML process to use dataset of available features without computing the predictive value of each. Such an approach makes the process vulnerable to overfit, predictive errors, bias, and poor generalization. Each feature in the dataset has either a unique predictive value, redundant, or irrelevant value. However, the key to better accuracy and fitting for ML is to identify the optimum set (i.e., grouping) of the right feature set with the finest matching of the feature’s value. This paper proposes a novel approach to enhance the Feature Engineering and Selection (eFES) Optimization process in ML. eFES is built using a unique scheme to regulate error bounds and parallelize the addition and removal of a feature during training. eFES also invents local gain (LG) and global gain (GG) functions using 3D visualizing techniques to assist the feature grouping function (FGF). FGF scores and optimizes the participating feature, so the ML process can evolve into deciding which features to accept or reject for improved generalization of the model. To support the proposed model, this paper presents mathematical models, illustrations, algorithms, and experimental results. Miscellaneous datasets are used to validate the model building process in Python, C#, and R languages. Results show the promising state of eFES as compared to the traditional feature selection process. | 
    
|---|---|
| AbstractList | [...]in the line with the latest progress and related study (See Section 2), the work proposed in this paper uses ML and mathematical techniques, such as statistical pattern classification [7], Orthonormalization [8], Probability theory [9], Jacobian [7], Laplacian [3], and Lagrangian distribution [10] to build the mathematical constructs and underlying algorithms (1 and 2). Gain (I, F (t:x,y,z)) = Entropy (Fn) − Entropy (Fn∈ x,y,z) We develop a ratio of gain for each feature in z-dimension as this ensure the maximum fitness of the feature set for the given predictive modeling in the given dataset for which ML algorithm needs to be trained. [...]gR indicates the ratio between: gR (z) = Gain (I, F (t:x,y,z)) G (x,y,z) |P (pE) > P (pE)|error Figure 7 shows the displacement of the local gain and global gain functions based on probability distributions. [...]it gets to the start using the gain function in 3D space for each fitting factor since our model is based on 3D scoring of each feature in the space where point is moved in x, y, and z values in space (logical tracking during classifier learning). FGF function determines the right number and type of the features from a given data set during classifier learning and reports accordingly if satisfactory accuracy and generalization have not been reached. eFES unit, as explained in the model earlier, uses 3D array to store the scoring via LT object in the inner layer of the model. [...]eFES algorithms can tell the model if more features are needed to finally train the classifier for acceptable prediction in the real-world test. Machine Learning (ML) requires a certain number of features (i.e., attributes) to train the model. One of the main challenges is to determine the right number and the type of such features out of the given dataset’s attributes. It is not uncommon for the ML process to use dataset of available features without computing the predictive value of each. Such an approach makes the process vulnerable to overfit, predictive errors, bias, and poor generalization. Each feature in the dataset has either a unique predictive value, redundant, or irrelevant value. However, the key to better accuracy and fitting for ML is to identify the optimum set (i.e., grouping) of the right feature set with the finest matching of the feature’s value. This paper proposes a novel approach to enhance the Feature Engineering and Selection (eFES) Optimization process in ML. eFES is built using a unique scheme to regulate error bounds and parallelize the addition and removal of a feature during training. eFES also invents local gain (LG) and global gain (GG) functions using 3D visualizing techniques to assist the feature grouping function (FGF). FGF scores and optimizes the participating feature, so the ML process can evolve into deciding which features to accept or reject for improved generalization of the model. To support the proposed model, this paper presents mathematical models, illustrations, algorithms, and experimental results. Miscellaneous datasets are used to validate the model building process in Python, C#, and R languages. Results show the promising state of eFES as compared to the traditional feature selection process.  | 
    
| Author | Rizvi, Syed Lee, Jeongkyu Uddin, Muhammad Fahim Hamada, Samir  | 
    
| Author_xml | – sequence: 1 givenname: Muhammad Fahim surname: Uddin fullname: Uddin, Muhammad Fahim – sequence: 2 givenname: Jeongkyu surname: Lee fullname: Lee, Jeongkyu – sequence: 3 givenname: Syed surname: Rizvi fullname: Rizvi, Syed – sequence: 4 givenname: Samir surname: Hamada fullname: Hamada, Samir  | 
    
| BookMark | eNp9kE9Lw0AQxRepYK29-AkWvCnR3ezmzx6ltCq0KKgnD2GymbQpcTfuJpR-exMqKCLOZYY3v3kM75SMjDVIyDln10IodgNNkzLJYhkfkXHIkjgQkiejH_MJmXq_ZX0pLlLOxuTtydnG-sqs6dxswGgs6AKh7Rz2wroyiG5Ygiko0GesUbeVNXRlC6xpaR1dgd70GF0iODOgvaNG79GfkeMSao_Trz4hr4v5y-w-WD7ePcxul4EOVdQGEqUQcZmnvIyU4iEgYqQ1gxKLPM7TWBSSx1KBUCFjg4glpnkqkkQhjyIxIVcH3840sN9BXWeNq97B7TPOsiGa7Duanr440I2zHx36Ntvazpn-wSwUXPZRCTV4Xh4o7az3Dsv_LdkvWFctDDm1Dqr6r5NPLiWDMw | 
    
| CitedBy_id | crossref_primary_10_1016_j_surfin_2024_105469 crossref_primary_10_1016_j_nucengdes_2023_112466 crossref_primary_10_1002_cpe_5784 crossref_primary_10_1016_j_eswa_2022_119055 crossref_primary_10_33003_fjs_2024_0806_3002 crossref_primary_10_1016_j_carres_2024_109189 crossref_primary_10_1007_s11831_024_10169_5 crossref_primary_10_1007_s11831_023_09996_9 crossref_primary_10_1155_2023_8583210 crossref_primary_10_3390_su15043017 crossref_primary_10_1016_j_mtcomm_2024_108216 crossref_primary_10_1002_adem_202401944 crossref_primary_10_1080_17452759_2024_2425825 crossref_primary_10_1063_5_0235572 crossref_primary_10_1016_j_engappai_2023_106372 crossref_primary_10_1049_cit2_12352 crossref_primary_10_1109_ACCESS_2018_2866046 crossref_primary_10_3390_info10110359 crossref_primary_10_1007_s00521_024_10662_9 crossref_primary_10_3390_s22176507 crossref_primary_10_1016_j_engappai_2024_107845 crossref_primary_10_1063_5_0176422 crossref_primary_10_3390_app8081371 crossref_primary_10_1145_3590150 crossref_primary_10_1016_j_comnet_2023_110072 crossref_primary_10_1186_s13321_024_00911_3 crossref_primary_10_21015_vtse_v10i3_1114 crossref_primary_10_3390_s24041233 crossref_primary_10_1177_20552076251314097 crossref_primary_10_1016_j_compeleceng_2024_109241 crossref_primary_10_1016_j_jclepro_2024_143927 crossref_primary_10_1007_s11831_020_09506_1  | 
    
| Cites_doi | 10.1109/TIFS.2017.2766039 10.1007/s00521-013-1368-0 10.1007/s13278-017-0448-z 10.1109/TAMD.2015.2434733 10.1109/JBHI.2014.2304357 10.1109/TIP.2017.2781298 10.1109/TIP.2016.2605920 10.1109/SURV.2012.110112.00192 10.1201/9781584888796.pt4 10.3390/sym9090197 10.1109/TPDS.2017.2732951 10.1007/978-3-319-20010-1 10.1109/TITS.2016.2614916 10.1007/978-1-4302-3325-1 10.1109/ACCESS.2018.2806944 10.1109/TCYB.2013.2260736 10.1145/564376.564395 10.1109/JSTSP.2011.2139193 10.1007/978-1-4615-5689-3 10.1109/TCYB.2015.2511149 10.1017/CBO9781107298019  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY  | 
    
| DOI | 10.3390/app8040646 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | 10.3390/app8040646 10_3390_app8040646  | 
    
| GeographicLocations | United States--US | 
    
| GeographicLocations_xml | – name: United States--US | 
    
| GroupedDBID | .4S 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IPNFZ K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC RIG TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 2XV ADTOC IGS ITC UNPAY  | 
    
| ID | FETCH-LOGICAL-c295t-4e4336fb81f59912aeee5cc0afedb6b863d41649a39200fedbefe8b83779e1553 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Sun Oct 26 04:10:15 EDT 2025 Mon Oct 20 01:51:54 EDT 2025 Thu Oct 16 04:44:24 EDT 2025 Thu Apr 24 23:00:54 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c295t-4e4336fb81f59912aeee5cc0afedb6b863d41649a39200fedbefe8b83779e1553 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2314076395?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2314076395 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_app8040646 proquest_journals_2314076395 crossref_primary_10_3390_app8040646 crossref_citationtrail_10_3390_app8040646  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-04-01 | 
    
| PublicationDateYYYYMMDD | 2018-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2018 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Globerson (ref_2) 2003; 3 ref_36 ref_13 Vergara (ref_14) 2015; 24 ref_35 ref_34 ref_11 ref_10 ref_32 ref_31 Wang (ref_20) 2015; 7 ref_30 Li (ref_3) 2017; 50 Zeng (ref_19) 2016; 18 Tuia (ref_5) 2011; 5 Han (ref_18) 2016; 25 Lara (ref_21) 2013; 15 Ma (ref_16) 2014; 18 Liu (ref_24) 2017; 27 Mohsenzadeh (ref_15) 2013; 43 ref_25 Wang (ref_23) 2018; 13 Uddin (ref_33) 2017; 7 Forman (ref_12) 2007; 16 Guyon (ref_1) 2003; 3 Zhang (ref_22) 2018; 29 ref_29 ref_28 ref_27 ref_26 ref_9 ref_8 ref_4 ref_7 ref_6 Lam (ref_17) 2017; 47  | 
    
| References_xml | – ident: ref_7 – ident: ref_28 – ident: ref_9 – volume: 13 start-page: 733 year: 2018 ident: ref_23 article-title: Bimodal Vein Data Mining via Cross-Selected-Domain Knowledge Transfer publication-title: IEEE Trans. Inf. Forensics Secur. doi: 10.1109/TIFS.2017.2766039 – ident: ref_26 – ident: ref_34 – volume: 24 start-page: 175 year: 2015 ident: ref_14 article-title: A Review of Feature Selection Methods Based on Mutual Information publication-title: Neural Comput. Appl. doi: 10.1007/s00521-013-1368-0 – volume: 50 start-page: 94 year: 2017 ident: ref_3 article-title: Feature Selection: A Data Perspective publication-title: ACM Comput. Surv. – volume: 7 start-page: 29 year: 2017 ident: ref_33 article-title: Proposing stochastic probability-based math model and algorithms utilizing social networking and academic data for good fit students prediction publication-title: Soc. Netw. Anal. Min. doi: 10.1007/s13278-017-0448-z – volume: 7 start-page: 248 year: 2015 ident: ref_20 article-title: Predicting Purchase Decisions Based on Spatio-Temporal Functional MRI Features Using Machine Learning publication-title: IEEE Trans. Auton. Ment. Dev. doi: 10.1109/TAMD.2015.2434733 – volume: 18 start-page: 1915 year: 2014 ident: ref_16 article-title: Depth-based human fall detection via shape features and improved extreme learning machine publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2014.2304357 – volume: 27 start-page: 1323 year: 2017 ident: ref_24 article-title: Cost-Sensitive Feature Selection by Optimizing F-measures publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2781298 – volume: 25 start-page: 5331 year: 2016 ident: ref_18 article-title: Unsupervised 3D Local Feature Learning by Circle Convolutional Restricted Boltzmann Machine publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2605920 – ident: ref_35 – volume: 15 start-page: 1192 year: 2013 ident: ref_21 article-title: A Survey on Human Activity Recognition using Wearable Sensors publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2012.110112.00192 – volume: 16 start-page: 257 year: 2007 ident: ref_12 article-title: Feature Selection for Text Classification publication-title: Comput. Methods Feature Sel. doi: 10.1201/9781584888796.pt4 – ident: ref_30 doi: 10.3390/sym9090197 – ident: ref_8 – volume: 29 start-page: 405 year: 2018 ident: ref_22 article-title: Machine Learning-Based Temperature Prediction for Runtime Thermal Management Across System Components publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2017.2732951 – ident: ref_32 doi: 10.1007/978-3-319-20010-1 – ident: ref_4 – ident: ref_31 – volume: 18 start-page: 1 year: 2016 ident: ref_19 article-title: Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep Perceptual Features publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2016.2614916 – ident: ref_29 – ident: ref_27 – ident: ref_36 doi: 10.1007/978-1-4302-3325-1 – volume: 3 start-page: 1307 year: 2003 ident: ref_2 article-title: Sufficient Dimensionality Reduction publication-title: J. Mach. Learn. Res. – ident: ref_25 doi: 10.1109/ACCESS.2018.2806944 – volume: 43 start-page: 2241 year: 2013 ident: ref_15 article-title: The relevance sample-feature machine: A sparse bayesian learning approach to joint feature-sample selection publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2013.2260736 – ident: ref_6 doi: 10.1145/564376.564395 – ident: ref_13 – volume: 5 start-page: 606 year: 2011 ident: ref_5 article-title: A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2011.2139193 – ident: ref_11 doi: 10.1007/978-1-4615-5689-3 – volume: 47 start-page: 224 year: 2017 ident: ref_17 article-title: Unsupervised Feature Learning Classification with Radial Basis Function Extreme Learning Machine Using Graphic Processors publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2511149 – volume: 3 start-page: 1157 year: 2003 ident: ref_1 article-title: An Introduction to Variable and Feature Selection publication-title: J. Mach. Learn. Res. – ident: ref_10 doi: 10.1017/CBO9781107298019  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.3495913 | 
    
| Snippet | Machine Learning (ML) requires a certain number of features (i.e., attributes) to train the model. One of the main challenges is to determine the right number... [...]in the line with the latest progress and related study (See Section 2), the work proposed in this paper uses ML and mathematical techniques, such as...  | 
    
| SourceID | unpaywall proquest crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 646 | 
    
| SubjectTerms | Accuracy Algorithms Artificial intelligence Bias Concurrency control Data mining Datasets Discriminant analysis Engineering Machine learning Principal components analysis Servers Social research  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB10PagHv8X1i4Ae9FC33SZpehIRRQRF0AXFQ0naqYpLXeyuor_eSZvVRUTEY0uSFmaSvElf3wPYDozJCbNlnoiMFdXG2NMRXfptHSjUIUaVfdvZuTzp8NNrce24OaWjVVIp_lAt0m0qsj1aZqOWavGW5LLVy_L9F3eQZJ17Qh6HUozDhBQExRsw0Tm_OLixhnLDrrUkaUilvf0krChnpQW7o5vQF7KcHBQ9_faqu92RTeZ4tnZSLSttQsstedwb9M1e-v5NufHf7z8HMw5-soM6X-ZhDIsFmB4RJVyAeTfdS7bjNKl3F-H2wrop2HMFdlTcV6wBZtHj4BnZSG-mi4xpdlmZ69DTmbVa6zICxuysYm0ic4Kud8z9ooDlEnSOj64OTzzny-Cl7Vj0PY48DGVuVJALgpdtjYgiTX2dY2akUTLMCObxWBP28n17E3NURlltQ7Q-RcvQKJ4KXAEWyShViEGsMs7zKIhplECmXMRhYHwZN2F3GKgkdaLl1jujm1DxYoOafAW1CVufbXu1VMePrdaH8U7cdC0TArlU2BJYE03Y_syBX0ZZ_VuzNZgigKVqps86NPrPA9wgENM3my5VPwCmp-ye priority: 102 providerName: Unpaywall  | 
    
| Title | Proposing Enhanced Feature Engineering and a Selection Model for Machine Learning Processes | 
    
| URI | https://www.proquest.com/docview/2314076395 https://www.mdpi.com/2076-3417/8/4/646/pdf?version=1525349365  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 8 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BOwADggKifFSWYIAhImm-nAEhQC0VElUFVAIxRHZygaEKhbZC_HvuUqftgDo6cjzc2b539vk9gFNH64wwW2r5oWZSbYwsFVLTbipHonIxLOTbHrpBp-_dv_gvK9At38JwWWW5JxYbdfqZ8Bn5BeEQyj0onvpXwy-LVaP4drWU0FBGWiG9LCjGVqHaZGasClRvWt3e4-zUhVkwpWNPeUpdyvf5nljSRA4YAS9GpjncXJvkQ_X7owaDhcjT3oJNAxnF9dTH27CCeQ02FogEa7BtluhInBke6fMdeOuxAgKfBYhW_lHc9AtGfJNvFAt_C5WnQomnQhCHvCRYHm0gCMyKh6LSEoUhYX0X5lkBjnah324933Yso6VgJc3IH1seeq4bZFo6mU-QsKkQ0U8SW2WY6kDLwE0JmnmRIrxk2_wRM5RaMh8hsrbQHlTyzxz3QYRBmEhEJ5Kp52WhE9EoTpB4fuQ62g6iOpyXdowTQzTOeheDmBIOtnk8t3kdTmZ9h1N6jX97HZXuiM0SG8XzCVGH05mLloxysHyUQ1gnMCSnVTlHUBl_T_CYAMdYN2BVtu8aZi41irSdWv1u7_r1D9Wq2Zc | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROFAOqECrLtDWUqkEh6j5cBL7gBC0i5bCrlALElIPqZ1M4LAKC7srxJ_jtzGTdXb3UHHjmMiew3hsv7HH7wHsBNaWhNkKL04tk2qj9kxKn35oAoUmwrSWb-v2ks6l_HUVXy3AU_MWhssqmzWxXqiL25zPyL8TDqHcg_bT-GBw57FqFN-uNhIaxkkrFPs1xZh72HGKjw-Uwg33T37SeH8Lw-P2xY-O51QGvDzU8ciTKKMoKa0KypjAUmgQMc5z35RY2MSqJCoItEhtCEn4Pv_EEpVVzNSHrLpDdt_AkoykpuRv6ajdO_89PeVh1k0V-BNe1CjSPt9LK5o4CSPu-Z1wBm-Xx9XAPD6Yfn9upzt-B6sOoorDSUytwQJW67AyR1y4DmtuSRiKXcdbvbcBf89ZcYHPHkS7uqkrCwQjzPE9irnewlSFMOJPLcBDUSFYjq0vCDyLbl3ZicKRvl4L94wBh-_h8lW8-gEWq9sKP4JIkzRXiIFWhZRlGmiyEiS5jHUUWD_RLdhr_Jjljtic9TX6GSU47PNs5vMWfJ22HUzoPP7barsZjsxN6WE2C8AW7EyH6AUrmy9b-QLLnYvuWXZ20jvdgrcExNSkImgbFkf3Y_xEYGdkP7uIEvDvtYP4GfG-FCc | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0FKpX2UJWPqmkprASVyMGKv70-VFVFSEP5UCSIhMTB7NrjcohMIIkQf62_rjP2OskB5ZajLXsOs2933-7Ovgdw6GidE2fLrCDSLKqNsaUierRd5UhUHkalfdvFZdgb-H9ugpsG_KvvwnBZZT0mlgN19pDyHnmbeAitPWg-Ddq5KYvod7o_R48WO0jxSWttp1FB5Axfnmn5Nv5x2qG2_u663ZPr455lHAas1I2DieWj73lhrqWTB0SUXIWIQZraKsdMh1qGXkaExY8VsQjb5peYo9SSVfqQHXco7hq8iVjFnW-pd3_P9ndYb1M6dqWI6nmxzSfSkrpMyFx7cQ6cE9uNaTFSL89qOFyY47of4YMhp-JXhaZNaGCxBe8XJAu3YNMMBmNxZBSrW9tw22evBd51ECfFfVlTIJhbTp9QLPwtVJEJJa5K6x3Cg2AjtqEg2iwuyppOFEbu9a8wFxhwvAODleT0E6wXDwV-BhGFUSoRnVhmvp9HTkxRnDD1g9hztB3GTWjVeUxSI2nOzhrDhJY2nPNknvMmHMy-HVVCHq9-tVs3R2I68ziZQ68Jh7MmWhLly_Io-_CWoJucn16efYV3xMBkVQq0C-uTpyl-I5Yz0XslnATcrRq__wFvmxHB | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB10PagHv8X1i4Ae9FC33SZpehIRRQRF0AXFQ0naqYpLXeyuor_eSZvVRUTEY0uSFmaSvElf3wPYDozJCbNlnoiMFdXG2NMRXfptHSjUIUaVfdvZuTzp8NNrce24OaWjVVIp_lAt0m0qsj1aZqOWavGW5LLVy_L9F3eQZJ17Qh6HUozDhBQExRsw0Tm_OLixhnLDrrUkaUilvf0krChnpQW7o5vQF7KcHBQ9_faqu92RTeZ4tnZSLSttQsstedwb9M1e-v5NufHf7z8HMw5-soM6X-ZhDIsFmB4RJVyAeTfdS7bjNKl3F-H2wrop2HMFdlTcV6wBZtHj4BnZSG-mi4xpdlmZ69DTmbVa6zICxuysYm0ic4Kud8z9ooDlEnSOj64OTzzny-Cl7Vj0PY48DGVuVJALgpdtjYgiTX2dY2akUTLMCObxWBP28n17E3NURlltQ7Q-RcvQKJ4KXAEWyShViEGsMs7zKIhplECmXMRhYHwZN2F3GKgkdaLl1jujm1DxYoOafAW1CVufbXu1VMePrdaH8U7cdC0TArlU2BJYE03Y_syBX0ZZ_VuzNZgigKVqps86NPrPA9wgENM3my5VPwCmp-ye | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposing+Enhanced+Feature+Engineering+and+a+Selection+Model+for+Machine+Learning+Processes&rft.jtitle=Applied+sciences&rft.au=Muhammad+Fahim+Uddin&rft.au=Lee%2C+Jeongkyu&rft.au=Rizvi%2C+Syed&rft.au=Hamada%2C+Samir&rft.date=2018-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=8&rft.issue=4&rft_id=info:doi/10.3390%2Fapp8040646&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |