Proposing Enhanced Feature Engineering and a Selection Model for Machine Learning Processes

Machine Learning (ML) requires a certain number of features (i.e., attributes) to train the model. One of the main challenges is to determine the right number and the type of such features out of the given dataset’s attributes. It is not uncommon for the ML process to use dataset of available featur...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 8; no. 4; p. 646
Main Authors Uddin, Muhammad Fahim, Lee, Jeongkyu, Rizvi, Syed, Hamada, Samir
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.04.2018
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app8040646

Cover

Abstract Machine Learning (ML) requires a certain number of features (i.e., attributes) to train the model. One of the main challenges is to determine the right number and the type of such features out of the given dataset’s attributes. It is not uncommon for the ML process to use dataset of available features without computing the predictive value of each. Such an approach makes the process vulnerable to overfit, predictive errors, bias, and poor generalization. Each feature in the dataset has either a unique predictive value, redundant, or irrelevant value. However, the key to better accuracy and fitting for ML is to identify the optimum set (i.e., grouping) of the right feature set with the finest matching of the feature’s value. This paper proposes a novel approach to enhance the Feature Engineering and Selection (eFES) Optimization process in ML. eFES is built using a unique scheme to regulate error bounds and parallelize the addition and removal of a feature during training. eFES also invents local gain (LG) and global gain (GG) functions using 3D visualizing techniques to assist the feature grouping function (FGF). FGF scores and optimizes the participating feature, so the ML process can evolve into deciding which features to accept or reject for improved generalization of the model. To support the proposed model, this paper presents mathematical models, illustrations, algorithms, and experimental results. Miscellaneous datasets are used to validate the model building process in Python, C#, and R languages. Results show the promising state of eFES as compared to the traditional feature selection process.
AbstractList [...]in the line with the latest progress and related study (See Section 2), the work proposed in this paper uses ML and mathematical techniques, such as statistical pattern classification [7], Orthonormalization [8], Probability theory [9], Jacobian [7], Laplacian [3], and Lagrangian distribution [10] to build the mathematical constructs and underlying algorithms (1 and 2). Gain (I, F (t:x,y,z)) = Entropy (Fn) − Entropy (Fn∈ x,y,z) We develop a ratio of gain for each feature in z-dimension as this ensure the maximum fitness of the feature set for the given predictive modeling in the given dataset for which ML algorithm needs to be trained. [...]gR indicates the ratio between: gR (z) = Gain (I, F (t:x,y,z)) G (x,y,z) |P (pE) > P (pE)|error Figure 7 shows the displacement of the local gain and global gain functions based on probability distributions. [...]it gets to the start using the gain function in 3D space for each fitting factor since our model is based on 3D scoring of each feature in the space where point is moved in x, y, and z values in space (logical tracking during classifier learning). FGF function determines the right number and type of the features from a given data set during classifier learning and reports accordingly if satisfactory accuracy and generalization have not been reached. eFES unit, as explained in the model earlier, uses 3D array to store the scoring via LT object in the inner layer of the model. [...]eFES algorithms can tell the model if more features are needed to finally train the classifier for acceptable prediction in the real-world test.
Machine Learning (ML) requires a certain number of features (i.e., attributes) to train the model. One of the main challenges is to determine the right number and the type of such features out of the given dataset’s attributes. It is not uncommon for the ML process to use dataset of available features without computing the predictive value of each. Such an approach makes the process vulnerable to overfit, predictive errors, bias, and poor generalization. Each feature in the dataset has either a unique predictive value, redundant, or irrelevant value. However, the key to better accuracy and fitting for ML is to identify the optimum set (i.e., grouping) of the right feature set with the finest matching of the feature’s value. This paper proposes a novel approach to enhance the Feature Engineering and Selection (eFES) Optimization process in ML. eFES is built using a unique scheme to regulate error bounds and parallelize the addition and removal of a feature during training. eFES also invents local gain (LG) and global gain (GG) functions using 3D visualizing techniques to assist the feature grouping function (FGF). FGF scores and optimizes the participating feature, so the ML process can evolve into deciding which features to accept or reject for improved generalization of the model. To support the proposed model, this paper presents mathematical models, illustrations, algorithms, and experimental results. Miscellaneous datasets are used to validate the model building process in Python, C#, and R languages. Results show the promising state of eFES as compared to the traditional feature selection process.
Author Rizvi, Syed
Lee, Jeongkyu
Uddin, Muhammad Fahim
Hamada, Samir
Author_xml – sequence: 1
  givenname: Muhammad Fahim
  surname: Uddin
  fullname: Uddin, Muhammad Fahim
– sequence: 2
  givenname: Jeongkyu
  surname: Lee
  fullname: Lee, Jeongkyu
– sequence: 3
  givenname: Syed
  surname: Rizvi
  fullname: Rizvi, Syed
– sequence: 4
  givenname: Samir
  surname: Hamada
  fullname: Hamada, Samir
BookMark eNp9kE9Lw0AQxRepYK29-AkWvCnR3ezmzx6ltCq0KKgnD2GymbQpcTfuJpR-exMqKCLOZYY3v3kM75SMjDVIyDln10IodgNNkzLJYhkfkXHIkjgQkiejH_MJmXq_ZX0pLlLOxuTtydnG-sqs6dxswGgs6AKh7Rz2wroyiG5Ygiko0GesUbeVNXRlC6xpaR1dgd70GF0iODOgvaNG79GfkeMSao_Trz4hr4v5y-w-WD7ePcxul4EOVdQGEqUQcZmnvIyU4iEgYqQ1gxKLPM7TWBSSx1KBUCFjg4glpnkqkkQhjyIxIVcH3840sN9BXWeNq97B7TPOsiGa7Duanr440I2zHx36Ntvazpn-wSwUXPZRCTV4Xh4o7az3Dsv_LdkvWFctDDm1Dqr6r5NPLiWDMw
CitedBy_id crossref_primary_10_1016_j_surfin_2024_105469
crossref_primary_10_1016_j_nucengdes_2023_112466
crossref_primary_10_1002_cpe_5784
crossref_primary_10_1016_j_eswa_2022_119055
crossref_primary_10_33003_fjs_2024_0806_3002
crossref_primary_10_1016_j_carres_2024_109189
crossref_primary_10_1007_s11831_024_10169_5
crossref_primary_10_1007_s11831_023_09996_9
crossref_primary_10_1155_2023_8583210
crossref_primary_10_3390_su15043017
crossref_primary_10_1016_j_mtcomm_2024_108216
crossref_primary_10_1002_adem_202401944
crossref_primary_10_1080_17452759_2024_2425825
crossref_primary_10_1063_5_0235572
crossref_primary_10_1016_j_engappai_2023_106372
crossref_primary_10_1049_cit2_12352
crossref_primary_10_1109_ACCESS_2018_2866046
crossref_primary_10_3390_info10110359
crossref_primary_10_1007_s00521_024_10662_9
crossref_primary_10_3390_s22176507
crossref_primary_10_1016_j_engappai_2024_107845
crossref_primary_10_1063_5_0176422
crossref_primary_10_3390_app8081371
crossref_primary_10_1145_3590150
crossref_primary_10_1016_j_comnet_2023_110072
crossref_primary_10_1186_s13321_024_00911_3
crossref_primary_10_21015_vtse_v10i3_1114
crossref_primary_10_3390_s24041233
crossref_primary_10_1177_20552076251314097
crossref_primary_10_1016_j_compeleceng_2024_109241
crossref_primary_10_1016_j_jclepro_2024_143927
crossref_primary_10_1007_s11831_020_09506_1
Cites_doi 10.1109/TIFS.2017.2766039
10.1007/s00521-013-1368-0
10.1007/s13278-017-0448-z
10.1109/TAMD.2015.2434733
10.1109/JBHI.2014.2304357
10.1109/TIP.2017.2781298
10.1109/TIP.2016.2605920
10.1109/SURV.2012.110112.00192
10.1201/9781584888796.pt4
10.3390/sym9090197
10.1109/TPDS.2017.2732951
10.1007/978-3-319-20010-1
10.1109/TITS.2016.2614916
10.1007/978-1-4302-3325-1
10.1109/ACCESS.2018.2806944
10.1109/TCYB.2013.2260736
10.1145/564376.564395
10.1109/JSTSP.2011.2139193
10.1007/978-1-4615-5689-3
10.1109/TCYB.2015.2511149
10.1017/CBO9781107298019
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOI 10.3390/app8040646
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID 10.3390/app8040646
10_3390_app8040646
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID .4S
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IPNFZ
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
RIG
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
2XV
ADTOC
IGS
ITC
UNPAY
ID FETCH-LOGICAL-c295t-4e4336fb81f59912aeee5cc0afedb6b863d41649a39200fedbefe8b83779e1553
IEDL.DBID BENPR
ISSN 2076-3417
IngestDate Sun Oct 26 04:10:15 EDT 2025
Mon Oct 20 01:51:54 EDT 2025
Thu Oct 16 04:44:24 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-4e4336fb81f59912aeee5cc0afedb6b863d41649a39200fedbefe8b83779e1553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2314076395?pq-origsite=%requestingapplication%&accountid=15518
PQID 2314076395
PQPubID 2032433
ParticipantIDs unpaywall_primary_10_3390_app8040646
proquest_journals_2314076395
crossref_primary_10_3390_app8040646
crossref_citationtrail_10_3390_app8040646
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Globerson (ref_2) 2003; 3
ref_36
ref_13
Vergara (ref_14) 2015; 24
ref_35
ref_34
ref_11
ref_10
ref_32
ref_31
Wang (ref_20) 2015; 7
ref_30
Li (ref_3) 2017; 50
Zeng (ref_19) 2016; 18
Tuia (ref_5) 2011; 5
Han (ref_18) 2016; 25
Lara (ref_21) 2013; 15
Ma (ref_16) 2014; 18
Liu (ref_24) 2017; 27
Mohsenzadeh (ref_15) 2013; 43
ref_25
Wang (ref_23) 2018; 13
Uddin (ref_33) 2017; 7
Forman (ref_12) 2007; 16
Guyon (ref_1) 2003; 3
Zhang (ref_22) 2018; 29
ref_29
ref_28
ref_27
ref_26
ref_9
ref_8
ref_4
ref_7
ref_6
Lam (ref_17) 2017; 47
References_xml – ident: ref_7
– ident: ref_28
– ident: ref_9
– volume: 13
  start-page: 733
  year: 2018
  ident: ref_23
  article-title: Bimodal Vein Data Mining via Cross-Selected-Domain Knowledge Transfer
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2017.2766039
– ident: ref_26
– ident: ref_34
– volume: 24
  start-page: 175
  year: 2015
  ident: ref_14
  article-title: A Review of Feature Selection Methods Based on Mutual Information
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1368-0
– volume: 50
  start-page: 94
  year: 2017
  ident: ref_3
  article-title: Feature Selection: A Data Perspective
  publication-title: ACM Comput. Surv.
– volume: 7
  start-page: 29
  year: 2017
  ident: ref_33
  article-title: Proposing stochastic probability-based math model and algorithms utilizing social networking and academic data for good fit students prediction
  publication-title: Soc. Netw. Anal. Min.
  doi: 10.1007/s13278-017-0448-z
– volume: 7
  start-page: 248
  year: 2015
  ident: ref_20
  article-title: Predicting Purchase Decisions Based on Spatio-Temporal Functional MRI Features Using Machine Learning
  publication-title: IEEE Trans. Auton. Ment. Dev.
  doi: 10.1109/TAMD.2015.2434733
– volume: 18
  start-page: 1915
  year: 2014
  ident: ref_16
  article-title: Depth-based human fall detection via shape features and improved extreme learning machine
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2014.2304357
– volume: 27
  start-page: 1323
  year: 2017
  ident: ref_24
  article-title: Cost-Sensitive Feature Selection by Optimizing F-measures
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2781298
– volume: 25
  start-page: 5331
  year: 2016
  ident: ref_18
  article-title: Unsupervised 3D Local Feature Learning by Circle Convolutional Restricted Boltzmann Machine
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2016.2605920
– ident: ref_35
– volume: 15
  start-page: 1192
  year: 2013
  ident: ref_21
  article-title: A Survey on Human Activity Recognition using Wearable Sensors
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.110112.00192
– volume: 16
  start-page: 257
  year: 2007
  ident: ref_12
  article-title: Feature Selection for Text Classification
  publication-title: Comput. Methods Feature Sel.
  doi: 10.1201/9781584888796.pt4
– ident: ref_30
  doi: 10.3390/sym9090197
– ident: ref_8
– volume: 29
  start-page: 405
  year: 2018
  ident: ref_22
  article-title: Machine Learning-Based Temperature Prediction for Runtime Thermal Management Across System Components
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2017.2732951
– ident: ref_32
  doi: 10.1007/978-3-319-20010-1
– ident: ref_4
– ident: ref_31
– volume: 18
  start-page: 1
  year: 2016
  ident: ref_19
  article-title: Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep Perceptual Features
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2016.2614916
– ident: ref_29
– ident: ref_27
– ident: ref_36
  doi: 10.1007/978-1-4302-3325-1
– volume: 3
  start-page: 1307
  year: 2003
  ident: ref_2
  article-title: Sufficient Dimensionality Reduction
  publication-title: J. Mach. Learn. Res.
– ident: ref_25
  doi: 10.1109/ACCESS.2018.2806944
– volume: 43
  start-page: 2241
  year: 2013
  ident: ref_15
  article-title: The relevance sample-feature machine: A sparse bayesian learning approach to joint feature-sample selection
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2013.2260736
– ident: ref_6
  doi: 10.1145/564376.564395
– ident: ref_13
– volume: 5
  start-page: 606
  year: 2011
  ident: ref_5
  article-title: A Survey of Active Learning Algorithms for Supervised Remote Sensing Image Classification
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2011.2139193
– ident: ref_11
  doi: 10.1007/978-1-4615-5689-3
– volume: 47
  start-page: 224
  year: 2017
  ident: ref_17
  article-title: Unsupervised Feature Learning Classification with Radial Basis Function Extreme Learning Machine Using Graphic Processors
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2015.2511149
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_1
  article-title: An Introduction to Variable and Feature Selection
  publication-title: J. Mach. Learn. Res.
– ident: ref_10
  doi: 10.1017/CBO9781107298019
SSID ssj0000913810
Score 2.3495913
Snippet Machine Learning (ML) requires a certain number of features (i.e., attributes) to train the model. One of the main challenges is to determine the right number...
[...]in the line with the latest progress and related study (See Section 2), the work proposed in this paper uses ML and mathematical techniques, such as...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 646
SubjectTerms Accuracy
Algorithms
Artificial intelligence
Bias
Concurrency control
Data mining
Datasets
Discriminant analysis
Engineering
Machine learning
Principal components analysis
Servers
Social research
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB10PagHv8X1i4Ae9FC33SZpehIRRQRF0AXFQ0naqYpLXeyuor_eSZvVRUTEY0uSFmaSvElf3wPYDozJCbNlnoiMFdXG2NMRXfptHSjUIUaVfdvZuTzp8NNrce24OaWjVVIp_lAt0m0qsj1aZqOWavGW5LLVy_L9F3eQZJ17Qh6HUozDhBQExRsw0Tm_OLixhnLDrrUkaUilvf0krChnpQW7o5vQF7KcHBQ9_faqu92RTeZ4tnZSLSttQsstedwb9M1e-v5NufHf7z8HMw5-soM6X-ZhDIsFmB4RJVyAeTfdS7bjNKl3F-H2wrop2HMFdlTcV6wBZtHj4BnZSG-mi4xpdlmZ69DTmbVa6zICxuysYm0ic4Kud8z9ooDlEnSOj64OTzzny-Cl7Vj0PY48DGVuVJALgpdtjYgiTX2dY2akUTLMCObxWBP28n17E3NURlltQ7Q-RcvQKJ4KXAEWyShViEGsMs7zKIhplECmXMRhYHwZN2F3GKgkdaLl1jujm1DxYoOafAW1CVufbXu1VMePrdaH8U7cdC0TArlU2BJYE03Y_syBX0ZZ_VuzNZgigKVqps86NPrPA9wgENM3my5VPwCmp-ye
  priority: 102
  providerName: Unpaywall
Title Proposing Enhanced Feature Engineering and a Selection Model for Machine Learning Processes
URI https://www.proquest.com/docview/2314076395
https://www.mdpi.com/2076-3417/8/4/646/pdf?version=1525349365
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1BOwADggKifFSWYIAhImm-nAEhQC0VElUFVAIxRHZygaEKhbZC_HvuUqftgDo6cjzc2b539vk9gFNH64wwW2r5oWZSbYwsFVLTbipHonIxLOTbHrpBp-_dv_gvK9At38JwWWW5JxYbdfqZ8Bn5BeEQyj0onvpXwy-LVaP4drWU0FBGWiG9LCjGVqHaZGasClRvWt3e4-zUhVkwpWNPeUpdyvf5nljSRA4YAS9GpjncXJvkQ_X7owaDhcjT3oJNAxnF9dTH27CCeQ02FogEa7BtluhInBke6fMdeOuxAgKfBYhW_lHc9AtGfJNvFAt_C5WnQomnQhCHvCRYHm0gCMyKh6LSEoUhYX0X5lkBjnah324933Yso6VgJc3IH1seeq4bZFo6mU-QsKkQ0U8SW2WY6kDLwE0JmnmRIrxk2_wRM5RaMh8hsrbQHlTyzxz3QYRBmEhEJ5Kp52WhE9EoTpB4fuQ62g6iOpyXdowTQzTOeheDmBIOtnk8t3kdTmZ9h1N6jX97HZXuiM0SG8XzCVGH05mLloxysHyUQ1gnMCSnVTlHUBl_T_CYAMdYN2BVtu8aZi41irSdWv1u7_r1D9Wq2Zc
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB1ROFAOqECrLtDWUqkEh6j5cBL7gBC0i5bCrlALElIPqZ1M4LAKC7srxJ_jtzGTdXb3UHHjmMiew3hsv7HH7wHsBNaWhNkKL04tk2qj9kxKn35oAoUmwrSWb-v2ks6l_HUVXy3AU_MWhssqmzWxXqiL25zPyL8TDqHcg_bT-GBw57FqFN-uNhIaxkkrFPs1xZh72HGKjw-Uwg33T37SeH8Lw-P2xY-O51QGvDzU8ciTKKMoKa0KypjAUmgQMc5z35RY2MSqJCoItEhtCEn4Pv_EEpVVzNSHrLpDdt_AkoykpuRv6ajdO_89PeVh1k0V-BNe1CjSPt9LK5o4CSPu-Z1wBm-Xx9XAPD6Yfn9upzt-B6sOoorDSUytwQJW67AyR1y4DmtuSRiKXcdbvbcBf89ZcYHPHkS7uqkrCwQjzPE9irnewlSFMOJPLcBDUSFYjq0vCDyLbl3ZicKRvl4L94wBh-_h8lW8-gEWq9sKP4JIkzRXiIFWhZRlGmiyEiS5jHUUWD_RLdhr_Jjljtic9TX6GSU47PNs5vMWfJ22HUzoPP7barsZjsxN6WE2C8AW7EyH6AUrmy9b-QLLnYvuWXZ20jvdgrcExNSkImgbFkf3Y_xEYGdkP7uIEvDvtYP4GfG-FCc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0FKpX2UJWPqmkprASVyMGKv70-VFVFSEP5UCSIhMTB7NrjcohMIIkQf62_rjP2OskB5ZajLXsOs2933-7Ovgdw6GidE2fLrCDSLKqNsaUierRd5UhUHkalfdvFZdgb-H9ugpsG_KvvwnBZZT0mlgN19pDyHnmbeAitPWg-Ddq5KYvod7o_R48WO0jxSWttp1FB5Axfnmn5Nv5x2qG2_u663ZPr455lHAas1I2DieWj73lhrqWTB0SUXIWIQZraKsdMh1qGXkaExY8VsQjb5peYo9SSVfqQHXco7hq8iVjFnW-pd3_P9ndYb1M6dqWI6nmxzSfSkrpMyFx7cQ6cE9uNaTFSL89qOFyY47of4YMhp-JXhaZNaGCxBe8XJAu3YNMMBmNxZBSrW9tw22evBd51ECfFfVlTIJhbTp9QLPwtVJEJJa5K6x3Cg2AjtqEg2iwuyppOFEbu9a8wFxhwvAODleT0E6wXDwV-BhGFUSoRnVhmvp9HTkxRnDD1g9hztB3GTWjVeUxSI2nOzhrDhJY2nPNknvMmHMy-HVVCHq9-tVs3R2I68ziZQ68Jh7MmWhLly_Io-_CWoJucn16efYV3xMBkVQq0C-uTpyl-I5Yz0XslnATcrRq__wFvmxHB
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB10PagHv8X1i4Ae9FC33SZpehIRRQRF0AXFQ0naqYpLXeyuor_eSZvVRUTEY0uSFmaSvElf3wPYDozJCbNlnoiMFdXG2NMRXfptHSjUIUaVfdvZuTzp8NNrce24OaWjVVIp_lAt0m0qsj1aZqOWavGW5LLVy_L9F3eQZJ17Qh6HUozDhBQExRsw0Tm_OLixhnLDrrUkaUilvf0krChnpQW7o5vQF7KcHBQ9_faqu92RTeZ4tnZSLSttQsstedwb9M1e-v5NufHf7z8HMw5-soM6X-ZhDIsFmB4RJVyAeTfdS7bjNKl3F-H2wrop2HMFdlTcV6wBZtHj4BnZSG-mi4xpdlmZ69DTmbVa6zICxuysYm0ic4Kud8z9ooDlEnSOj64OTzzny-Cl7Vj0PY48DGVuVJALgpdtjYgiTX2dY2akUTLMCObxWBP28n17E3NURlltQ7Q-RcvQKJ4KXAEWyShViEGsMs7zKIhplECmXMRhYHwZN2F3GKgkdaLl1jujm1DxYoOafAW1CVufbXu1VMePrdaH8U7cdC0TArlU2BJYE03Y_syBX0ZZ_VuzNZgigKVqps86NPrPA9wgENM3my5VPwCmp-ye
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proposing+Enhanced+Feature+Engineering+and+a+Selection+Model+for+Machine+Learning+Processes&rft.jtitle=Applied+sciences&rft.au=Muhammad+Fahim+Uddin&rft.au=Lee%2C+Jeongkyu&rft.au=Rizvi%2C+Syed&rft.au=Hamada%2C+Samir&rft.date=2018-04-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=8&rft.issue=4&rft_id=info:doi/10.3390%2Fapp8040646&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon