Spike Sequence Learning in a Photonic Spiking Neural Network Consisting of VCSELs-SA with Supervised Training

We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is i...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 26; no. 5; p. 1
Main Authors Song, Ziwei, Xiang, Shuiying, Ren, Zhenxing, Han, Genquan, Hao, Yue
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1077-260X
1558-4542
DOI10.1109/JSTQE.2020.2975564

Cover

Abstract We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is incorporated into a classical remote supervised method (ReSuMe) algorithm to implement supervised training of a photonic SNN for the first time. The computation model of the photonic SNN is derived based on the Yamada model. To optimize the learning process, we further propose a novel measure, the so-called spike sequence distance, to quantitatively evaluate the effects of controllable parameters. The numerical results show that, the photonic SNN successfully reproduce a desirable output spike sequence in response to a spatiotemporal input spike pattern by means of the iteration algorithm to update synaptic weights continuously. These results contribute one step forward toward the device-algorithm co-design and optimization of the all-VCSELs-based energy-efficient photonic SNN.
AbstractList We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is incorporated into a classical remote supervised method (ReSuMe) algorithm to implement supervised training of a photonic SNN for the first time. The computation model of the photonic SNN is derived based on the Yamada model. To optimize the learning process, we further propose a novel measure, the so-called spike sequence distance, to quantitatively evaluate the effects of controllable parameters. The numerical results show that, the photonic SNN successfully reproduce a desirable output spike sequence in response to a spatiotemporal input spike pattern by means of the iteration algorithm to update synaptic weights continuously. These results contribute one step forward toward the device-algorithm co-design and optimization of the all-VCSELs-based energy-efficient photonic SNN.
We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is incorporated into a classical remote supervised method (ReSuMe) algorithm to implement supervised training of a photonic SNN for the first time. The computation model of the photonic SNN is derived based on the Yamada model. To optimize the learning process, we further propose a novel measure, the so-called spike sequence distance, to quantitatively evaluate the effects of controllable parameters. The numerical results show that, the photonic SNN successfully reproduces a desirable output spike sequence in response to a spatiotemporal input spike pattern by means of the iteration algorithm to update synaptic weights continuously. These results contribute one step forward toward the device-algorithm co-design and optimization of the all-VCSELs-based energy-efficient photonic SNN.
Author Hao, Yue
Song, Ziwei
Ren, Zhenxing
Han, Genquan
Xiang, Shuiying
Author_xml – sequence: 1
  givenname: Ziwei
  surname: Song
  fullname: Song, Ziwei
  email: 1064971297@qq.com
  organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xian 710071, China (e-mail: 1064971297@qq.com)
– sequence: 2
  givenname: Shuiying
  surname: Xiang
  fullname: Xiang, Shuiying
  email: syxiang@xidian.edu.cn
  organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xian 710071, China
– sequence: 3
  givenname: Zhenxing
  surname: Ren
  fullname: Ren, Zhenxing
  email: 584401206@qq.com
  organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xian 710071, China; and also with State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xian 710071, China (e-mail: syxiang@xidian.edu.cn)
– sequence: 4
  givenname: Genquan
  surname: Han
  fullname: Han, Genquan
  email: gqhan@xidian.edu.cn
  organization: State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xian 710071, China (e-mail: 584401206@qq.com)
– sequence: 5
  givenname: Yue
  surname: Hao
  fullname: Hao, Yue
  email: yhao@xidian.edu.cn
  organization: State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xian 710071, China
BookMark eNp9UE1PGzEQtapUKoH-gfZiqecNY6-99h5RlEJRBFSbVr2tjHcWnAQ7tZ0i_j27BHHogdOMZt6H3puSiQ8eCfnCYMYY1KeXzernYsaBw4zXSspKfCBHTEpdCCn4ZNhBqYJX8OcTmaa0BgAtNByRh2bnNkgb_LtHb5Eu0UTv_B11nhp6cx9y8M7SETVer3AfzXYY-THEDZ0Hn1zK4yf09Pe8WSxT0ZzRR5fvabPfYfznEnZ0FY0bVU_Ix95sE35-ncfk1_fFan5RLK_Pf8zPloXltcyFqIVhWshedAxtiagAeAc9q25rEB3vK6mYqtBWHKxlt6VWBjuNXCshAE15TL4ddHcxDMFSbtdhH_1g2fJSVUqUlYQBxQ8oG0NKEft2F92DiU8tg3astX2ptR1rbV9rHUj6P5J12WQXfB5Cbt-nfj1QHSK-edXANAhePgMvs4eq
CODEN IJSQEN
CitedBy_id crossref_primary_10_1088_1402_4896_ace7ff
crossref_primary_10_1109_JLT_2024_3383719
crossref_primary_10_1016_j_optlastec_2024_112248
crossref_primary_10_1109_JSTQE_2020_3005589
crossref_primary_10_1364_AO_441907
crossref_primary_10_1016_j_optcom_2021_127068
crossref_primary_10_1016_j_optcom_2023_130207
crossref_primary_10_1109_JSTQE_2022_3218950
crossref_primary_10_1007_s11432_020_3040_1
crossref_primary_10_1088_1674_4926_42_2_023105
crossref_primary_10_1088_2515_7647_aba670
crossref_primary_10_1002_lpor_202300424
crossref_primary_10_1016_j_optcom_2023_129806
crossref_primary_10_1145_3459009
crossref_primary_10_1109_JQE_2023_3325227
crossref_primary_10_1109_TNSM_2020_3040907
crossref_primary_10_1109_JLT_2020_2993292
crossref_primary_10_1364_OME_450926
crossref_primary_10_1364_OE_465653
crossref_primary_10_1364_PRJ_413742
crossref_primary_10_1364_OPTCON_461448
crossref_primary_10_1109_JLT_2022_3146157
crossref_primary_10_1007_s00340_023_08146_0
crossref_primary_10_1364_PRJ_507178
crossref_primary_10_1007_s11071_021_06699_3
crossref_primary_10_1007_s11432_021_3350_9
crossref_primary_10_1088_2634_4386_acf609
crossref_primary_10_1007_s10489_021_02590_1
crossref_primary_10_1002_adpr_202000212
Cites_doi 10.1016/S0893-6080(97)00011-7
10.1109/5.58356
10.1126/sciadv.1700160
10.1364/OE.20.020292
10.1088/0954-898X/8/2/003
10.1038/s41467-018-04933-y
10.1038/s41586-019-1677-2
10.1364/OE.23.025247
10.1016/S0167-7012(00)00201-3
10.1038/nature14441
10.1364/OL.383942
10.1038/nature23020
10.1038/s41598-018-34537-x
10.1364/AO.57.001731
10.1109/JSTQE.2017.2685140
10.3389/fnins.2017.00123
10.1364/OL.38.000419
10.1364/OL.42.001560
10.1364/OL.44.001548
10.1063/1.3692726
10.1364/OE.381229
10.3945/ajcn.2009.28512
10.1038/srep19510
10.1364/OE.18.025170
10.1109/JSTQE.2013.2257700
10.1016/j.neuron.2006.09.032
10.1093/mind/LIX.236.433
10.1147/rd.494.0755
10.1109/TCS.1986.1085953
10.1109/JSTQE.2019.2911565
10.1109/JLT.2018.2818195
10.1364/AOP.8.000228
10.1088/1361-6463/ab1a10
10.1109/JLT.2015.2475275
10.1103/PhysRevLett.112.183902
10.1142/S0129065709002002
10.1364/OE.23.016133
10.1364/OE.385889
10.1038/ncomms3676
10.1002/adma.201800195
10.1126/sciadv.1501326
10.1109/JQE.2018.2879484
10.1038/srep19126
10.55782/ane-2011-1862
10.1023/B:NACO.0000027755.02868.60
10.1162/neco.2009.11-08-901
10.1109/JSTQE.2019.2931215
10.1109/JSTQE.2017.2678170
10.1103/PhysRevE.84.036209
10.1002/adom.201400472
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSTQE.2020.2975564
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Solid State and Superconductivity Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-4542
EndPage 1
ExternalDocumentID 10_1109_JSTQE_2020_2975564
9018042
Genre orig-research
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2017M613072
  funderid: 10.13039/501100002858
– fundername: National Natural Science Foundation of China
  grantid: 61974177,61674119
  funderid: 10.13039/501100001809
– fundername: Postdoctoral innovation talent program in China
  grantid: BX201600118
– fundername: Postdoctoral Science Foundation in Shaanxi Province of China
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
5VS
AAYXX
AETIX
AFFNX
AGSQL
AI.
AIBXA
ALLEH
CITATION
H~9
IFJZH
RIG
VH1
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c295t-494a1845f4d1ec3ee7002d0f16b904d2f657176ec620cc1b387aed8e287440ea3
IEDL.DBID RIE
ISSN 1077-260X
IngestDate Mon Jun 30 10:17:57 EDT 2025
Thu Apr 24 23:11:41 EDT 2025
Tue Jul 01 04:05:24 EDT 2025
Wed Aug 27 02:36:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-494a1845f4d1ec3ee7002d0f16b904d2f657176ec620cc1b387aed8e287440ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1698-2083
PQID 2376743650
PQPubID 75740
PageCount 1
ParticipantIDs proquest_journals_2376743650
crossref_citationtrail_10_1109_JSTQE_2020_2975564
crossref_primary_10_1109_JSTQE_2020_2975564
ieee_primary_9018042
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in quantum electronics
PublicationTitleAbbrev JSTQE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref14
ref53
ref52
ref11
ref10
ref17
ref19
ref18
ref51
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref8
ref7
ponulak (ref50) 2011; 71
seurin (ref49) 2016; 9766
ref9
ref4
ref3
ref6
ref5
ref40
ponulak (ref54) 2006
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
park (ref16) 2015; 5
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
li (ref45) 2016; 10019
prezioso (ref15) 2015; 521
References_xml – ident: ref6
  doi: 10.1016/S0893-6080(97)00011-7
– ident: ref9
  doi: 10.1109/5.58356
– ident: ref46
  doi: 10.1126/sciadv.1700160
– ident: ref23
  doi: 10.1364/OE.20.020292
– ident: ref53
  doi: 10.1088/0954-898X/8/2/003
– ident: ref17
  doi: 10.1038/s41467-018-04933-y
– ident: ref8
  doi: 10.1038/s41586-019-1677-2
– ident: ref42
  doi: 10.1364/OE.23.025247
– ident: ref3
  doi: 10.1016/S0167-7012(00)00201-3
– volume: 521
  start-page: 61
  year: 2015
  ident: ref15
  article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors
  publication-title: Nature
  doi: 10.1038/nature14441
– ident: ref38
  doi: 10.1364/OL.383942
– ident: ref4
  doi: 10.1038/nature23020
– ident: ref35
  doi: 10.1038/s41598-018-34537-x
– ident: ref34
  doi: 10.1364/AO.57.001731
– ident: ref30
  doi: 10.1109/JSTQE.2017.2685140
– ident: ref11
  doi: 10.3389/fnins.2017.00123
– volume: 10019
  year: 2016
  ident: ref45
  article-title: Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier
  publication-title: Proc SPIE
– ident: ref40
  doi: 10.1364/OL.38.000419
– ident: ref31
  doi: 10.1364/OL.42.001560
– ident: ref36
  doi: 10.1364/OL.44.001548
– ident: ref22
  doi: 10.1063/1.3692726
– ident: ref37
  doi: 10.1364/OE.381229
– ident: ref1
  doi: 10.3945/ajcn.2009.28512
– ident: ref27
  doi: 10.1038/srep19510
– ident: ref20
  doi: 10.1364/OE.18.025170
– ident: ref24
  doi: 10.1109/JSTQE.2013.2257700
– ident: ref51
  doi: 10.1016/j.neuron.2006.09.032
– ident: ref2
  doi: 10.1093/mind/LIX.236.433
– ident: ref19
  doi: 10.1147/rd.494.0755
– ident: ref10
  doi: 10.1109/TCS.1986.1085953
– ident: ref48
  doi: 10.1109/JSTQE.2019.2911565
– ident: ref33
  doi: 10.1109/JLT.2018.2818195
– ident: ref28
  doi: 10.1364/AOP.8.000228
– ident: ref18
  doi: 10.1088/1361-6463/ab1a10
– ident: ref44
  doi: 10.1109/JLT.2015.2475275
– ident: ref25
  doi: 10.1103/PhysRevLett.112.183902
– ident: ref7
  doi: 10.1142/S0129065709002002
– ident: ref41
  doi: 10.1364/OE.23.016133
– ident: ref39
  doi: 10.1364/OE.385889
– ident: ref12
  doi: 10.1038/ncomms3676
– ident: ref14
  doi: 10.1002/adma.201800195
– ident: ref13
  doi: 10.1126/sciadv.1501326
– ident: ref47
  doi: 10.1109/JQE.2018.2879484
– ident: ref26
  doi: 10.1038/srep19126
– volume: 71
  start-page: 409
  year: 2011
  ident: ref50
  article-title: Introduction to spiking neural networks: Information processing, learning and applications
  publication-title: Acta Neurobiologiae Experimentalis
  doi: 10.55782/ane-2011-1862
– ident: ref5
  doi: 10.1023/B:NACO.0000027755.02868.60
– year: 2006
  ident: ref54
  article-title: Supervised learning in spiking neural networks with ReSuMe method
– ident: ref52
  doi: 10.1162/neco.2009.11-08-901
– ident: ref32
  doi: 10.1109/JSTQE.2019.2931215
– ident: ref29
  doi: 10.1109/JSTQE.2017.2678170
– volume: 5
  year: 2015
  ident: ref16
  article-title: Electronic system with memristive synapses for pattern recognition
  publication-title: Sci Rep
– ident: ref21
  doi: 10.1103/PhysRevE.84.036209
– volume: 9766
  year: 2016
  ident: ref49
  article-title: High-efficiency VCSEL arrays for illumination and sensing in consumer applications
  publication-title: Proc SPIE
– ident: ref43
  doi: 10.1002/adom.201400472
SSID ssj0008480
Score 2.4711256
Snippet We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Biological neural networks
Co-design
Design optimization
Encoding
Iterative algorithms
Iterative methods
Learning
Neural networks
Neuromorphics
Neurons
photonic spike-timing-dependent plasticity
Photonic spiking neural network
Photonics
Spikes
Spiking
Supervised learning
supervised spike sequence learning
Training
Vertical cavity surface emission lasers
Vertical cavity surface emitting lasers
Title Spike Sequence Learning in a Photonic Spiking Neural Network Consisting of VCSELs-SA with Supervised Training
URI https://ieeexplore.ieee.org/document/9018042
https://www.proquest.com/docview/2376743650
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-4542
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008480
  issn: 1077-260X
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED51lZDgYRstaGVs8gNv4DY_nB9-RKgVmkYFCqC-RY5zAdStrUj6sr9-PsetxpjQ3qLEtiLd5fyd8913ACeliKQy2Q6vRFRwIaTPlQpSbrAzVmb_UmjPdK-m8eWd-DaLZh0429bCIKIln-GQLu2__HKp13RUNpKkNiVMwH2XJLKt1dpG3VSkrfJAknCD0WebAhlPjoyL34xNKhh4Q6ojjWLxYhOyXVVehWK7v0w-wNXmzVpayXy4boqh_vWXaOP_vvpHeO-AJjtvPWMfOrjowd4f8oM92LH0T1334We2epojyxyvmjnV1Qf2tGCKXT8uG1LQZTSK7pKih1l72lLImW36WRN_mi0rdn-Rjb_XPDtndMbLsvWKwlGNJbt17SgO4G4yvr245K4RA9eBjBoupFAmE4wqUfqoQ8TExNHSq_y4kJ4ogyqOTFYYo44DT2u_CNNEYZmi1db3UIWH0F0sF_gJWFj4KgkNigt1SM9kHBQipH6MsUk0ZTkAf2OZXDuVcmqW8SO32Yonc2vNnKyZO2sO4HQ7Z9VqdLw5uk_m2Y50lhnA8cYBcvcZ1zlRhgzEMij26N-zPsMurd2Szo6h2zyv8YtBKU3x1brnb2MN4Nw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VrRBw4NGCCC2wB26wqR_rxx6rKlWAJAI5RblZ6_UYqkISYefSX9-Z9SbiJcTNstf2SjOenW_9zTcAr2uVaENoRzYqqaRSOpTGRLmk3BkbWr8Muj3d6SwdX6r3i2SxB293tTCI6MhnOORD9y-_XtkNb5WdalabUhRwDxJCFVlfrbWLu7nKe-2BLJOUpS-2JTKBPiUn_zQiMBgFQ64kTVL1yzLk-qr8EYzdCnPxEKbbufXEkuvhpquG9uY32cb_nfwjeOBTTXHW-8Zj2MPlIdz_SYDwEO44Aqhtj-B7sb66RlF4ZrXwuqtfxNVSGPHx66pjDV3Bo_gsa3rQs2c9iVy4tp8tM6jFqhGfz4vRpJXFmeBdXlFs1hyQWqzF3DekeAKXF6P5-Vj6VgzSRjrppNLKEBZMGlWHaGPEjCJpHTRhWulA1VGTJoQLU7RpFFgbVnGeGaxzdOr6AZr4KewvV0t8BiKuQpPFlMfFNuZrOo0qFXNHxpSgpq4HEG4tU1qvU87tMr6VDq8EunTWLNmapbfmAN7s7ln3Kh3_HH3E5tmN9JYZwMnWAUr_Ibclk4YoyaI89vnf73oFd8fz6aScvJt9OIZ7_J6egnYC-92PDb6gnKWrXjpXvQVdOOQt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spike+Sequence+Learning+in+a+Photonic+Spiking+Neural+Network+Consisting+of+VCSELs-SA+with+Supervised+Training&rft.jtitle=IEEE+journal+of+selected+topics+in+quantum+electronics&rft.au=Song%2C+Ziwei&rft.au=Xiang%2C+Shuiying&rft.au=Ren%2C+Zhenxing&rft.au=Han%2C+Genquan&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=1077-260X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSTQE.2020.2975564&rft.externalDocID=9018042
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-260X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-260X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-260X&client=summon