Spike Sequence Learning in a Photonic Spiking Neural Network Consisting of VCSELs-SA with Supervised Training
We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is i...
Saved in:
Published in | IEEE journal of selected topics in quantum electronics Vol. 26; no. 5; p. 1 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1077-260X 1558-4542 |
DOI | 10.1109/JSTQE.2020.2975564 |
Cover
Abstract | We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is incorporated into a classical remote supervised method (ReSuMe) algorithm to implement supervised training of a photonic SNN for the first time. The computation model of the photonic SNN is derived based on the Yamada model. To optimize the learning process, we further propose a novel measure, the so-called spike sequence distance, to quantitatively evaluate the effects of controllable parameters. The numerical results show that, the photonic SNN successfully reproduce a desirable output spike sequence in response to a spatiotemporal input spike pattern by means of the iteration algorithm to update synaptic weights continuously. These results contribute one step forward toward the device-algorithm co-design and optimization of the all-VCSELs-based energy-efficient photonic SNN. |
---|---|
AbstractList | We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is incorporated into a classical remote supervised method (ReSuMe) algorithm to implement supervised training of a photonic SNN for the first time. The computation model of the photonic SNN is derived based on the Yamada model. To optimize the learning process, we further propose a novel measure, the so-called spike sequence distance, to quantitatively evaluate the effects of controllable parameters. The numerical results show that, the photonic SNN successfully reproduce a desirable output spike sequence in response to a spatiotemporal input spike pattern by means of the iteration algorithm to update synaptic weights continuously. These results contribute one step forward toward the device-algorithm co-design and optimization of the all-VCSELs-based energy-efficient photonic SNN. We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is incorporated into a classical remote supervised method (ReSuMe) algorithm to implement supervised training of a photonic SNN for the first time. The computation model of the photonic SNN is derived based on the Yamada model. To optimize the learning process, we further propose a novel measure, the so-called spike sequence distance, to quantitatively evaluate the effects of controllable parameters. The numerical results show that, the photonic SNN successfully reproduces a desirable output spike sequence in response to a spatiotemporal input spike pattern by means of the iteration algorithm to update synaptic weights continuously. These results contribute one step forward toward the device-algorithm co-design and optimization of the all-VCSELs-based energy-efficient photonic SNN. |
Author | Hao, Yue Song, Ziwei Ren, Zhenxing Han, Genquan Xiang, Shuiying |
Author_xml | – sequence: 1 givenname: Ziwei surname: Song fullname: Song, Ziwei email: 1064971297@qq.com organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xian 710071, China (e-mail: 1064971297@qq.com) – sequence: 2 givenname: Shuiying surname: Xiang fullname: Xiang, Shuiying email: syxiang@xidian.edu.cn organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xian 710071, China – sequence: 3 givenname: Zhenxing surname: Ren fullname: Ren, Zhenxing email: 584401206@qq.com organization: State Key Laboratory of Integrated Service Networks, Xidian University, Xian 710071, China; and also with State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xian 710071, China (e-mail: syxiang@xidian.edu.cn) – sequence: 4 givenname: Genquan surname: Han fullname: Han, Genquan email: gqhan@xidian.edu.cn organization: State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xian 710071, China (e-mail: 584401206@qq.com) – sequence: 5 givenname: Yue surname: Hao fullname: Hao, Yue email: yhao@xidian.edu.cn organization: State Key Discipline Laboratory of Wide Bandgap Semiconductor Technology, School of Microelectronics, Xidian University, Xian 710071, China |
BookMark | eNp9UE1PGzEQtapUKoH-gfZiqecNY6-99h5RlEJRBFSbVr2tjHcWnAQ7tZ0i_j27BHHogdOMZt6H3puSiQ8eCfnCYMYY1KeXzernYsaBw4zXSspKfCBHTEpdCCn4ZNhBqYJX8OcTmaa0BgAtNByRh2bnNkgb_LtHb5Eu0UTv_B11nhp6cx9y8M7SETVer3AfzXYY-THEDZ0Hn1zK4yf09Pe8WSxT0ZzRR5fvabPfYfznEnZ0FY0bVU_Ix95sE35-ncfk1_fFan5RLK_Pf8zPloXltcyFqIVhWshedAxtiagAeAc9q25rEB3vK6mYqtBWHKxlt6VWBjuNXCshAE15TL4ddHcxDMFSbtdhH_1g2fJSVUqUlYQBxQ8oG0NKEft2F92DiU8tg3astX2ptR1rbV9rHUj6P5J12WQXfB5Cbt-nfj1QHSK-edXANAhePgMvs4eq |
CODEN | IJSQEN |
CitedBy_id | crossref_primary_10_1088_1402_4896_ace7ff crossref_primary_10_1109_JLT_2024_3383719 crossref_primary_10_1016_j_optlastec_2024_112248 crossref_primary_10_1109_JSTQE_2020_3005589 crossref_primary_10_1364_AO_441907 crossref_primary_10_1016_j_optcom_2021_127068 crossref_primary_10_1016_j_optcom_2023_130207 crossref_primary_10_1109_JSTQE_2022_3218950 crossref_primary_10_1007_s11432_020_3040_1 crossref_primary_10_1088_1674_4926_42_2_023105 crossref_primary_10_1088_2515_7647_aba670 crossref_primary_10_1002_lpor_202300424 crossref_primary_10_1016_j_optcom_2023_129806 crossref_primary_10_1145_3459009 crossref_primary_10_1109_JQE_2023_3325227 crossref_primary_10_1109_TNSM_2020_3040907 crossref_primary_10_1109_JLT_2020_2993292 crossref_primary_10_1364_OME_450926 crossref_primary_10_1364_OE_465653 crossref_primary_10_1364_PRJ_413742 crossref_primary_10_1364_OPTCON_461448 crossref_primary_10_1109_JLT_2022_3146157 crossref_primary_10_1007_s00340_023_08146_0 crossref_primary_10_1364_PRJ_507178 crossref_primary_10_1007_s11071_021_06699_3 crossref_primary_10_1007_s11432_021_3350_9 crossref_primary_10_1088_2634_4386_acf609 crossref_primary_10_1007_s10489_021_02590_1 crossref_primary_10_1002_adpr_202000212 |
Cites_doi | 10.1016/S0893-6080(97)00011-7 10.1109/5.58356 10.1126/sciadv.1700160 10.1364/OE.20.020292 10.1088/0954-898X/8/2/003 10.1038/s41467-018-04933-y 10.1038/s41586-019-1677-2 10.1364/OE.23.025247 10.1016/S0167-7012(00)00201-3 10.1038/nature14441 10.1364/OL.383942 10.1038/nature23020 10.1038/s41598-018-34537-x 10.1364/AO.57.001731 10.1109/JSTQE.2017.2685140 10.3389/fnins.2017.00123 10.1364/OL.38.000419 10.1364/OL.42.001560 10.1364/OL.44.001548 10.1063/1.3692726 10.1364/OE.381229 10.3945/ajcn.2009.28512 10.1038/srep19510 10.1364/OE.18.025170 10.1109/JSTQE.2013.2257700 10.1016/j.neuron.2006.09.032 10.1093/mind/LIX.236.433 10.1147/rd.494.0755 10.1109/TCS.1986.1085953 10.1109/JSTQE.2019.2911565 10.1109/JLT.2018.2818195 10.1364/AOP.8.000228 10.1088/1361-6463/ab1a10 10.1109/JLT.2015.2475275 10.1103/PhysRevLett.112.183902 10.1142/S0129065709002002 10.1364/OE.23.016133 10.1364/OE.385889 10.1038/ncomms3676 10.1002/adma.201800195 10.1126/sciadv.1501326 10.1109/JQE.2018.2879484 10.1038/srep19126 10.55782/ane-2011-1862 10.1023/B:NACO.0000027755.02868.60 10.1162/neco.2009.11-08-901 10.1109/JSTQE.2019.2931215 10.1109/JSTQE.2017.2678170 10.1103/PhysRevE.84.036209 10.1002/adom.201400472 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
DOI | 10.1109/JSTQE.2020.2975564 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1558-4542 |
EndPage | 1 |
ExternalDocumentID | 10_1109_JSTQE_2020_2975564 9018042 |
Genre | orig-research |
GrantInformation_xml | – fundername: China Postdoctoral Science Foundation grantid: 2017M613072 funderid: 10.13039/501100002858 – fundername: National Natural Science Foundation of China grantid: 61974177,61674119 funderid: 10.13039/501100001809 – fundername: Postdoctoral innovation talent program in China grantid: BX201600118 – fundername: Postdoctoral Science Foundation in Shaanxi Province of China |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 5VS AAYXX AETIX AFFNX AGSQL AI. AIBXA ALLEH CITATION H~9 IFJZH RIG VH1 7SP 7U5 8FD L7M |
ID | FETCH-LOGICAL-c295t-494a1845f4d1ec3ee7002d0f16b904d2f657176ec620cc1b387aed8e287440ea3 |
IEDL.DBID | RIE |
ISSN | 1077-260X |
IngestDate | Mon Jun 30 10:17:57 EDT 2025 Thu Apr 24 23:11:41 EDT 2025 Tue Jul 01 04:05:24 EDT 2025 Wed Aug 27 02:36:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-494a1845f4d1ec3ee7002d0f16b904d2f657176ec620cc1b387aed8e287440ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1698-2083 |
PQID | 2376743650 |
PQPubID | 75740 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2376743650 crossref_citationtrail_10_1109_JSTQE_2020_2975564 crossref_primary_10_1109_JSTQE_2020_2975564 ieee_primary_9018042 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | IEEE journal of selected topics in quantum electronics |
PublicationTitleAbbrev | JSTQE |
PublicationYear | 2020 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref14 ref53 ref52 ref11 ref10 ref17 ref19 ref18 ref51 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref8 ref7 ponulak (ref50) 2011; 71 seurin (ref49) 2016; 9766 ref9 ref4 ref3 ref6 ref5 ref40 ponulak (ref54) 2006 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 park (ref16) 2015; 5 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 li (ref45) 2016; 10019 prezioso (ref15) 2015; 521 |
References_xml | – ident: ref6 doi: 10.1016/S0893-6080(97)00011-7 – ident: ref9 doi: 10.1109/5.58356 – ident: ref46 doi: 10.1126/sciadv.1700160 – ident: ref23 doi: 10.1364/OE.20.020292 – ident: ref53 doi: 10.1088/0954-898X/8/2/003 – ident: ref17 doi: 10.1038/s41467-018-04933-y – ident: ref8 doi: 10.1038/s41586-019-1677-2 – ident: ref42 doi: 10.1364/OE.23.025247 – ident: ref3 doi: 10.1016/S0167-7012(00)00201-3 – volume: 521 start-page: 61 year: 2015 ident: ref15 article-title: Training and operation of an integrated neuromorphic network based on metal-oxide memristors publication-title: Nature doi: 10.1038/nature14441 – ident: ref38 doi: 10.1364/OL.383942 – ident: ref4 doi: 10.1038/nature23020 – ident: ref35 doi: 10.1038/s41598-018-34537-x – ident: ref34 doi: 10.1364/AO.57.001731 – ident: ref30 doi: 10.1109/JSTQE.2017.2685140 – ident: ref11 doi: 10.3389/fnins.2017.00123 – volume: 10019 year: 2016 ident: ref45 article-title: Optical implementation of neural learning algorithms based on cross-gain modulation in a semiconductor optical amplifier publication-title: Proc SPIE – ident: ref40 doi: 10.1364/OL.38.000419 – ident: ref31 doi: 10.1364/OL.42.001560 – ident: ref36 doi: 10.1364/OL.44.001548 – ident: ref22 doi: 10.1063/1.3692726 – ident: ref37 doi: 10.1364/OE.381229 – ident: ref1 doi: 10.3945/ajcn.2009.28512 – ident: ref27 doi: 10.1038/srep19510 – ident: ref20 doi: 10.1364/OE.18.025170 – ident: ref24 doi: 10.1109/JSTQE.2013.2257700 – ident: ref51 doi: 10.1016/j.neuron.2006.09.032 – ident: ref2 doi: 10.1093/mind/LIX.236.433 – ident: ref19 doi: 10.1147/rd.494.0755 – ident: ref10 doi: 10.1109/TCS.1986.1085953 – ident: ref48 doi: 10.1109/JSTQE.2019.2911565 – ident: ref33 doi: 10.1109/JLT.2018.2818195 – ident: ref28 doi: 10.1364/AOP.8.000228 – ident: ref18 doi: 10.1088/1361-6463/ab1a10 – ident: ref44 doi: 10.1109/JLT.2015.2475275 – ident: ref25 doi: 10.1103/PhysRevLett.112.183902 – ident: ref7 doi: 10.1142/S0129065709002002 – ident: ref41 doi: 10.1364/OE.23.016133 – ident: ref39 doi: 10.1364/OE.385889 – ident: ref12 doi: 10.1038/ncomms3676 – ident: ref14 doi: 10.1002/adma.201800195 – ident: ref13 doi: 10.1126/sciadv.1501326 – ident: ref47 doi: 10.1109/JQE.2018.2879484 – ident: ref26 doi: 10.1038/srep19126 – volume: 71 start-page: 409 year: 2011 ident: ref50 article-title: Introduction to spiking neural networks: Information processing, learning and applications publication-title: Acta Neurobiologiae Experimentalis doi: 10.55782/ane-2011-1862 – ident: ref5 doi: 10.1023/B:NACO.0000027755.02868.60 – year: 2006 ident: ref54 article-title: Supervised learning in spiking neural networks with ReSuMe method – ident: ref52 doi: 10.1162/neco.2009.11-08-901 – ident: ref32 doi: 10.1109/JSTQE.2019.2931215 – ident: ref29 doi: 10.1109/JSTQE.2017.2678170 – volume: 5 year: 2015 ident: ref16 article-title: Electronic system with memristive synapses for pattern recognition publication-title: Sci Rep – ident: ref21 doi: 10.1103/PhysRevE.84.036209 – volume: 9766 year: 2016 ident: ref49 article-title: High-efficiency VCSEL arrays for illumination and sensing in consumer applications publication-title: Proc SPIE – ident: ref43 doi: 10.1002/adom.201400472 |
SSID | ssj0008480 |
Score | 2.4711256 |
Snippet | We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Algorithms Biological neural networks Co-design Design optimization Encoding Iterative algorithms Iterative methods Learning Neural networks Neuromorphics Neurons photonic spike-timing-dependent plasticity Photonic spiking neural network Photonics Spikes Spiking Supervised learning supervised spike sequence learning Training Vertical cavity surface emission lasers Vertical cavity surface emitting lasers |
Title | Spike Sequence Learning in a Photonic Spiking Neural Network Consisting of VCSELs-SA with Supervised Training |
URI | https://ieeexplore.ieee.org/document/9018042 https://www.proquest.com/docview/2376743650 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-4542 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008480 issn: 1077-260X databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED51lZDgYRstaGVs8gNv4DY_nB9-RKgVmkYFCqC-RY5zAdStrUj6sr9-PsetxpjQ3qLEtiLd5fyd8913ACeliKQy2Q6vRFRwIaTPlQpSbrAzVmb_UmjPdK-m8eWd-DaLZh0429bCIKIln-GQLu2__HKp13RUNpKkNiVMwH2XJLKt1dpG3VSkrfJAknCD0WebAhlPjoyL34xNKhh4Q6ojjWLxYhOyXVVehWK7v0w-wNXmzVpayXy4boqh_vWXaOP_vvpHeO-AJjtvPWMfOrjowd4f8oM92LH0T1334We2epojyxyvmjnV1Qf2tGCKXT8uG1LQZTSK7pKih1l72lLImW36WRN_mi0rdn-Rjb_XPDtndMbLsvWKwlGNJbt17SgO4G4yvr245K4RA9eBjBoupFAmE4wqUfqoQ8TExNHSq_y4kJ4ogyqOTFYYo44DT2u_CNNEYZmi1db3UIWH0F0sF_gJWFj4KgkNigt1SM9kHBQipH6MsUk0ZTkAf2OZXDuVcmqW8SO32Yonc2vNnKyZO2sO4HQ7Z9VqdLw5uk_m2Y50lhnA8cYBcvcZ1zlRhgzEMij26N-zPsMurd2Szo6h2zyv8YtBKU3x1brnb2MN4Nw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5VrRBw4NGCCC2wB26wqR_rxx6rKlWAJAI5RblZ6_UYqkISYefSX9-Z9SbiJcTNstf2SjOenW_9zTcAr2uVaENoRzYqqaRSOpTGRLmk3BkbWr8Muj3d6SwdX6r3i2SxB293tTCI6MhnOORD9y-_XtkNb5WdalabUhRwDxJCFVlfrbWLu7nKe-2BLJOUpS-2JTKBPiUn_zQiMBgFQ64kTVL1yzLk-qr8EYzdCnPxEKbbufXEkuvhpquG9uY32cb_nfwjeOBTTXHW-8Zj2MPlIdz_SYDwEO44Aqhtj-B7sb66RlF4ZrXwuqtfxNVSGPHx66pjDV3Bo_gsa3rQs2c9iVy4tp8tM6jFqhGfz4vRpJXFmeBdXlFs1hyQWqzF3DekeAKXF6P5-Vj6VgzSRjrppNLKEBZMGlWHaGPEjCJpHTRhWulA1VGTJoQLU7RpFFgbVnGeGaxzdOr6AZr4KewvV0t8BiKuQpPFlMfFNuZrOo0qFXNHxpSgpq4HEG4tU1qvU87tMr6VDq8EunTWLNmapbfmAN7s7ln3Kh3_HH3E5tmN9JYZwMnWAUr_Ibclk4YoyaI89vnf73oFd8fz6aScvJt9OIZ7_J6egnYC-92PDb6gnKWrXjpXvQVdOOQt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spike+Sequence+Learning+in+a+Photonic+Spiking+Neural+Network+Consisting+of+VCSELs-SA+with+Supervised+Training&rft.jtitle=IEEE+journal+of+selected+topics+in+quantum+electronics&rft.au=Song%2C+Ziwei&rft.au=Xiang%2C+Shuiying&rft.au=Ren%2C+Zhenxing&rft.au=Han%2C+Genquan&rft.date=2020-09-01&rft.pub=IEEE&rft.issn=1077-260X&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FJSTQE.2020.2975564&rft.externalDocID=9018042 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-260X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-260X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-260X&client=summon |