Spike Sequence Learning in a Photonic Spiking Neural Network Consisting of VCSELs-SA with Supervised Training

We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is i...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 26; no. 5; p. 1
Main Authors Song, Ziwei, Xiang, Shuiying, Ren, Zhenxing, Han, Genquan, Hao, Yue
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1077-260X
1558-4542
DOI10.1109/JSTQE.2020.2975564

Cover

More Information
Summary:We propose a fully-connected photonic spiking neural network (SNN) consisting of excitable vertical-cavity surface-emitting lasers with an embedded saturable absorber (VCSELs-SA) to implement spike sequence learning by a supervised training. The photonic spike-timing-dependent plasticity (STDP) is incorporated into a classical remote supervised method (ReSuMe) algorithm to implement supervised training of a photonic SNN for the first time. The computation model of the photonic SNN is derived based on the Yamada model. To optimize the learning process, we further propose a novel measure, the so-called spike sequence distance, to quantitatively evaluate the effects of controllable parameters. The numerical results show that, the photonic SNN successfully reproduce a desirable output spike sequence in response to a spatiotemporal input spike pattern by means of the iteration algorithm to update synaptic weights continuously. These results contribute one step forward toward the device-algorithm co-design and optimization of the all-VCSELs-based energy-efficient photonic SNN.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2020.2975564