QoS-Compliant 3-D Deployment Optimization Strategy for UAV Base Stations

Unmanned aerial vehicles (UAVs) are being integrated as an active element in 5G and beyond networks. Because of their flexibility and mobility, UAV base stations (UAV-BSs) can be deployed according to the ground user distributions and their quality-of-service (QoS) requirement. Although there has be...

Full description

Saved in:
Bibliographic Details
Published inIEEE systems journal Vol. 15; no. 2; pp. 1795 - 1803
Main Authors Zhong, Xukai, Huo, Yiming, Dong, Xiaodai, Liang, Zhonghua
Format Journal Article
LanguageEnglish
Published New York IEEE 01.06.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1932-8184
1937-9234
DOI10.1109/JSYST.2020.3015428

Cover

Abstract Unmanned aerial vehicles (UAVs) are being integrated as an active element in 5G and beyond networks. Because of their flexibility and mobility, UAV base stations (UAV-BSs) can be deployed according to the ground user distributions and their quality-of-service (QoS) requirement. Although there has been quite some prior research on the UAV deployment, no work has studied this problem in a 3-D setting and taken into account the UAV-BS capacity limit and the QoS requirements of ground users. Therefore, in this article, we focus on the problem of deploying UAV-BSs to provide satisfactory wireless communication services, with the aim to maximize the total number of covered user equipment subject to user data-rate requirements and UAV-BSs' capacity limit. First, we model the relationship between the air-to-ground path loss (PL) and the location of UAV-BSs in both horizontal and vertical dimensions, which has not been considered in previous works. Unlike the conventional UAV deployment problem formulation, the 3-D deployment problem is decoupled into a 2-D horizontal placement and altitude determination connected by PL requirement and minimization. Then, we propose a novel genetic algorithm-based 2-D placement approach in which UAV-BSs are placed to have maximum coverage of the users with consideration of data rate distribution. Finally, numerical and simulation results show that the proposed approach has enabled a better coverage percentage comparing with other schemes.
AbstractList Unmanned aerial vehicles (UAVs) are being integrated as an active element in 5G and beyond networks. Because of their flexibility and mobility, UAV base stations (UAV-BSs) can be deployed according to the ground user distributions and their quality-of-service (QoS) requirement. Although there has been quite some prior research on the UAV deployment, no work has studied this problem in a 3-D setting and taken into account the UAV-BS capacity limit and the QoS requirements of ground users. Therefore, in this article, we focus on the problem of deploying UAV-BSs to provide satisfactory wireless communication services, with the aim to maximize the total number of covered user equipment subject to user data-rate requirements and UAV-BSs' capacity limit. First, we model the relationship between the air-to-ground path loss (PL) and the location of UAV-BSs in both horizontal and vertical dimensions, which has not been considered in previous works. Unlike the conventional UAV deployment problem formulation, the 3-D deployment problem is decoupled into a 2-D horizontal placement and altitude determination connected by PL requirement and minimization. Then, we propose a novel genetic algorithm-based 2-D placement approach in which UAV-BSs are placed to have maximum coverage of the users with consideration of data rate distribution. Finally, numerical and simulation results show that the proposed approach has enabled a better coverage percentage comparing with other schemes.
Author Zhong, Xukai
Liang, Zhonghua
Huo, Yiming
Dong, Xiaodai
Author_xml – sequence: 1
  givenname: Xukai
  orcidid: 0000-0001-6978-0453
  surname: Zhong
  fullname: Zhong, Xukai
  email: xukaiz@uvic.ca
  organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
– sequence: 2
  givenname: Yiming
  orcidid: 0000-0003-3924-227X
  surname: Huo
  fullname: Huo, Yiming
  email: ymhuo@uvic.ca
  organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
– sequence: 3
  givenname: Xiaodai
  orcidid: 0000-0001-7126-5602
  surname: Dong
  fullname: Dong, Xiaodai
  email: xdong@ece.uvic.ca
  organization: Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC, Canada
– sequence: 4
  givenname: Zhonghua
  orcidid: 0000-0002-7200-6685
  surname: Liang
  fullname: Liang, Zhonghua
  email: lzhxjd@hotmail.com
  organization: School of Information Engineering, Chang'an University, Xi'an, China
BookMark eNp9kE1PwjAYxxuDiYB-Ab0s8Tzs69oeEVQ0JMQMTDw13exMybbOdhzw0zsY8eDB0_P6e17-IzCoXW0AuEZwghCUdy_pe7qeYIjhhEDEKBZnYIgk4bHEhA6OPo4FEvQCjELYQsgE43IIFq8ujWeuakqr6zYi8Tyam6Z0-8p04appbWW_dWtdHaWt16353EeF89Fm-hbd62C67LEaLsF5octgrk52DDaPD-vZIl6unp5n02WcY8namDIkeGJgnhkNZSJ4BrWkJoOFhkUiP4jUlCCeUyYSiKTRJOcF1wzzTMqcUTIGt_3cxruvnQmt2rqdr7uVCjMiCSOUHLpE35V7F4I3hcptf2j3hC0Vguqgmzrqpg66qZNuHYr_oI23lfb7_6GbHrLGmF9AIs5gd_MPKoJ59A
CODEN ISJEB2
CitedBy_id crossref_primary_10_1016_j_comnet_2024_110817
crossref_primary_10_1002_ett_4464
crossref_primary_10_5772_acrt_29
crossref_primary_10_1109_ACCESS_2024_3515654
crossref_primary_10_1007_s11276_022_03120_8
crossref_primary_10_1016_j_adhoc_2025_103767
crossref_primary_10_1109_JIOT_2024_3392950
crossref_primary_10_1007_s11277_023_10334_2
crossref_primary_10_1007_s11276_022_03045_2
crossref_primary_10_1109_ACCESS_2023_3268206
crossref_primary_10_1109_JSEN_2023_3260168
crossref_primary_10_1109_ACCESS_2021_3055335
crossref_primary_10_1109_TCOMM_2022_3169468
crossref_primary_10_1109_ACCESS_2022_3224776
crossref_primary_10_1109_JSYST_2024_3359776
crossref_primary_10_1109_LCOMM_2022_3205722
crossref_primary_10_1109_TAES_2022_3167386
crossref_primary_10_3390_app131910723
crossref_primary_10_1109_TVT_2023_3341633
crossref_primary_10_3390_drones8050193
crossref_primary_10_1109_TNET_2022_3231184
crossref_primary_10_1109_JIOT_2022_3150292
crossref_primary_10_1007_s10489_024_05339_8
crossref_primary_10_1109_ACCESS_2023_3267808
crossref_primary_10_1109_JSYST_2023_3272948
crossref_primary_10_1016_j_comnet_2024_110277
crossref_primary_10_1109_JIOT_2024_3446583
crossref_primary_10_1109_TCOMM_2022_3170615
crossref_primary_10_1016_j_adhoc_2025_103753
crossref_primary_10_3390_drones8060272
crossref_primary_10_3390_aerospace11120969
crossref_primary_10_3390_electronics10050547
crossref_primary_10_1109_TVT_2024_3436072
crossref_primary_10_3390_drones9010064
crossref_primary_10_1016_j_simpat_2024_103048
crossref_primary_10_1016_j_iot_2023_100985
crossref_primary_10_3390_electronics11142197
Cites_doi 10.1109/VTCFall.2019.8891154
10.1109/JSYST.2019.2940985
10.1109/LAWP.2012.2220514
10.1109/LGRS.2019.2947136
10.1109/IROS.2018.8594333
10.1109/4235.918435
10.1016/j.cor.2018.11.013
10.1109/ACCESS.2019.2921729
10.1109/ICMTMA50254.2020.00139
10.1109/ICC.2016.7510820
10.1109/JSYST.2012.2219912
10.1109/TCC.2016.2594172
10.1109/LPT.2019.2954806
10.1016/j.renene.2018.11.061
10.1109/JPROC.2019.2952892
10.1016/j.ijpe.2019.02.017
10.1109/TWC.2019.2926981
10.1109/LWC.2014.2342736
10.1109/JSYST.2012.2223071
10.1109/LCOMM.2016.2578312
10.1109/ACCESS.2019.2905042
10.1109/MCOM.2016.7470933
10.1109/WPT.2015.7140168
10.1109/WD.2016.7461487
10.1109/LWC.2017.2700840
10.1109/TMC.2019.2917176
10.1109/ITI.2006.1708562
10.1109/GLOCOMW.2018.8644095
10.1109/ACCESS.2019.2924720
10.1109/ACCESS.2018.2874439
10.1016/j.compeleceng.2017.09.016
10.1109/TBC.2019.2892585
10.1109/MCOM.2018.1700643
10.1109/ACCESS.2019.2933284
10.1109/AE.2014.7011709
10.1109/TII.2017.2786782
10.1109/JIOT.2019.2914414
10.1109/LCOMM.2016.2633248
10.1109/JSTSP.2019.2899208
10.1109/VTCFall.2019.8891482
10.1109/LSP.2015.2417592
10.1108/EC-08-2018-0355
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/JSYST.2020.3015428
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1937-9234
EndPage 1803
ExternalDocumentID 10_1109_JSYST_2020_3015428
9175054
Genre orig-research
GrantInformation_xml – fundername: Wighton Engineering Product Development Fund of University of Victoria
– fundername: Wighton Engineering Product Development Fund
– fundername: National Natural Science Foundation of China
  grantid: 61871314
  funderid: 10.13039/501100001809
– fundername: Natural Science Basic Research Project in Shaanxi Province of China
  grantid: 2020JM-242
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 300102249303
  funderid: 10.13039/501100012226
GroupedDBID 0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c295t-451876e0cbea09687b0a94eb0fa0f69d39a4317c4586019ea3c7f7a527b99c543
IEDL.DBID RIE
ISSN 1932-8184
IngestDate Mon Jun 30 10:20:55 EDT 2025
Thu Apr 24 23:07:31 EDT 2025
Wed Oct 01 02:25:51 EDT 2025
Wed Aug 27 02:50:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-451876e0cbea09687b0a94eb0fa0f69d39a4317c4586019ea3c7f7a527b99c543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7200-6685
0000-0003-3924-227X
0000-0001-7126-5602
0000-0001-6978-0453
PQID 2539353434
PQPubID 85494
PageCount 9
ParticipantIDs proquest_journals_2539353434
crossref_citationtrail_10_1109_JSYST_2020_3015428
crossref_primary_10_1109_JSYST_2020_3015428
ieee_primary_9175054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-June
2021-6-00
20210601
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-June
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE systems journal
PublicationTitleAbbrev JSYST
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
brezo?nik (ref26) 2018; 8
ref31
ref30
ref11
ref32
ref10
goldberg (ref33) 1989
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
ref24
ref45
ref23
ref25
ref20
ref41
ref22
ref44
ref21
ref43
ref28
ref27
ref29
ref8
ref7
ref9
ref4
cao (ref42) 2012; 11
(ref3) 2017
ref6
ref5
ref40
References_xml – ident: ref18
  doi: 10.1109/VTCFall.2019.8891154
– ident: ref19
  doi: 10.1109/JSYST.2019.2940985
– year: 2017
  ident: ref3
  article-title: Technical specification group radio access network: Study on enhanced LTE support for aerial vehicles
– volume: 11
  start-page: 1170
  year: 2012
  ident: ref42
  article-title: DSP implementation of the particle swarm and genetic algorithms for real-time design of thinned array antennas
  publication-title: IEEE Antennas Wireless Propag Lett
  doi: 10.1109/LAWP.2012.2220514
– ident: ref36
  doi: 10.1109/LGRS.2019.2947136
– ident: ref6
  doi: 10.1109/IROS.2018.8594333
– ident: ref34
  doi: 10.1109/4235.918435
– ident: ref24
  doi: 10.1016/j.cor.2018.11.013
– ident: ref22
  doi: 10.1109/ACCESS.2019.2921729
– ident: ref31
  doi: 10.1109/ICMTMA50254.2020.00139
– ident: ref13
  doi: 10.1109/ICC.2016.7510820
– ident: ref39
  doi: 10.1109/JSYST.2012.2219912
– ident: ref37
  doi: 10.1109/TCC.2016.2594172
– ident: ref44
  doi: 10.1109/LPT.2019.2954806
– ident: ref25
  doi: 10.1016/j.renene.2018.11.061
– ident: ref4
  doi: 10.1109/JPROC.2019.2952892
– ident: ref29
  doi: 10.1016/j.ijpe.2019.02.017
– ident: ref21
  doi: 10.1109/TWC.2019.2926981
– ident: ref12
  doi: 10.1109/LWC.2014.2342736
– ident: ref38
  doi: 10.1109/JSYST.2012.2223071
– ident: ref10
  doi: 10.1109/LCOMM.2016.2578312
– ident: ref43
  doi: 10.1109/ACCESS.2019.2905042
– ident: ref1
  doi: 10.1109/MCOM.2016.7470933
– ident: ref40
  doi: 10.1109/WPT.2015.7140168
– year: 1989
  ident: ref33
  publication-title: Genetic Algorithms in Search Optimization and Machine Learning
– ident: ref11
  doi: 10.1109/WD.2016.7461487
– volume: 8
  year: 2018
  ident: ref26
  article-title: Swarm intelligence algorithms for feature selection: A review
  publication-title: Appl Sci
– ident: ref14
  doi: 10.1109/LWC.2017.2700840
– ident: ref7
  doi: 10.1109/TMC.2019.2917176
– ident: ref35
  doi: 10.1109/ITI.2006.1708562
– ident: ref17
  doi: 10.1109/GLOCOMW.2018.8644095
– ident: ref16
  doi: 10.1109/ACCESS.2019.2924720
– ident: ref28
  doi: 10.1109/ACCESS.2018.2874439
– ident: ref27
  doi: 10.1016/j.compeleceng.2017.09.016
– ident: ref8
  doi: 10.1109/TBC.2019.2892585
– ident: ref2
  doi: 10.1109/MCOM.2018.1700643
– ident: ref32
  doi: 10.1109/ACCESS.2019.2933284
– ident: ref41
  doi: 10.1109/AE.2014.7011709
– ident: ref23
  doi: 10.1109/TII.2017.2786782
– ident: ref5
  doi: 10.1109/JIOT.2019.2914414
– ident: ref9
  doi: 10.1109/LCOMM.2016.2633248
– ident: ref20
  doi: 10.1109/JSTSP.2019.2899208
– ident: ref15
  doi: 10.1109/VTCFall.2019.8891482
– ident: ref45
  doi: 10.1109/LSP.2015.2417592
– ident: ref30
  doi: 10.1108/EC-08-2018-0355
SSID ssj0058579
Score 2.4836216
Snippet Unmanned aerial vehicles (UAVs) are being integrated as an active element in 5G and beyond networks. Because of their flexibility and mobility, UAV base...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1795
SubjectTerms 3-D deployment
Air-to-ground (A2G)
Base stations
Broadcasting
channel models
genetic algorithm (GA)
Genetic algorithms
Optimization
Placement
Quality of service
Radio equipment
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
user equipment (UE)
User requirements
Wireless communication
Wireless communications
Title QoS-Compliant 3-D Deployment Optimization Strategy for UAV Base Stations
URI https://ieeexplore.ieee.org/document/9175054
https://www.proquest.com/docview/2539353434
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1937-9234
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0058579
  issn: 1932-8184
  databaseCode: RIE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLYGJzjwRgwGyoEbZLSN-8hxMNCEBAiNIThVSZZegA2x7QC_HidtJwQIceshqSI7sT8ntj-AQ0kYYEi4mmcakWOkDM-kiTiaWGshQpN6urer66Q3wMuH-KEBx_NaGGutTz6zbffp3_KHYzNzV2UnFFqQw8YFWEizpKzVqq0uoV7fV8_hEU5OCOsCmUCeXPYf-3cUCkYUoTrI4JjXvzghz6rywxR7_3KxClf1ysq0kqf2bKrb5uNb08b_Ln0NViqgyTrlzliHhh1twPKX9oOb0Lsd9_mZzykn-TLBu6xrHQGw-xe7IWPyUlVpsqqJ7TsjjMsGnXt2St6P9ct3_MkWDC7O7856vGJW4CaS8ZRjHJIVtIHRVlEMk6U6UBKtDgoVFIkcCqkcsDAYZxSwSauESYtUxVGqpTQxim1YHI1HdgdYIUIlQ4U2FYg2TNQQpckS0nURZDSxCWEt6txUbccd-8Vz7sOPQOZePblTT16ppwlH8zmvZdONP0dvOnnPR1aibkKr1mhenctJHsWuFFmgwN3fZ-3BUuSyVvw9SwsWp28zu0-wY6oP_H77BEtV0SU
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NbxMxEB2V9gAcaGlAhJbWh96Kk931eHd97FeUlqYV2gSV08p2vBcgQTQ5wK_v2LsbRYCq3vZgr6wZe-aNPTMP4EgRBpgSrua5QeSYaMtzZROOVhojRGyzQPc2ukmHE7y6k3cb8HFVC-OcC8lnruc_w1v-dG6X_qqsT6EFOWx8BlsSEWVdrdXaXcK9obOeRySc3BC2JTKR6l8VX4sxBYMJxageNHju9TU3FHhV_jHGwcMMtmHUrq1OLPnWWy5Mz_75q23jUxe_A68aqMlO6r3xGjbcbBderjUg7MDw87zgZyGrnCTMBD9n585TAPt_sVsyJz-aOk3WtLH9zQjlssnJF3ZK_o8V9Uv-_RuYDC7GZ0PecCtwmyi54ChjsoMussZpimLyzERaoTNRpaMqVVOhtIcWFmVOIZtyWtisyrRMMqOUlSjewuZsPnPvgFUi1irW6DKB6OJUT1HZPCVtV1FOE7sQt6IubdN43PNffC9DABKpMqin9OopG_V04Xg152fdduPR0R0v79XIRtRd2G81WjYn875MpC9GFijw_f9nHcLz4Xh0XV5f3nzagxeJz2EJty77sLn4tXQfCIQszEHYew9rmdRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QoS-Compliant+3-D+Deployment+Optimization+Strategy+for+UAV+Base+Stations&rft.jtitle=IEEE+systems+journal&rft.au=Zhong%2C+Xukai&rft.au=Huo%2C+Yiming&rft.au=Dong%2C+Xiaodai&rft.au=Liang%2C+Zhonghua&rft.date=2021-06-01&rft.pub=IEEE&rft.issn=1932-8184&rft.volume=15&rft.issue=2&rft.spage=1795&rft.epage=1803&rft_id=info:doi/10.1109%2FJSYST.2020.3015428&rft.externalDocID=9175054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1932-8184&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1932-8184&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1932-8184&client=summon