An ensemble learning algorithm for optimization of spark ignition engine performance fuelled with methane/hydrogen blends
The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC) engines. One promising option is the utilization of methane/hydrogen blends in Spark-Ignition (SI) engines due to their potential to reduce Green Ho...
Saved in:
Published in | Applied soft computing Vol. 168; p. 112468 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.01.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1568-4946 |
DOI | 10.1016/j.asoc.2024.112468 |
Cover
Abstract | The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC) engines. One promising option is the utilization of methane/hydrogen blends in Spark-Ignition (SI) engines due to their potential to reduce Green House Gas (GHG) emissions and improve engine performance. However, the optimal operation of such an engine is challenging due to the interdependence of multiple conflicting objectives, including Brake Mean Effective Pressure (BMEP), Brake Specific Fuel Consumption (BSFC), and nitrogen oxide (NOx) emissions. This paper proposes an evolutionary optimization algorithm that employs a surrogate model as a fitness function to optimize methane/hydrogen SI engine performance and emissions. To create the surrogate model, we propose a novel ensemble learning algorithm that consists of several base learners. This paper employs ten different learning algorithms diversified via the Wagging method to create a pool of base-learner algorithms. This paper proposes a combinatorial evolutionary pruning algorithm to select an optimal subset of learning algorithms from a pool of base learners for the final ensemble algorithm. Once the base learners are designed, they are incorporated into an ensemble, where their outputs are aggregated using a weighted voting scheme. The weights of these base learners are optimized through a gradient descent algorithm. However, when optimizing a problem using surrogate models, the fitness function is subject to approximation uncertainty. To address this issue, this paper introduces an uncertainty reduction algorithm that performs averaging within a sphere around each solution. Experiments are performed to compare the proposed ensemble learning algorithm to the classical learning algorithms and state-of-the-art ensemble algorithms. Also, the proposed smoothing algorithm is compared with the state-of-the-art evolutionary algorithms. Experimental studies suggest that the proposed algorithms outperform the existing algorithms.
•An ensemble learning algorithm is proposed to build a surrogate model of a methane/hydrogen spark ignition engine performance.•Evolutionary algorithms are used to design a wagging algorithm and create the base learners.•A combinatorial evolutionary algorithm is presented to find the optimal sef of base learners.•An uncertainty reduction algorithm in evolutionary algorithms is proposed for the optimization process.•Evolutionary Algorithms are employed to optimize the engine parameters via the surrogate model. |
---|---|
AbstractList | The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC) engines. One promising option is the utilization of methane/hydrogen blends in Spark-Ignition (SI) engines due to their potential to reduce Green House Gas (GHG) emissions and improve engine performance. However, the optimal operation of such an engine is challenging due to the interdependence of multiple conflicting objectives, including Brake Mean Effective Pressure (BMEP), Brake Specific Fuel Consumption (BSFC), and nitrogen oxide (NOx) emissions. This paper proposes an evolutionary optimization algorithm that employs a surrogate model as a fitness function to optimize methane/hydrogen SI engine performance and emissions. To create the surrogate model, we propose a novel ensemble learning algorithm that consists of several base learners. This paper employs ten different learning algorithms diversified via the Wagging method to create a pool of base-learner algorithms. This paper proposes a combinatorial evolutionary pruning algorithm to select an optimal subset of learning algorithms from a pool of base learners for the final ensemble algorithm. Once the base learners are designed, they are incorporated into an ensemble, where their outputs are aggregated using a weighted voting scheme. The weights of these base learners are optimized through a gradient descent algorithm. However, when optimizing a problem using surrogate models, the fitness function is subject to approximation uncertainty. To address this issue, this paper introduces an uncertainty reduction algorithm that performs averaging within a sphere around each solution. Experiments are performed to compare the proposed ensemble learning algorithm to the classical learning algorithms and state-of-the-art ensemble algorithms. Also, the proposed smoothing algorithm is compared with the state-of-the-art evolutionary algorithms. Experimental studies suggest that the proposed algorithms outperform the existing algorithms.
•An ensemble learning algorithm is proposed to build a surrogate model of a methane/hydrogen spark ignition engine performance.•Evolutionary algorithms are used to design a wagging algorithm and create the base learners.•A combinatorial evolutionary algorithm is presented to find the optimal sef of base learners.•An uncertainty reduction algorithm in evolutionary algorithms is proposed for the optimization process.•Evolutionary Algorithms are employed to optimize the engine parameters via the surrogate model. |
ArticleNumber | 112468 |
Author | Tayarani-N., Mohammad-H. Paykani, Amin |
Author_xml | – sequence: 1 givenname: Mohammad-H. orcidid: 0000-0002-5999-2134 surname: Tayarani-N. fullname: Tayarani-N., Mohammad-H. email: mo_tayarani@yahoo.com organization: University of Hertfordshire, College Lane, Hatfield, AL10 9AB, United Kingdom – sequence: 2 givenname: Amin surname: Paykani fullname: Paykani, Amin organization: School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom |
BookMark | eNp9kE1OwzAQhb0oEm3hAqx8gaSx48SOxKaq-KlUiQ2sLdcZpy6JHdkBVE6PS1mzmZFG772Z-RZo5rwDhO5IkZOC1KtjrqLXOS0oywmhrBYzNCdVLTLWsPoaLWI8FknYUDFHp7XD4CIM-x5wDyo46zqs-s4HOx0GbHzAfpzsYL_VZL3D3uA4qvCObefs7wRcZx3gEUISD8ppwOYD-h5a_JUy8ADTQTlYHU5t8B04nFa5Nt6gK6P6CLd_fYneHh9eN8_Z7uVpu1nvMk2basoYKQVXvGyV0MJoU1PB94JXTVvoujKac6OBiCRIteSGEb3XDBjljaaGs3KJ6CVXBx9jACPHYAcVTpIU8gxMHuUZmDwDkxdgyXR_MUG67NNCkFFbSK-1NoCeZOvtf_YfbQx7nA |
Cites_doi | 10.1016/j.eswa.2023.120678 10.1016/j.fuel.2016.08.040 10.1007/s10462-022-10283-5 10.1016/j.ijhydene.2008.09.016 10.1109/ACCESS.2017.2786347 10.1109/TEVC.2021.3064835 10.1016/j.ijhydene.2022.11.101 10.1016/j.apenergy.2019.03.041 10.1007/BF00058655 10.1109/34.58871 10.1109/MCAS.2006.1688199 10.1016/j.procs.2015.05.351 10.1016/j.swevo.2015.01.005 10.1016/j.ijhydene.2023.03.477 10.1007/s00500-010-0647-2 10.1007/s11771-015-2972-1 10.1016/j.apenergy.2024.123019 10.1016/j.pecs.2010.04.002 10.1109/TEVC.2014.2355174 10.1016/j.fuel.2022.126292 10.1016/j.cma.2020.113575 10.1023/A:1007659514849 10.1109/34.709601 10.1177/1468087418808949 10.1007/s10898-020-00912-0 10.1109/TAFFC.2019.2930695 10.1016/j.asoc.2017.04.058 10.1016/j.eswa.2018.08.038 10.1002/widm.1249 10.1016/j.rser.2014.05.080 10.1016/j.asoc.2024.111359 10.1109/TSMC.2022.3143955 10.1109/4235.771163 10.1007/s00158-017-1826-x 10.1016/j.ins.2021.03.002 10.1061/(ASCE)EY.1943-7897.0000319 10.1016/j.energy.2022.125961 10.3390/s21175777 10.1016/j.ijhydene.2004.01.018 10.1109/72.88165 10.1016/j.fuel.2021.122371 10.1016/j.fuel.2021.121281 10.1007/978-3-642-23783-6_29 10.1109/TKDE.2004.29 10.1109/TEVC.2017.2743016 10.1109/72.97934 10.1016/j.ijhydene.2012.04.012 10.1115/1.4037835 10.1016/j.enconman.2021.114063 10.1109/TPAMI.2022.3227370 10.1023/A:1007515423169 10.1016/j.pecs.2021.100967 10.1109/TEVC.2007.896689 10.1016/j.enconman.2006.05.023 10.1109/72.554191 10.1007/s10973-022-11896-2 10.1016/j.knosys.2020.106262 10.1016/0893-6080(90)90049-Q 10.1016/j.chemosphere.2016.10.122 10.1109/TCYB.2014.2366468 10.1007/BF00117832 10.1016/j.ijhydene.2019.10.250 10.1016/j.patrec.2017.10.034 10.1109/TEVC.2005.846356 10.1016/j.rser.2013.05.048 10.1109/TKDE.2013.49 10.1016/j.swevo.2016.09.002 10.1016/j.eswa.2020.113589 10.1016/j.fuel.2023.128244 10.1016/j.rser.2017.05.061 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.asoc.2024.112468 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 10_1016_j_asoc_2024_112468 S1568494624012420 |
GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXKI AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEKER AENEX AFJKZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- AATTM AAYWO AAYXX ACVFH ADCNI AEIPS AEUPX AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c295t-41387a73da8c8fcf6287b8759d0c65fc77fce1873de1837f41cbc4e4279c2f743 |
IEDL.DBID | .~1 |
ISSN | 1568-4946 |
IngestDate | Tue Jul 01 01:50:27 EDT 2025 Sat Dec 21 16:00:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Methane Spark ignition engine Evolutionary algorithms Surrogate models Ensemble learning Hydrogen |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-41387a73da8c8fcf6287b8759d0c65fc77fce1873de1837f41cbc4e4279c2f743 |
ORCID | 0000-0002-5999-2134 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1568494624012420 |
ParticipantIDs | crossref_primary_10_1016_j_asoc_2024_112468 elsevier_sciencedirect_doi_10_1016_j_asoc_2024_112468 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2025 2025-01-00 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 01 year: 2025 text: January 2025 |
PublicationDecade | 2020 |
PublicationTitle | Applied soft computing |
PublicationYear | 2025 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Zhao, Wu, Huang, Yuan, Zhang, Peng, Shi (b61) 2022 Kuncheva (b36) 2005 Korakianitis, Namasivayam, Crookes (b1) 2011; 37 Loboda, Feldshteyn, Ponomaryov (b44) 2012 Cho, He (b5) 2007; 48 Ma, Ding, Wang, Wang, Wang, Zhao (b6) 2008; 33 Kavuri, Kokjohn (b13) 2020; 21 Wang, Ji, Shi, Yang, Wang, Ge, Chang, Meng, Wang (b19) 2023; 263 Specht (b47) 1991; 2 Burrascano (b40) 1991; 2 Breiman (b34) 1996; 24 Najaran (b67) 2023; 233 Krawczyk, Woźniak (b55) 2015; 51 Tong, Huang, Minku, Yao (b32) 2021; 562 Dai, Ye, Liu (b69) 2017; 58 Karunamurthy, Janvekar, Palaniappan, Adhitya, Lokeswar, Harish (b15) 2023; 148 Zhang, Suganthan (b83) 2015; 45 Akansu, Dulger, Kahraman, Veziroglu (b8) 2004; 29 Kakaee, Paykani (b2) 2013; 26 Zhu, He, Xuan, Shao (b23) 2024; 362 Kakaee, Rahnama, Paykani, Mashadi (b12) 2015; 22 Moreno, Muñoz, Arroyo, Magén, Monné, Suelves (b10) 2012; 37 Warsito, Santoso, Suparti, Yasin (b43) 2018; vol. 1025 Wang, Ji, Su, Shi, Ge, Yang, Wang (b20) 2022; 310 Rao, Chen, Liu, Ma (b21) 2023; 347 Tayarani-N. (b54) 2024; 154 Sagi, Rokach (b65) 2018; 8 Rakshit, Konar, Das (b72) 2017; 33 Molina, Lozano, Sánchez, Herrera (b77) 2011; 15 Bai, Shanmugaiah, Sonthalia, Devarajan, Varuvel (b17) 2023; 48 Dong, Song, Wang, Dong (b26) 2018; 57 Dolezel, Skrabanek, Gago (b46) 2016 Webb (b62) 2000; 40 P. Rahnama, A. Paykani, Numerical study of reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine using 3D-CFD coupled with chemical kinetics. Ma, Li, Tayarani, Lu, Xu, Yao (b25) 2018; 140 Polikar (b37) 2006; 6 Breiman (b38) 1996; 24 Specht (b41) 1990; 3 Benediktsson, Sveinsson, Ersoy, Swain (b33) 1997; 8 Yao, Liu, Lin (b86) 1999; 3 Aliramezani, Koch, Shahbakhti (b14) 2022; 88 Heywood (b53) 1988; 25 Hansen, Salamon (b35) 1990; 12 Lye, Mishra, Ray, Chandrashekar (b28) 2021; 374 Fogel, Owens, Walsh (b85) 1966 Sofianopoulos, Assanis, Mamalis (b7) 2015; 142 Mehra, Duan, Juknelevičius, Ma, Li (b9) 2017; 80 Zareei, Rohani (b24) 2020; 45 Sabour, Movahed (b48) 2017; 168 Paykani, Frouzakis, Boulouchos (b50) 2019; 242 Müller, Park, Sahu, Varadharajan, Arora, Faybishenko, Agarwal (b27) 2021; 81 Jurek, Bi, Wu, Nugent (b81) 2014; 26 Li, Xu, Lu, Du, Huang (b29) 2021; 236 Tayarani-Najaran (b68) 2022; 52 Zitzler, Laumanns, Thiele (b73) 2001; 103 Zhang, Li, Sekar, Elgendi, Krishnamoorthy, Xia, Matharasi (b18) 2023; 333 Paykani, Frouzakis, Schürch, Perini, Boulouchos (b51) 2021; 303 Tayarani-N., Yao, Xu (b16) 2015; 19 Schwefel (b87) 1995 Tayarani-N, Akbarzadeh-T (b70) 2014; 7 Ji, Zhang, Gong, Sun (b31) 2021; 25 Bauer, Kohavi (b56) 1999; 36 Krawczyk, Woźniak (b60) 2015; 51 Kakaee, Paykani, Ghajar (b4) 2014; 38 Yao, Liu (b78) 1997; 26 Jin, Branke (b71) 2005; 9 Webb, Zheng (b59) 2004; 16 Deng, Wang, Qiao, Zhang (b75) 2018; 6 Yang, Chen, Deng, Li, Gu, Zhang (b76) 2018; 22 Najaran, Tootounchi (b80) 2020; 160 Ho (b39) 1998; 20 Sugumaran, Thangavel, Vijayaragavan, Subramanian, JS, Varuvel (b22) 2023; 48 Silva, Bouwmans, Frélicot (b64) 2017; 100 Yang, Ma (b42) 2019; 116 Tayarani, Esposito, Vinciarelli (b52) 2022; 13 J.R. Quinlan, et al., Bagging, boosting, and C4. 5, in: AAAI/IAAI, Vol. 1, 1996, pp. 725–730. Kosmadakis, Rakopoulos, Rakopoulos (b11) 2016; 185 Steinbach, Tan (b45) 2009 Yang, Lv, Chen (b63) 2023; 56 Mininno, Cupertino, Naso (b79) 2008; 12 Tayarani-N, Bennett, Xu, Yao (b49) 2016 Eldesouky, Bekhit, Fathalla, Salah, Ali (b66) 2021; 21 Tayarani-N., Prügel-Bennett (b74) 2015; 22 Menze, Kelm, Splitthoff, Koethe, Hamprecht (b82) 2011 Webb (b57) 2000; 40 Holland (b84) 1975 Liao, Sun, Zhang, Jin (b30) 2020; 205 Akansu (10.1016/j.asoc.2024.112468_b8) 2004; 29 Mehra (10.1016/j.asoc.2024.112468_b9) 2017; 80 Zhu (10.1016/j.asoc.2024.112468_b23) 2024; 362 Steinbach (10.1016/j.asoc.2024.112468_b45) 2009 Krawczyk (10.1016/j.asoc.2024.112468_b55) 2015; 51 Silva (10.1016/j.asoc.2024.112468_b64) 2017; 100 Ma (10.1016/j.asoc.2024.112468_b6) 2008; 33 Müller (10.1016/j.asoc.2024.112468_b27) 2021; 81 Dolezel (10.1016/j.asoc.2024.112468_b46) 2016 Tayarani-N. (10.1016/j.asoc.2024.112468_b74) 2015; 22 Specht (10.1016/j.asoc.2024.112468_b41) 1990; 3 Tayarani (10.1016/j.asoc.2024.112468_b52) 2022; 13 Najaran (10.1016/j.asoc.2024.112468_b80) 2020; 160 Li (10.1016/j.asoc.2024.112468_b29) 2021; 236 Ma (10.1016/j.asoc.2024.112468_b25) 2018; 140 Rao (10.1016/j.asoc.2024.112468_b21) 2023; 347 Tong (10.1016/j.asoc.2024.112468_b32) 2021; 562 Yang (10.1016/j.asoc.2024.112468_b63) 2023; 56 Zareei (10.1016/j.asoc.2024.112468_b24) 2020; 45 Yao (10.1016/j.asoc.2024.112468_b78) 1997; 26 Burrascano (10.1016/j.asoc.2024.112468_b40) 1991; 2 Wang (10.1016/j.asoc.2024.112468_b19) 2023; 263 Tayarani-N (10.1016/j.asoc.2024.112468_b70) 2014; 7 Bauer (10.1016/j.asoc.2024.112468_b56) 1999; 36 Menze (10.1016/j.asoc.2024.112468_b82) 2011 Fogel (10.1016/j.asoc.2024.112468_b85) 1966 Kakaee (10.1016/j.asoc.2024.112468_b12) 2015; 22 Zhang (10.1016/j.asoc.2024.112468_b18) 2023; 333 Krawczyk (10.1016/j.asoc.2024.112468_b60) 2015; 51 Webb (10.1016/j.asoc.2024.112468_b59) 2004; 16 Tayarani-N. (10.1016/j.asoc.2024.112468_b54) 2024; 154 Sugumaran (10.1016/j.asoc.2024.112468_b22) 2023; 48 Webb (10.1016/j.asoc.2024.112468_b62) 2000; 40 Hansen (10.1016/j.asoc.2024.112468_b35) 1990; 12 Molina (10.1016/j.asoc.2024.112468_b77) 2011; 15 Kosmadakis (10.1016/j.asoc.2024.112468_b11) 2016; 185 Korakianitis (10.1016/j.asoc.2024.112468_b1) 2011; 37 Eldesouky (10.1016/j.asoc.2024.112468_b66) 2021; 21 Deng (10.1016/j.asoc.2024.112468_b75) 2018; 6 Schwefel (10.1016/j.asoc.2024.112468_b87) 1995 Kavuri (10.1016/j.asoc.2024.112468_b13) 2020; 21 Heywood (10.1016/j.asoc.2024.112468_b53) 1988; 25 Karunamurthy (10.1016/j.asoc.2024.112468_b15) 2023; 148 Yang (10.1016/j.asoc.2024.112468_b76) 2018; 22 10.1016/j.asoc.2024.112468_b58 Tayarani-N. (10.1016/j.asoc.2024.112468_b16) 2015; 19 Specht (10.1016/j.asoc.2024.112468_b47) 1991; 2 Moreno (10.1016/j.asoc.2024.112468_b10) 2012; 37 Breiman (10.1016/j.asoc.2024.112468_b38) 1996; 24 Warsito (10.1016/j.asoc.2024.112468_b43) 2018; vol. 1025 Webb (10.1016/j.asoc.2024.112468_b57) 2000; 40 Loboda (10.1016/j.asoc.2024.112468_b44) 2012 Zhao (10.1016/j.asoc.2024.112468_b61) 2022 Sagi (10.1016/j.asoc.2024.112468_b65) 2018; 8 Tayarani-Najaran (10.1016/j.asoc.2024.112468_b68) 2022; 52 Bai (10.1016/j.asoc.2024.112468_b17) 2023; 48 Kuncheva (10.1016/j.asoc.2024.112468_b36) 2005 Dong (10.1016/j.asoc.2024.112468_b26) 2018; 57 Breiman (10.1016/j.asoc.2024.112468_b34) 1996; 24 Sofianopoulos (10.1016/j.asoc.2024.112468_b7) 2015; 142 Wang (10.1016/j.asoc.2024.112468_b20) 2022; 310 Jin (10.1016/j.asoc.2024.112468_b71) 2005; 9 Holland (10.1016/j.asoc.2024.112468_b84) 1975 Paykani (10.1016/j.asoc.2024.112468_b51) 2021; 303 Mininno (10.1016/j.asoc.2024.112468_b79) 2008; 12 10.1016/j.asoc.2024.112468_b3 Yang (10.1016/j.asoc.2024.112468_b42) 2019; 116 Kakaee (10.1016/j.asoc.2024.112468_b2) 2013; 26 Benediktsson (10.1016/j.asoc.2024.112468_b33) 1997; 8 Zhang (10.1016/j.asoc.2024.112468_b83) 2015; 45 Ji (10.1016/j.asoc.2024.112468_b31) 2021; 25 Liao (10.1016/j.asoc.2024.112468_b30) 2020; 205 Ho (10.1016/j.asoc.2024.112468_b39) 1998; 20 Lye (10.1016/j.asoc.2024.112468_b28) 2021; 374 Sabour (10.1016/j.asoc.2024.112468_b48) 2017; 168 Polikar (10.1016/j.asoc.2024.112468_b37) 2006; 6 Jurek (10.1016/j.asoc.2024.112468_b81) 2014; 26 Dai (10.1016/j.asoc.2024.112468_b69) 2017; 58 Yao (10.1016/j.asoc.2024.112468_b86) 1999; 3 Tayarani-N (10.1016/j.asoc.2024.112468_b49) 2016 Cho (10.1016/j.asoc.2024.112468_b5) 2007; 48 Paykani (10.1016/j.asoc.2024.112468_b50) 2019; 242 Zitzler (10.1016/j.asoc.2024.112468_b73) 2001; 103 Aliramezani (10.1016/j.asoc.2024.112468_b14) 2022; 88 Najaran (10.1016/j.asoc.2024.112468_b67) 2023; 233 Rakshit (10.1016/j.asoc.2024.112468_b72) 2017; 33 Kakaee (10.1016/j.asoc.2024.112468_b4) 2014; 38 |
References_xml | – volume: 19 start-page: 609 year: 2015 end-page: 629 ident: b16 article-title: Meta-heuristic algorithms in car engine design: A literature survey publication-title: IEEE Trans. Evol. Comput. – year: 1975 ident: b84 article-title: Adaption in Natural and Artificial Systems – volume: 12 start-page: 993 year: 1990 end-page: 1001 ident: b35 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 38 start-page: 64 year: 2014 end-page: 78 ident: b4 article-title: The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines publication-title: Renew. Sustain. Energy Rev. – volume: 40 start-page: 159 year: 2000 end-page: 196 ident: b62 article-title: Multiboosting: A technique for combining boosting and wagging publication-title: Mach. Learn. – volume: 310 year: 2022 ident: b20 article-title: Comparison and implementation of machine learning models for predicting the combustion phases of hydrogen-enriched Wankel rotary engines publication-title: Fuel – volume: 168 start-page: 877 year: 2017 end-page: 884 ident: b48 article-title: Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors publication-title: Chemosphere – reference: J.R. Quinlan, et al., Bagging, boosting, and C4. 5, in: AAAI/IAAI, Vol. 1, 1996, pp. 725–730. – reference: P. Rahnama, A. Paykani, Numerical study of reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine using 3D-CFD coupled with chemical kinetics. – year: 2005 ident: b36 article-title: Diversity in Multiple Classifier Systems – volume: 36 start-page: 105 year: 1999 end-page: 139 ident: b56 article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants publication-title: Mach. Learn. – volume: 88 year: 2022 ident: b14 article-title: Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions publication-title: Prog. Energy Combust. Sci. – volume: 347 year: 2023 ident: b21 article-title: Computational analysis of performances for a hydrogen enriched compressed natural gas engine’by advanced machine learning algorithms publication-title: Fuel – volume: 56 start-page: 5545 year: 2023 end-page: 5589 ident: b63 article-title: A survey on ensemble learning under the era of deep learning publication-title: Artif. Intell. Rev. – start-page: 5128 year: 2016 end-page: 5137 ident: b49 article-title: Improving the performance of evolutionary engine calibration algorithms with principal component analysis publication-title: 2016 IEEE Congress on Evolutionary Computation – volume: 21 start-page: 1251 year: 2020 end-page: 1270 ident: b13 article-title: Exploring the potential of machine learning in reducing the computational time/expense and improving the reliability of engine optimization studies publication-title: Int. J. Engine Res. – volume: 80 start-page: 1458 year: 2017 end-page: 1498 ident: b9 article-title: Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines-A comprehensive review publication-title: Renew. Sustain. Energy Rev. – volume: 116 start-page: 255 year: 2019 end-page: 264 ident: b42 article-title: Feed-forward neural network training using sparse representation publication-title: Expert Syst. Appl. – volume: 48 start-page: 23308 year: 2023 end-page: 23322 ident: b17 article-title: Application of machine learning algorithms for predicting the engine characteristics of a wheat germ oil–Hydrogen fuelled dual fuel engine publication-title: Int. J. Hydrog. Energy – volume: 562 start-page: 414 year: 2021 end-page: 437 ident: b32 article-title: Surrogate models in evolutionary single-objective optimization: A new taxonomy and experimental study publication-title: Inform. Sci. – start-page: 165 year: 2009 end-page: 176 ident: b45 article-title: kNN: k-nearest neighbors publication-title: The Top Ten Algorithms in Data Mining – volume: 21 start-page: 5777 year: 2021 ident: b66 article-title: A robust UWSN handover prediction system using ensemble learning publication-title: Sensors – volume: 362 year: 2024 ident: b23 article-title: An enhanced automated machine learning model for optimizing cycle-to-cycle variation in hydrogen-enriched methanol engines publication-title: Appl. Energy – volume: 374 year: 2021 ident: b28 article-title: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 33 start-page: 7245 year: 2008 end-page: 7255 ident: b6 article-title: Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean burn natural gas SI engine with hydrogen enrichment publication-title: Int. J. Hydrog. Energy – volume: 236 year: 2021 ident: b29 article-title: Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm publication-title: Energy Convers. Manage. – volume: 8 year: 2018 ident: b65 article-title: Ensemble learning: A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. – volume: 58 start-page: 75 year: 2017 end-page: 91 ident: b69 article-title: Considering diversity and accuracy simultaneously for ensemble pruning publication-title: Appl. Soft Comput. – volume: 45 start-page: 2165 year: 2015 end-page: 2176 ident: b83 article-title: Oblique decision tree ensemble via multisurface proximal support vector machine publication-title: IEEE Trans. Cybern. – volume: 142 start-page: E4015010 year: 2015 ident: b7 article-title: Effects of hydrogen addition on automotive lean-burn natural gas engines: critical review publication-title: J. Energy Eng. – volume: 25 start-page: 1117 year: 1988 end-page: 1128 ident: b53 article-title: Combustion engine fundamentals publication-title: 1© Edição. Estados Unidos – volume: 103 year: 2001 ident: b73 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm publication-title: TIK-report – year: 1995 ident: b87 article-title: Evolution and Optimum Seeking – volume: 160 year: 2020 ident: b80 article-title: Probabilistic optimization algorithms for real-coded problems and its application in Latin hypercube problem publication-title: Expert Syst. Appl. – volume: 26 start-page: 467 year: 1997 end-page: 496 ident: b78 article-title: Fast evolution strategies publication-title: Control Cybernet. – volume: 33 start-page: 18 year: 2017 end-page: 45 ident: b72 article-title: Noisy evolutionary optimization algorithms–a comprehensive survey publication-title: Swarm Evol. Comput. – volume: 205 year: 2020 ident: b30 article-title: Multi-surrogate multi-tasking optimization of expensive problems publication-title: Knowl.-Based Syst. – volume: 26 start-page: 2120 year: 2014 end-page: 2137 ident: b81 article-title: Clustering-based ensembles as an alternative to stacking publication-title: IEEE Trans. Knowl. Data Eng. – volume: 52 start-page: 6362 year: 2022 end-page: 6372 ident: b68 article-title: A novel ensemble machine learning and an evolutionary algorithm in modeling the COVID-19 epidemic and optimizing government policies publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 81 start-page: 203 year: 2021 end-page: 231 ident: b27 article-title: Surrogate optimization of deep neural networks for groundwater predictions publication-title: J. Global Optim. – year: 2022 ident: b61 article-title: BoostTree and BoostForest for ensemble learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 37 start-page: 89 year: 2011 end-page: 112 ident: b1 article-title: Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions publication-title: Prog. Energy Combust. Sci. – volume: 154 year: 2024 ident: b54 article-title: Evolutionary optimization of policy responses to COVID-19 pandemic via surrogate models publication-title: Appl. Soft Comput. – volume: 45 start-page: 322 year: 2020 end-page: 336 ident: b24 article-title: Optimization and study of performance parameters in an engine fueled with hydrogen publication-title: Int. J. Hydrog. Energy – volume: 6 start-page: 21 year: 2006 end-page: 45 ident: b37 article-title: Ensemble based systems in decision making publication-title: IEEE Circuits Syst. Mag. – volume: 148 start-page: 3155 year: 2023 end-page: 3177 ident: b15 article-title: Prediction of IC engine performance and emission parameters using machine learning: A review publication-title: J. Therm. Anal. Calorim. – start-page: 453 year: 2011 end-page: 469 ident: b82 article-title: On oblique random forests publication-title: Machine Learning and Knowledge Discovery in Databases – volume: 26 start-page: 805 year: 2013 end-page: 821 ident: b2 article-title: Research and development of natural-gas fueled engines in Iran publication-title: Renew. Sustain. Energy Rev. – volume: 140 year: 2018 ident: b25 article-title: Computational intelligence nonmodel-based calibration approach for internal combustion engines publication-title: J. Dyn. Syst. Meas. Control – volume: 15 start-page: 2201 year: 2011 end-page: 2220 ident: b77 article-title: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-chains publication-title: Soft Comput. – volume: 9 start-page: 303 year: 2005 end-page: 317 ident: b71 article-title: Evolutionary optimization in uncertain environments-a survey publication-title: IEEE Trans. Evol. Comput. – volume: 6 start-page: 2970 year: 2018 end-page: 2983 ident: b75 article-title: DE-RCO: Rotating crossover operator with multiangle searching strategy for adaptive differential evolution publication-title: IEEE Access – start-page: 1 year: 2016 end-page: 6 ident: b46 article-title: Pattern recognition neural network as a tool for pest birds detection publication-title: 2016 IEEE Symposium Series on Computational Intelligence – volume: 48 start-page: 608 year: 2007 end-page: 618 ident: b5 article-title: Spark ignition natural gas engines:A review publication-title: Energy Convers. Manage. – volume: 37 start-page: 11495 year: 2012 end-page: 11503 ident: b10 article-title: Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends publication-title: Int. J. Hydrog. Energy – volume: 303 year: 2021 ident: b51 article-title: Computational optimization of CH4/H2/CO blends in a spark-ignition engine using quasi-dimensional combustion model publication-title: Fuel – volume: 24 start-page: 49 year: 1996 end-page: 64 ident: b34 article-title: Stacked regressions publication-title: Mach. Learn. – volume: 22 start-page: 4235 year: 2015 end-page: 4245 ident: b12 article-title: Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption publication-title: J. Cent. South Univ. – volume: 7 start-page: 219 year: 2014 end-page: 239 ident: b70 article-title: Improvement of the performance of the quantum-inspired evolutionary algorithms: structures, population, operators publication-title: Evol. Intell. – volume: 22 start-page: 578 year: 2018 end-page: 594 ident: b76 article-title: A level-based learning swarm optimizer for large-scale optimization publication-title: IEEE Trans. Evol. Comput. – volume: 333 year: 2023 ident: b18 article-title: Machine learning algorithms for a diesel engine fuelled with biodiesel blends and hydrogen using LSTM networks publication-title: Fuel – volume: 2 start-page: 458 year: 1991 end-page: 461 ident: b40 article-title: Learning vector quantization for the probabilistic neural network publication-title: IEEE Trans. Neural Netw. – year: 2012 ident: b44 article-title: Neural Networks for Gas Turbine Fault Identification: Multilayer Perceptron or Radial Basis Network? – volume: 233 year: 2023 ident: b67 article-title: An evolutionary ensemble convolutional neural network for fault diagnosis problem publication-title: Expert Syst. Appl. – volume: 24 start-page: 123 year: 1996 end-page: 140 ident: b38 article-title: Bagging predictors publication-title: Mach. Learn. – volume: 13 start-page: 108 year: 2022 end-page: 121 ident: b52 article-title: What an “Ehm” leaks about you: Mapping fillers into personality traits with quantum evolutionary feature selection algorithms publication-title: IEEE Trans. Affect. Comput. – volume: 51 start-page: 1565 year: 2015 end-page: 1573 ident: b55 article-title: Wagging for combining weighted one-class support vector machines publication-title: Procedia Comput. Sci. – volume: 25 start-page: 794 year: 2021 end-page: 808 ident: b31 article-title: Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems publication-title: IEEE Trans. Evol. Comput. – volume: 2 start-page: 568 year: 1991 end-page: 576 ident: b47 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. – year: 1966 ident: b85 article-title: Artificial Intelligence through Simulated Evolution – volume: 8 start-page: 54 year: 1997 end-page: 64 ident: b33 article-title: Parallel consensual neural networks publication-title: IEEE Trans. Neural Netw. – volume: 29 start-page: 1527 year: 2004 end-page: 1539 ident: b8 article-title: Internal combustion engines fueled by natural gas–hydrogen mixtures publication-title: Int. J. Hydrog. Energy – volume: 57 start-page: 1553 year: 2018 end-page: 1577 ident: b26 article-title: Surrogate-based optimization with clustering-based space exploration for expensive multimodal problems publication-title: Struct. Multidiscip. Optim. – volume: vol. 1025 year: 2018 ident: b43 article-title: Cascade forward neural network for time series prediction publication-title: Journal of Physics: Conference Series – volume: 16 start-page: 980 year: 2004 end-page: 991 ident: b59 article-title: Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques publication-title: IEEE Trans. Knowl. Data Eng. – volume: 22 start-page: 47 year: 2015 end-page: 65 ident: b74 article-title: Anatomy of the fitness landscape for dense graph-colouring problem publication-title: Swarm Evol. Comput. – volume: 242 start-page: 1712 year: 2019 end-page: 1724 ident: b50 article-title: Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm publication-title: Appl. Energy – volume: 48 start-page: 39599 year: 2023 end-page: 39611 ident: b22 article-title: Efficacy of machine learning algorithms in estimating emissions in a dual fuel compression ignition engine operating on hydrogen and diesel publication-title: Int. J. Hydrog. Energy – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: b39 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 51 start-page: 1565 year: 2015 end-page: 1573 ident: b60 article-title: Wagging for combining weighted one-class support vector machines publication-title: Procedia Comput. Sci. – volume: 40 start-page: 159 year: 2000 end-page: 196 ident: b57 article-title: MultiBoosting: A technique for combining boosting and wagging publication-title: Mach. Learn. – volume: 263 year: 2023 ident: b19 article-title: Multi-objective optimization of a hydrogen-fueled wankel rotary engine based on machine learning and genetic algorithm publication-title: Energy – volume: 100 start-page: 144 year: 2017 end-page: 151 ident: b64 article-title: Superpixel-based online wagging one-class ensemble for feature selection in foreground/background separation publication-title: Pattern Recognit. Lett. – volume: 12 start-page: 203 year: 2008 end-page: 219 ident: b79 article-title: Real-valued compact genetic algorithms for embedded microcontroller optimization publication-title: IEEE Trans. Evol. Comput. – volume: 3 start-page: 82 year: 1999 end-page: 102 ident: b86 article-title: Evolutionary programming made faster publication-title: Evol. Comput. IEEE Trans. – volume: 185 start-page: 903 year: 2016 end-page: 915 ident: b11 article-title: Methane/hydrogen fueling a spark-ignition engine for studying NO, CO and HC emissions with a research CFD code publication-title: Fuel – volume: 3 start-page: 109 year: 1990 end-page: 118 ident: b41 article-title: Probabilistic neural networks publication-title: Neural Netw. – volume: 233 issn: 0957-4174 year: 2023 ident: 10.1016/j.asoc.2024.112468_b67 article-title: An evolutionary ensemble convolutional neural network for fault diagnosis problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120678 – volume: 185 start-page: 903 year: 2016 ident: 10.1016/j.asoc.2024.112468_b11 article-title: Methane/hydrogen fueling a spark-ignition engine for studying NO, CO and HC emissions with a research CFD code publication-title: Fuel doi: 10.1016/j.fuel.2016.08.040 – volume: 56 start-page: 5545 issue: 6 year: 2023 ident: 10.1016/j.asoc.2024.112468_b63 article-title: A survey on ensemble learning under the era of deep learning publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10283-5 – volume: 33 start-page: 7245 issue: 23 year: 2008 ident: 10.1016/j.asoc.2024.112468_b6 article-title: Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean burn natural gas SI engine with hydrogen enrichment publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2008.09.016 – volume: 6 start-page: 2970 issn: 2169-3536 year: 2018 ident: 10.1016/j.asoc.2024.112468_b75 article-title: DE-RCO: Rotating crossover operator with multiangle searching strategy for adaptive differential evolution publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2786347 – volume: 25 start-page: 794 issue: 4 year: 2021 ident: 10.1016/j.asoc.2024.112468_b31 article-title: Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3064835 – volume: 48 start-page: 23308 issue: 60 year: 2023 ident: 10.1016/j.asoc.2024.112468_b17 article-title: Application of machine learning algorithms for predicting the engine characteristics of a wheat germ oil–Hydrogen fuelled dual fuel engine publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2022.11.101 – volume: 242 start-page: 1712 year: 2019 ident: 10.1016/j.asoc.2024.112468_b50 article-title: Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.03.041 – volume: 24 start-page: 123 issue: 2 year: 1996 ident: 10.1016/j.asoc.2024.112468_b38 article-title: Bagging predictors publication-title: Mach. Learn. doi: 10.1007/BF00058655 – volume: 12 start-page: 993 issue: 10 year: 1990 ident: 10.1016/j.asoc.2024.112468_b35 article-title: Neural network ensembles publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.58871 – volume: 6 start-page: 21 issue: 3 year: 2006 ident: 10.1016/j.asoc.2024.112468_b37 article-title: Ensemble based systems in decision making publication-title: IEEE Circuits Syst. Mag. doi: 10.1109/MCAS.2006.1688199 – volume: vol. 1025 year: 2018 ident: 10.1016/j.asoc.2024.112468_b43 article-title: Cascade forward neural network for time series prediction – volume: 51 start-page: 1565 year: 2015 ident: 10.1016/j.asoc.2024.112468_b55 article-title: Wagging for combining weighted one-class support vector machines publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.05.351 – volume: 22 start-page: 47 issn: 2210-6502 year: 2015 ident: 10.1016/j.asoc.2024.112468_b74 article-title: Anatomy of the fitness landscape for dense graph-colouring problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2015.01.005 – volume: 48 start-page: 39599 issue: 99 year: 2023 ident: 10.1016/j.asoc.2024.112468_b22 article-title: Efficacy of machine learning algorithms in estimating emissions in a dual fuel compression ignition engine operating on hydrogen and diesel publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2023.03.477 – volume: 15 start-page: 2201 issn: 1432-7643 year: 2011 ident: 10.1016/j.asoc.2024.112468_b77 article-title: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-chains publication-title: Soft Comput. doi: 10.1007/s00500-010-0647-2 – volume: 22 start-page: 4235 year: 2015 ident: 10.1016/j.asoc.2024.112468_b12 article-title: Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption publication-title: J. Cent. South Univ. doi: 10.1007/s11771-015-2972-1 – volume: 362 year: 2024 ident: 10.1016/j.asoc.2024.112468_b23 article-title: An enhanced automated machine learning model for optimizing cycle-to-cycle variation in hydrogen-enriched methanol engines publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.123019 – volume: 37 start-page: 89 issue: 1 year: 2011 ident: 10.1016/j.asoc.2024.112468_b1 article-title: Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2010.04.002 – volume: 19 start-page: 609 issue: 5 year: 2015 ident: 10.1016/j.asoc.2024.112468_b16 article-title: Meta-heuristic algorithms in car engine design: A literature survey publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2355174 – volume: 333 year: 2023 ident: 10.1016/j.asoc.2024.112468_b18 article-title: Machine learning algorithms for a diesel engine fuelled with biodiesel blends and hydrogen using LSTM networks publication-title: Fuel doi: 10.1016/j.fuel.2022.126292 – volume: 374 issn: 0045-7825 year: 2021 ident: 10.1016/j.asoc.2024.112468_b28 article-title: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113575 – volume: 40 start-page: 159 issn: 1573-0565 issue: 2 year: 2000 ident: 10.1016/j.asoc.2024.112468_b57 article-title: MultiBoosting: A technique for combining boosting and wagging publication-title: Mach. Learn. doi: 10.1023/A:1007659514849 – volume: 26 start-page: 467 year: 1997 ident: 10.1016/j.asoc.2024.112468_b78 article-title: Fast evolution strategies publication-title: Control Cybernet. – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 10.1016/j.asoc.2024.112468_b39 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 21 start-page: 1251 issue: 7 year: 2020 ident: 10.1016/j.asoc.2024.112468_b13 article-title: Exploring the potential of machine learning in reducing the computational time/expense and improving the reliability of engine optimization studies publication-title: Int. J. Engine Res. doi: 10.1177/1468087418808949 – volume: 81 start-page: 203 year: 2021 ident: 10.1016/j.asoc.2024.112468_b27 article-title: Surrogate optimization of deep neural networks for groundwater predictions publication-title: J. Global Optim. doi: 10.1007/s10898-020-00912-0 – volume: 13 start-page: 108 issue: 1 year: 2022 ident: 10.1016/j.asoc.2024.112468_b52 article-title: What an “Ehm” leaks about you: Mapping fillers into personality traits with quantum evolutionary feature selection algorithms publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2019.2930695 – volume: 51 start-page: 1565 year: 2015 ident: 10.1016/j.asoc.2024.112468_b60 article-title: Wagging for combining weighted one-class support vector machines publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.05.351 – volume: 58 start-page: 75 issn: 1568-4946 year: 2017 ident: 10.1016/j.asoc.2024.112468_b69 article-title: Considering diversity and accuracy simultaneously for ensemble pruning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.04.058 – volume: 116 start-page: 255 year: 2019 ident: 10.1016/j.asoc.2024.112468_b42 article-title: Feed-forward neural network training using sparse representation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.038 – start-page: 5128 year: 2016 ident: 10.1016/j.asoc.2024.112468_b49 article-title: Improving the performance of evolutionary engine calibration algorithms with principal component analysis – volume: 8 issue: 4 year: 2018 ident: 10.1016/j.asoc.2024.112468_b65 article-title: Ensemble learning: A survey publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1249 – volume: 7 start-page: 219 issue: 4 year: 2014 ident: 10.1016/j.asoc.2024.112468_b70 article-title: Improvement of the performance of the quantum-inspired evolutionary algorithms: structures, population, operators publication-title: Evol. Intell. – volume: 38 start-page: 64 year: 2014 ident: 10.1016/j.asoc.2024.112468_b4 article-title: The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.05.080 – year: 1975 ident: 10.1016/j.asoc.2024.112468_b84 – volume: 154 issn: 1568-4946 year: 2024 ident: 10.1016/j.asoc.2024.112468_b54 article-title: Evolutionary optimization of policy responses to COVID-19 pandemic via surrogate models publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.111359 – volume: 52 start-page: 6362 issue: 10 year: 2022 ident: 10.1016/j.asoc.2024.112468_b68 article-title: A novel ensemble machine learning and an evolutionary algorithm in modeling the COVID-19 epidemic and optimizing government policies publication-title: IEEE Trans. Syst. Man Cybern. Syst. doi: 10.1109/TSMC.2022.3143955 – volume: 3 start-page: 82 issue: 2 year: 1999 ident: 10.1016/j.asoc.2024.112468_b86 article-title: Evolutionary programming made faster publication-title: Evol. Comput. IEEE Trans. doi: 10.1109/4235.771163 – ident: 10.1016/j.asoc.2024.112468_b58 – volume: 57 start-page: 1553 year: 2018 ident: 10.1016/j.asoc.2024.112468_b26 article-title: Surrogate-based optimization with clustering-based space exploration for expensive multimodal problems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-017-1826-x – volume: 562 start-page: 414 issn: 0020-0255 year: 2021 ident: 10.1016/j.asoc.2024.112468_b32 article-title: Surrogate models in evolutionary single-objective optimization: A new taxonomy and experimental study publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.03.002 – volume: 142 start-page: E4015010 issue: 2 year: 2015 ident: 10.1016/j.asoc.2024.112468_b7 article-title: Effects of hydrogen addition on automotive lean-burn natural gas engines: critical review publication-title: J. Energy Eng. doi: 10.1061/(ASCE)EY.1943-7897.0000319 – volume: 263 year: 2023 ident: 10.1016/j.asoc.2024.112468_b19 article-title: Multi-objective optimization of a hydrogen-fueled wankel rotary engine based on machine learning and genetic algorithm publication-title: Energy doi: 10.1016/j.energy.2022.125961 – volume: 21 start-page: 5777 issue: 17 year: 2021 ident: 10.1016/j.asoc.2024.112468_b66 article-title: A robust UWSN handover prediction system using ensemble learning publication-title: Sensors doi: 10.3390/s21175777 – volume: 29 start-page: 1527 issue: 14 year: 2004 ident: 10.1016/j.asoc.2024.112468_b8 article-title: Internal combustion engines fueled by natural gas–hydrogen mixtures publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2004.01.018 – volume: 2 start-page: 458 issue: 4 year: 1991 ident: 10.1016/j.asoc.2024.112468_b40 article-title: Learning vector quantization for the probabilistic neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.88165 – volume: 310 year: 2022 ident: 10.1016/j.asoc.2024.112468_b20 article-title: Comparison and implementation of machine learning models for predicting the combustion phases of hydrogen-enriched Wankel rotary engines publication-title: Fuel doi: 10.1016/j.fuel.2021.122371 – volume: 303 year: 2021 ident: 10.1016/j.asoc.2024.112468_b51 article-title: Computational optimization of CH4/H2/CO blends in a spark-ignition engine using quasi-dimensional combustion model publication-title: Fuel doi: 10.1016/j.fuel.2021.121281 – start-page: 453 year: 2011 ident: 10.1016/j.asoc.2024.112468_b82 article-title: On oblique random forests doi: 10.1007/978-3-642-23783-6_29 – volume: 16 start-page: 980 issue: 8 year: 2004 ident: 10.1016/j.asoc.2024.112468_b59 article-title: Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2004.29 – year: 1966 ident: 10.1016/j.asoc.2024.112468_b85 – volume: 22 start-page: 578 issn: 1089-778X issue: 4 year: 2018 ident: 10.1016/j.asoc.2024.112468_b76 article-title: A level-based learning swarm optimizer for large-scale optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2743016 – volume: 25 start-page: 1117 year: 1988 ident: 10.1016/j.asoc.2024.112468_b53 article-title: Combustion engine fundamentals publication-title: 1© Edição. Estados Unidos – volume: 2 start-page: 568 issue: 6 year: 1991 ident: 10.1016/j.asoc.2024.112468_b47 article-title: A general regression neural network publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.97934 – volume: 37 start-page: 11495 issue: 15 year: 2012 ident: 10.1016/j.asoc.2024.112468_b10 article-title: Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2012.04.012 – volume: 140 issue: 4 year: 2018 ident: 10.1016/j.asoc.2024.112468_b25 article-title: Computational intelligence nonmodel-based calibration approach for internal combustion engines publication-title: J. Dyn. Syst. Meas. Control doi: 10.1115/1.4037835 – volume: 236 issn: 0196-8904 year: 2021 ident: 10.1016/j.asoc.2024.112468_b29 article-title: Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2021.114063 – year: 2022 ident: 10.1016/j.asoc.2024.112468_b61 article-title: BoostTree and BoostForest for ensemble learning publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2022.3227370 – volume: 36 start-page: 105 issue: 1 year: 1999 ident: 10.1016/j.asoc.2024.112468_b56 article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants publication-title: Mach. Learn. doi: 10.1023/A:1007515423169 – volume: 88 year: 2022 ident: 10.1016/j.asoc.2024.112468_b14 article-title: Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2021.100967 – start-page: 165 year: 2009 ident: 10.1016/j.asoc.2024.112468_b45 article-title: kNN: k-nearest neighbors – volume: 12 start-page: 203 issue: 2 year: 2008 ident: 10.1016/j.asoc.2024.112468_b79 article-title: Real-valued compact genetic algorithms for embedded microcontroller optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.896689 – volume: 48 start-page: 608 issue: 2 year: 2007 ident: 10.1016/j.asoc.2024.112468_b5 article-title: Spark ignition natural gas engines:A review publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2006.05.023 – volume: 8 start-page: 54 issue: 1 year: 1997 ident: 10.1016/j.asoc.2024.112468_b33 article-title: Parallel consensual neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.554191 – volume: 148 start-page: 3155 issue: 9 year: 2023 ident: 10.1016/j.asoc.2024.112468_b15 article-title: Prediction of IC engine performance and emission parameters using machine learning: A review publication-title: J. Therm. Anal. Calorim. doi: 10.1007/s10973-022-11896-2 – year: 2012 ident: 10.1016/j.asoc.2024.112468_b44 – volume: 205 issn: 0950-7051 year: 2020 ident: 10.1016/j.asoc.2024.112468_b30 article-title: Multi-surrogate multi-tasking optimization of expensive problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106262 – volume: 3 start-page: 109 issue: 1 year: 1990 ident: 10.1016/j.asoc.2024.112468_b41 article-title: Probabilistic neural networks publication-title: Neural Netw. doi: 10.1016/0893-6080(90)90049-Q – volume: 168 start-page: 877 year: 2017 ident: 10.1016/j.asoc.2024.112468_b48 article-title: Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors publication-title: Chemosphere doi: 10.1016/j.chemosphere.2016.10.122 – volume: 45 start-page: 2165 issue: 10 year: 2015 ident: 10.1016/j.asoc.2024.112468_b83 article-title: Oblique decision tree ensemble via multisurface proximal support vector machine publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2366468 – volume: 24 start-page: 49 issue: 1 year: 1996 ident: 10.1016/j.asoc.2024.112468_b34 article-title: Stacked regressions publication-title: Mach. Learn. doi: 10.1007/BF00117832 – start-page: 1 year: 2016 ident: 10.1016/j.asoc.2024.112468_b46 article-title: Pattern recognition neural network as a tool for pest birds detection – volume: 45 start-page: 322 issue: 1 year: 2020 ident: 10.1016/j.asoc.2024.112468_b24 article-title: Optimization and study of performance parameters in an engine fueled with hydrogen publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.10.250 – volume: 100 start-page: 144 year: 2017 ident: 10.1016/j.asoc.2024.112468_b64 article-title: Superpixel-based online wagging one-class ensemble for feature selection in foreground/background separation publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.10.034 – volume: 9 start-page: 303 issue: 3 year: 2005 ident: 10.1016/j.asoc.2024.112468_b71 article-title: Evolutionary optimization in uncertain environments-a survey publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.846356 – ident: 10.1016/j.asoc.2024.112468_b3 – volume: 26 start-page: 805 year: 2013 ident: 10.1016/j.asoc.2024.112468_b2 article-title: Research and development of natural-gas fueled engines in Iran publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.05.048 – year: 2005 ident: 10.1016/j.asoc.2024.112468_b36 – volume: 26 start-page: 2120 issue: 9 year: 2014 ident: 10.1016/j.asoc.2024.112468_b81 article-title: Clustering-based ensembles as an alternative to stacking publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.49 – year: 1995 ident: 10.1016/j.asoc.2024.112468_b87 – volume: 33 start-page: 18 year: 2017 ident: 10.1016/j.asoc.2024.112468_b72 article-title: Noisy evolutionary optimization algorithms–a comprehensive survey publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2016.09.002 – volume: 103 year: 2001 ident: 10.1016/j.asoc.2024.112468_b73 article-title: SPEA2: Improving the strength Pareto evolutionary algorithm publication-title: TIK-report – volume: 160 issn: 0957-4174 year: 2020 ident: 10.1016/j.asoc.2024.112468_b80 article-title: Probabilistic optimization algorithms for real-coded problems and its application in Latin hypercube problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113589 – volume: 347 year: 2023 ident: 10.1016/j.asoc.2024.112468_b21 article-title: Computational analysis of performances for a hydrogen enriched compressed natural gas engine’by advanced machine learning algorithms publication-title: Fuel doi: 10.1016/j.fuel.2023.128244 – volume: 80 start-page: 1458 year: 2017 ident: 10.1016/j.asoc.2024.112468_b9 article-title: Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines-A comprehensive review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.05.061 – volume: 40 start-page: 159 year: 2000 ident: 10.1016/j.asoc.2024.112468_b62 article-title: Multiboosting: A technique for combining boosting and wagging publication-title: Mach. Learn. doi: 10.1023/A:1007659514849 |
SSID | ssj0016928 |
Score | 2.435369 |
Snippet | The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC)... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 112468 |
SubjectTerms | Ensemble learning Evolutionary algorithms Hydrogen Methane Spark ignition engine Surrogate models |
Title | An ensemble learning algorithm for optimization of spark ignition engine performance fuelled with methane/hydrogen blends |
URI | https://dx.doi.org/10.1016/j.asoc.2024.112468 |
Volume | 168 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1568-4946 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1568-4946 databaseCode: .~1 dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 1568-4946 databaseCode: ACRLP dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 1568-4946 databaseCode: AIKHN dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0016928 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1568-4946 databaseCode: AKRWK dateStart: 20010601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016928 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT8IwGG8IXrz4NuKD9ODNzMHouu5IiARfxKgk3JauawGFjSAcuPi3-31b5yMxHrxsWdNmy6_d73vkexByjhzoGSUd2UpiBzTi2Al95TtNeOTcJJJpTBS-7_PegN0M_WGFdMpcGAyrtNxfcHrO1nbEtWi688nEfQLLQ7CQcZBJIKQ8tNux-hec6cv3zzCPJg_z_qo42cHZNnGmiPGSgADYiB7DTBqG5VZ_E07fBE53h2xZTZG2i4_ZJRWd7pHtsgsDtT_lPlm3Uwq2qJ7FU01tE4gRldNRBnb_eEZBK6UZEMPMZlzSzFCgkcUrneSRQxkux6KEdP6VREDNCj36CUU_LcU20zLV7nidLDI4cRRelSZvB2TQvXru9BzbUMFRXugvHRBYIpBBK5FCCaMMB3MpBoMlTBqK-0YFgVG6KWACXFuBYU0VK6aZF4TKM6BrHJJqmqX6iFDYRF9g0m0rbDAjYyEkF4lntK9wgNfIRYlkNC_qZkRlQNlLhLhHiHtU4F4jfgl29GP3IyD2P9Yd_3PdCdn0sI9v7ko5JdXlYqXPQLlYxvX89NTJRrvzePeA9-vbXv8DEk3S_Q |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQDO3Sd1X69NCtioBgO86IUCtaHktB6hY5jg20kCAKA_--d8TpQ6o6dImUyKdEX5zv7nPufITcIgf6VitPNZPYg4g49kKuudeAUyFsopjBQuH-QHRG7OmFv5RIu6iFwbRKx_05p2_Z2l2pOTRri-m09gzKQ7KQCfBJ4KR80O0VxoGTy6TSeux2Bp8_E0S4bbGK4z00cLUzeZqXAhBAJvoMi2kY7rj6m3_65nMeDsieCxZpK3-eQ1Iy6RHZLxoxUPddHpNNK6UgR808nhnq-kCMqZqNM5D-kzmFwJRmwA1zV3RJM0uBSZZvdLpNHsrQHPclpIuvOgJq17ion1BcqqXYaVqlpjbZJMsMJh2FW6XJ-wkZPdwP2x3P9VTwtB_ylQf4yEAFzURJLa22AhRTDJolTOpacKuDwGrTkDAAjs3AsoaONTPMD0LtWwg3Tkk5zVJzRii8Ry6x7rYZ1plVsZRKyMS3hmu8IKrkrkAyWuRbZ0RFTtlrhLhHiHuU414lvAA7-jEBIuD2P-zO_2l3Q3Y6w34v6j0Ouhdk18e2vtuVlUtSXi3X5gpijVV87ebSB6t01BM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+learning+algorithm+for+optimization+of+spark+ignition+engine+performance+fuelled+with+methane%2Fhydrogen+blends&rft.jtitle=Applied+soft+computing&rft.au=Tayarani-N.%2C+Mohammad-H.&rft.au=Paykani%2C+Amin&rft.date=2025-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=168&rft_id=info:doi/10.1016%2Fj.asoc.2024.112468&rft.externalDocID=S1568494624012420 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |