An ensemble learning algorithm for optimization of spark ignition engine performance fuelled with methane/hydrogen blends

The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC) engines. One promising option is the utilization of methane/hydrogen blends in Spark-Ignition (SI) engines due to their potential to reduce Green Ho...

Full description

Saved in:
Bibliographic Details
Published inApplied soft computing Vol. 168; p. 112468
Main Authors Tayarani-N., Mohammad-H., Paykani, Amin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2025
Subjects
Online AccessGet full text
ISSN1568-4946
DOI10.1016/j.asoc.2024.112468

Cover

Abstract The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC) engines. One promising option is the utilization of methane/hydrogen blends in Spark-Ignition (SI) engines due to their potential to reduce Green House Gas (GHG) emissions and improve engine performance. However, the optimal operation of such an engine is challenging due to the interdependence of multiple conflicting objectives, including Brake Mean Effective Pressure (BMEP), Brake Specific Fuel Consumption (BSFC), and nitrogen oxide (NOx) emissions. This paper proposes an evolutionary optimization algorithm that employs a surrogate model as a fitness function to optimize methane/hydrogen SI engine performance and emissions. To create the surrogate model, we propose a novel ensemble learning algorithm that consists of several base learners. This paper employs ten different learning algorithms diversified via the Wagging method to create a pool of base-learner algorithms. This paper proposes a combinatorial evolutionary pruning algorithm to select an optimal subset of learning algorithms from a pool of base learners for the final ensemble algorithm. Once the base learners are designed, they are incorporated into an ensemble, where their outputs are aggregated using a weighted voting scheme. The weights of these base learners are optimized through a gradient descent algorithm. However, when optimizing a problem using surrogate models, the fitness function is subject to approximation uncertainty. To address this issue, this paper introduces an uncertainty reduction algorithm that performs averaging within a sphere around each solution. Experiments are performed to compare the proposed ensemble learning algorithm to the classical learning algorithms and state-of-the-art ensemble algorithms. Also, the proposed smoothing algorithm is compared with the state-of-the-art evolutionary algorithms. Experimental studies suggest that the proposed algorithms outperform the existing algorithms. •An ensemble learning algorithm is proposed to build a surrogate model of a methane/hydrogen spark ignition engine performance.•Evolutionary algorithms are used to design a wagging algorithm and create the base learners.•A combinatorial evolutionary algorithm is presented to find the optimal sef of base learners.•An uncertainty reduction algorithm in evolutionary algorithms is proposed for the optimization process.•Evolutionary Algorithms are employed to optimize the engine parameters via the surrogate model.
AbstractList The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC) engines. One promising option is the utilization of methane/hydrogen blends in Spark-Ignition (SI) engines due to their potential to reduce Green House Gas (GHG) emissions and improve engine performance. However, the optimal operation of such an engine is challenging due to the interdependence of multiple conflicting objectives, including Brake Mean Effective Pressure (BMEP), Brake Specific Fuel Consumption (BSFC), and nitrogen oxide (NOx) emissions. This paper proposes an evolutionary optimization algorithm that employs a surrogate model as a fitness function to optimize methane/hydrogen SI engine performance and emissions. To create the surrogate model, we propose a novel ensemble learning algorithm that consists of several base learners. This paper employs ten different learning algorithms diversified via the Wagging method to create a pool of base-learner algorithms. This paper proposes a combinatorial evolutionary pruning algorithm to select an optimal subset of learning algorithms from a pool of base learners for the final ensemble algorithm. Once the base learners are designed, they are incorporated into an ensemble, where their outputs are aggregated using a weighted voting scheme. The weights of these base learners are optimized through a gradient descent algorithm. However, when optimizing a problem using surrogate models, the fitness function is subject to approximation uncertainty. To address this issue, this paper introduces an uncertainty reduction algorithm that performs averaging within a sphere around each solution. Experiments are performed to compare the proposed ensemble learning algorithm to the classical learning algorithms and state-of-the-art ensemble algorithms. Also, the proposed smoothing algorithm is compared with the state-of-the-art evolutionary algorithms. Experimental studies suggest that the proposed algorithms outperform the existing algorithms. •An ensemble learning algorithm is proposed to build a surrogate model of a methane/hydrogen spark ignition engine performance.•Evolutionary algorithms are used to design a wagging algorithm and create the base learners.•A combinatorial evolutionary algorithm is presented to find the optimal sef of base learners.•An uncertainty reduction algorithm in evolutionary algorithms is proposed for the optimization process.•Evolutionary Algorithms are employed to optimize the engine parameters via the surrogate model.
ArticleNumber 112468
Author Tayarani-N., Mohammad-H.
Paykani, Amin
Author_xml – sequence: 1
  givenname: Mohammad-H.
  orcidid: 0000-0002-5999-2134
  surname: Tayarani-N.
  fullname: Tayarani-N., Mohammad-H.
  email: mo_tayarani@yahoo.com
  organization: University of Hertfordshire, College Lane, Hatfield, AL10 9AB, United Kingdom
– sequence: 2
  givenname: Amin
  surname: Paykani
  fullname: Paykani, Amin
  organization: School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, United Kingdom
BookMark eNp9kE1OwzAQhb0oEm3hAqx8gaSx48SOxKaq-KlUiQ2sLdcZpy6JHdkBVE6PS1mzmZFG772Z-RZo5rwDhO5IkZOC1KtjrqLXOS0oywmhrBYzNCdVLTLWsPoaLWI8FknYUDFHp7XD4CIM-x5wDyo46zqs-s4HOx0GbHzAfpzsYL_VZL3D3uA4qvCObefs7wRcZx3gEUISD8ppwOYD-h5a_JUy8ADTQTlYHU5t8B04nFa5Nt6gK6P6CLd_fYneHh9eN8_Z7uVpu1nvMk2basoYKQVXvGyV0MJoU1PB94JXTVvoujKac6OBiCRIteSGEb3XDBjljaaGs3KJ6CVXBx9jACPHYAcVTpIU8gxMHuUZmDwDkxdgyXR_MUG67NNCkFFbSK-1NoCeZOvtf_YfbQx7nA
Cites_doi 10.1016/j.eswa.2023.120678
10.1016/j.fuel.2016.08.040
10.1007/s10462-022-10283-5
10.1016/j.ijhydene.2008.09.016
10.1109/ACCESS.2017.2786347
10.1109/TEVC.2021.3064835
10.1016/j.ijhydene.2022.11.101
10.1016/j.apenergy.2019.03.041
10.1007/BF00058655
10.1109/34.58871
10.1109/MCAS.2006.1688199
10.1016/j.procs.2015.05.351
10.1016/j.swevo.2015.01.005
10.1016/j.ijhydene.2023.03.477
10.1007/s00500-010-0647-2
10.1007/s11771-015-2972-1
10.1016/j.apenergy.2024.123019
10.1016/j.pecs.2010.04.002
10.1109/TEVC.2014.2355174
10.1016/j.fuel.2022.126292
10.1016/j.cma.2020.113575
10.1023/A:1007659514849
10.1109/34.709601
10.1177/1468087418808949
10.1007/s10898-020-00912-0
10.1109/TAFFC.2019.2930695
10.1016/j.asoc.2017.04.058
10.1016/j.eswa.2018.08.038
10.1002/widm.1249
10.1016/j.rser.2014.05.080
10.1016/j.asoc.2024.111359
10.1109/TSMC.2022.3143955
10.1109/4235.771163
10.1007/s00158-017-1826-x
10.1016/j.ins.2021.03.002
10.1061/(ASCE)EY.1943-7897.0000319
10.1016/j.energy.2022.125961
10.3390/s21175777
10.1016/j.ijhydene.2004.01.018
10.1109/72.88165
10.1016/j.fuel.2021.122371
10.1016/j.fuel.2021.121281
10.1007/978-3-642-23783-6_29
10.1109/TKDE.2004.29
10.1109/TEVC.2017.2743016
10.1109/72.97934
10.1016/j.ijhydene.2012.04.012
10.1115/1.4037835
10.1016/j.enconman.2021.114063
10.1109/TPAMI.2022.3227370
10.1023/A:1007515423169
10.1016/j.pecs.2021.100967
10.1109/TEVC.2007.896689
10.1016/j.enconman.2006.05.023
10.1109/72.554191
10.1007/s10973-022-11896-2
10.1016/j.knosys.2020.106262
10.1016/0893-6080(90)90049-Q
10.1016/j.chemosphere.2016.10.122
10.1109/TCYB.2014.2366468
10.1007/BF00117832
10.1016/j.ijhydene.2019.10.250
10.1016/j.patrec.2017.10.034
10.1109/TEVC.2005.846356
10.1016/j.rser.2013.05.048
10.1109/TKDE.2013.49
10.1016/j.swevo.2016.09.002
10.1016/j.eswa.2020.113589
10.1016/j.fuel.2023.128244
10.1016/j.rser.2017.05.061
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.asoc.2024.112468
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2024_112468
S1568494624012420
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
AATTM
AAYWO
AAYXX
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c295t-41387a73da8c8fcf6287b8759d0c65fc77fce1873de1837f41cbc4e4279c2f743
IEDL.DBID .~1
ISSN 1568-4946
IngestDate Tue Jul 01 01:50:27 EDT 2025
Sat Dec 21 16:00:34 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Methane
Spark ignition engine
Evolutionary algorithms
Surrogate models
Ensemble learning
Hydrogen
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-41387a73da8c8fcf6287b8759d0c65fc77fce1873de1837f41cbc4e4279c2f743
ORCID 0000-0002-5999-2134
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1568494624012420
ParticipantIDs crossref_primary_10_1016_j_asoc_2024_112468
elsevier_sciencedirect_doi_10_1016_j_asoc_2024_112468
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhao, Wu, Huang, Yuan, Zhang, Peng, Shi (b61) 2022
Kuncheva (b36) 2005
Korakianitis, Namasivayam, Crookes (b1) 2011; 37
Loboda, Feldshteyn, Ponomaryov (b44) 2012
Cho, He (b5) 2007; 48
Ma, Ding, Wang, Wang, Wang, Zhao (b6) 2008; 33
Kavuri, Kokjohn (b13) 2020; 21
Wang, Ji, Shi, Yang, Wang, Ge, Chang, Meng, Wang (b19) 2023; 263
Specht (b47) 1991; 2
Burrascano (b40) 1991; 2
Breiman (b34) 1996; 24
Najaran (b67) 2023; 233
Krawczyk, Woźniak (b55) 2015; 51
Tong, Huang, Minku, Yao (b32) 2021; 562
Dai, Ye, Liu (b69) 2017; 58
Karunamurthy, Janvekar, Palaniappan, Adhitya, Lokeswar, Harish (b15) 2023; 148
Zhang, Suganthan (b83) 2015; 45
Akansu, Dulger, Kahraman, Veziroglu (b8) 2004; 29
Kakaee, Paykani (b2) 2013; 26
Zhu, He, Xuan, Shao (b23) 2024; 362
Kakaee, Rahnama, Paykani, Mashadi (b12) 2015; 22
Moreno, Muñoz, Arroyo, Magén, Monné, Suelves (b10) 2012; 37
Warsito, Santoso, Suparti, Yasin (b43) 2018; vol. 1025
Wang, Ji, Su, Shi, Ge, Yang, Wang (b20) 2022; 310
Rao, Chen, Liu, Ma (b21) 2023; 347
Tayarani-N. (b54) 2024; 154
Sagi, Rokach (b65) 2018; 8
Rakshit, Konar, Das (b72) 2017; 33
Molina, Lozano, Sánchez, Herrera (b77) 2011; 15
Bai, Shanmugaiah, Sonthalia, Devarajan, Varuvel (b17) 2023; 48
Dong, Song, Wang, Dong (b26) 2018; 57
Dolezel, Skrabanek, Gago (b46) 2016
Webb (b62) 2000; 40
P. Rahnama, A. Paykani, Numerical study of reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine using 3D-CFD coupled with chemical kinetics.
Ma, Li, Tayarani, Lu, Xu, Yao (b25) 2018; 140
Polikar (b37) 2006; 6
Breiman (b38) 1996; 24
Specht (b41) 1990; 3
Benediktsson, Sveinsson, Ersoy, Swain (b33) 1997; 8
Yao, Liu, Lin (b86) 1999; 3
Aliramezani, Koch, Shahbakhti (b14) 2022; 88
Heywood (b53) 1988; 25
Hansen, Salamon (b35) 1990; 12
Lye, Mishra, Ray, Chandrashekar (b28) 2021; 374
Fogel, Owens, Walsh (b85) 1966
Sofianopoulos, Assanis, Mamalis (b7) 2015; 142
Mehra, Duan, Juknelevičius, Ma, Li (b9) 2017; 80
Zareei, Rohani (b24) 2020; 45
Sabour, Movahed (b48) 2017; 168
Paykani, Frouzakis, Boulouchos (b50) 2019; 242
Müller, Park, Sahu, Varadharajan, Arora, Faybishenko, Agarwal (b27) 2021; 81
Jurek, Bi, Wu, Nugent (b81) 2014; 26
Li, Xu, Lu, Du, Huang (b29) 2021; 236
Tayarani-Najaran (b68) 2022; 52
Zitzler, Laumanns, Thiele (b73) 2001; 103
Zhang, Li, Sekar, Elgendi, Krishnamoorthy, Xia, Matharasi (b18) 2023; 333
Paykani, Frouzakis, Schürch, Perini, Boulouchos (b51) 2021; 303
Tayarani-N., Yao, Xu (b16) 2015; 19
Schwefel (b87) 1995
Tayarani-N, Akbarzadeh-T (b70) 2014; 7
Ji, Zhang, Gong, Sun (b31) 2021; 25
Bauer, Kohavi (b56) 1999; 36
Krawczyk, Woźniak (b60) 2015; 51
Kakaee, Paykani, Ghajar (b4) 2014; 38
Yao, Liu (b78) 1997; 26
Jin, Branke (b71) 2005; 9
Webb, Zheng (b59) 2004; 16
Deng, Wang, Qiao, Zhang (b75) 2018; 6
Yang, Chen, Deng, Li, Gu, Zhang (b76) 2018; 22
Najaran, Tootounchi (b80) 2020; 160
Ho (b39) 1998; 20
Sugumaran, Thangavel, Vijayaragavan, Subramanian, JS, Varuvel (b22) 2023; 48
Silva, Bouwmans, Frélicot (b64) 2017; 100
Yang, Ma (b42) 2019; 116
Tayarani, Esposito, Vinciarelli (b52) 2022; 13
J.R. Quinlan, et al., Bagging, boosting, and C4. 5, in: AAAI/IAAI, Vol. 1, 1996, pp. 725–730.
Kosmadakis, Rakopoulos, Rakopoulos (b11) 2016; 185
Steinbach, Tan (b45) 2009
Yang, Lv, Chen (b63) 2023; 56
Mininno, Cupertino, Naso (b79) 2008; 12
Tayarani-N, Bennett, Xu, Yao (b49) 2016
Eldesouky, Bekhit, Fathalla, Salah, Ali (b66) 2021; 21
Tayarani-N., Prügel-Bennett (b74) 2015; 22
Menze, Kelm, Splitthoff, Koethe, Hamprecht (b82) 2011
Webb (b57) 2000; 40
Holland (b84) 1975
Liao, Sun, Zhang, Jin (b30) 2020; 205
Akansu (10.1016/j.asoc.2024.112468_b8) 2004; 29
Mehra (10.1016/j.asoc.2024.112468_b9) 2017; 80
Zhu (10.1016/j.asoc.2024.112468_b23) 2024; 362
Steinbach (10.1016/j.asoc.2024.112468_b45) 2009
Krawczyk (10.1016/j.asoc.2024.112468_b55) 2015; 51
Silva (10.1016/j.asoc.2024.112468_b64) 2017; 100
Ma (10.1016/j.asoc.2024.112468_b6) 2008; 33
Müller (10.1016/j.asoc.2024.112468_b27) 2021; 81
Dolezel (10.1016/j.asoc.2024.112468_b46) 2016
Tayarani-N. (10.1016/j.asoc.2024.112468_b74) 2015; 22
Specht (10.1016/j.asoc.2024.112468_b41) 1990; 3
Tayarani (10.1016/j.asoc.2024.112468_b52) 2022; 13
Najaran (10.1016/j.asoc.2024.112468_b80) 2020; 160
Li (10.1016/j.asoc.2024.112468_b29) 2021; 236
Ma (10.1016/j.asoc.2024.112468_b25) 2018; 140
Rao (10.1016/j.asoc.2024.112468_b21) 2023; 347
Tong (10.1016/j.asoc.2024.112468_b32) 2021; 562
Yang (10.1016/j.asoc.2024.112468_b63) 2023; 56
Zareei (10.1016/j.asoc.2024.112468_b24) 2020; 45
Yao (10.1016/j.asoc.2024.112468_b78) 1997; 26
Burrascano (10.1016/j.asoc.2024.112468_b40) 1991; 2
Wang (10.1016/j.asoc.2024.112468_b19) 2023; 263
Tayarani-N (10.1016/j.asoc.2024.112468_b70) 2014; 7
Bauer (10.1016/j.asoc.2024.112468_b56) 1999; 36
Menze (10.1016/j.asoc.2024.112468_b82) 2011
Fogel (10.1016/j.asoc.2024.112468_b85) 1966
Kakaee (10.1016/j.asoc.2024.112468_b12) 2015; 22
Zhang (10.1016/j.asoc.2024.112468_b18) 2023; 333
Krawczyk (10.1016/j.asoc.2024.112468_b60) 2015; 51
Webb (10.1016/j.asoc.2024.112468_b59) 2004; 16
Tayarani-N. (10.1016/j.asoc.2024.112468_b54) 2024; 154
Sugumaran (10.1016/j.asoc.2024.112468_b22) 2023; 48
Webb (10.1016/j.asoc.2024.112468_b62) 2000; 40
Hansen (10.1016/j.asoc.2024.112468_b35) 1990; 12
Molina (10.1016/j.asoc.2024.112468_b77) 2011; 15
Kosmadakis (10.1016/j.asoc.2024.112468_b11) 2016; 185
Korakianitis (10.1016/j.asoc.2024.112468_b1) 2011; 37
Eldesouky (10.1016/j.asoc.2024.112468_b66) 2021; 21
Deng (10.1016/j.asoc.2024.112468_b75) 2018; 6
Schwefel (10.1016/j.asoc.2024.112468_b87) 1995
Kavuri (10.1016/j.asoc.2024.112468_b13) 2020; 21
Heywood (10.1016/j.asoc.2024.112468_b53) 1988; 25
Karunamurthy (10.1016/j.asoc.2024.112468_b15) 2023; 148
Yang (10.1016/j.asoc.2024.112468_b76) 2018; 22
10.1016/j.asoc.2024.112468_b58
Tayarani-N. (10.1016/j.asoc.2024.112468_b16) 2015; 19
Specht (10.1016/j.asoc.2024.112468_b47) 1991; 2
Moreno (10.1016/j.asoc.2024.112468_b10) 2012; 37
Breiman (10.1016/j.asoc.2024.112468_b38) 1996; 24
Warsito (10.1016/j.asoc.2024.112468_b43) 2018; vol. 1025
Webb (10.1016/j.asoc.2024.112468_b57) 2000; 40
Loboda (10.1016/j.asoc.2024.112468_b44) 2012
Zhao (10.1016/j.asoc.2024.112468_b61) 2022
Sagi (10.1016/j.asoc.2024.112468_b65) 2018; 8
Tayarani-Najaran (10.1016/j.asoc.2024.112468_b68) 2022; 52
Bai (10.1016/j.asoc.2024.112468_b17) 2023; 48
Kuncheva (10.1016/j.asoc.2024.112468_b36) 2005
Dong (10.1016/j.asoc.2024.112468_b26) 2018; 57
Breiman (10.1016/j.asoc.2024.112468_b34) 1996; 24
Sofianopoulos (10.1016/j.asoc.2024.112468_b7) 2015; 142
Wang (10.1016/j.asoc.2024.112468_b20) 2022; 310
Jin (10.1016/j.asoc.2024.112468_b71) 2005; 9
Holland (10.1016/j.asoc.2024.112468_b84) 1975
Paykani (10.1016/j.asoc.2024.112468_b51) 2021; 303
Mininno (10.1016/j.asoc.2024.112468_b79) 2008; 12
10.1016/j.asoc.2024.112468_b3
Yang (10.1016/j.asoc.2024.112468_b42) 2019; 116
Kakaee (10.1016/j.asoc.2024.112468_b2) 2013; 26
Benediktsson (10.1016/j.asoc.2024.112468_b33) 1997; 8
Zhang (10.1016/j.asoc.2024.112468_b83) 2015; 45
Ji (10.1016/j.asoc.2024.112468_b31) 2021; 25
Liao (10.1016/j.asoc.2024.112468_b30) 2020; 205
Ho (10.1016/j.asoc.2024.112468_b39) 1998; 20
Lye (10.1016/j.asoc.2024.112468_b28) 2021; 374
Sabour (10.1016/j.asoc.2024.112468_b48) 2017; 168
Polikar (10.1016/j.asoc.2024.112468_b37) 2006; 6
Jurek (10.1016/j.asoc.2024.112468_b81) 2014; 26
Dai (10.1016/j.asoc.2024.112468_b69) 2017; 58
Yao (10.1016/j.asoc.2024.112468_b86) 1999; 3
Tayarani-N (10.1016/j.asoc.2024.112468_b49) 2016
Cho (10.1016/j.asoc.2024.112468_b5) 2007; 48
Paykani (10.1016/j.asoc.2024.112468_b50) 2019; 242
Zitzler (10.1016/j.asoc.2024.112468_b73) 2001; 103
Aliramezani (10.1016/j.asoc.2024.112468_b14) 2022; 88
Najaran (10.1016/j.asoc.2024.112468_b67) 2023; 233
Rakshit (10.1016/j.asoc.2024.112468_b72) 2017; 33
Kakaee (10.1016/j.asoc.2024.112468_b4) 2014; 38
References_xml – volume: 19
  start-page: 609
  year: 2015
  end-page: 629
  ident: b16
  article-title: Meta-heuristic algorithms in car engine design: A literature survey
  publication-title: IEEE Trans. Evol. Comput.
– year: 1975
  ident: b84
  article-title: Adaption in Natural and Artificial Systems
– volume: 12
  start-page: 993
  year: 1990
  end-page: 1001
  ident: b35
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 38
  start-page: 64
  year: 2014
  end-page: 78
  ident: b4
  article-title: The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines
  publication-title: Renew. Sustain. Energy Rev.
– volume: 40
  start-page: 159
  year: 2000
  end-page: 196
  ident: b62
  article-title: Multiboosting: A technique for combining boosting and wagging
  publication-title: Mach. Learn.
– volume: 310
  year: 2022
  ident: b20
  article-title: Comparison and implementation of machine learning models for predicting the combustion phases of hydrogen-enriched Wankel rotary engines
  publication-title: Fuel
– volume: 168
  start-page: 877
  year: 2017
  end-page: 884
  ident: b48
  article-title: Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors
  publication-title: Chemosphere
– reference: J.R. Quinlan, et al., Bagging, boosting, and C4. 5, in: AAAI/IAAI, Vol. 1, 1996, pp. 725–730.
– reference: P. Rahnama, A. Paykani, Numerical study of reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine using 3D-CFD coupled with chemical kinetics.
– year: 2005
  ident: b36
  article-title: Diversity in Multiple Classifier Systems
– volume: 36
  start-page: 105
  year: 1999
  end-page: 139
  ident: b56
  article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
  publication-title: Mach. Learn.
– volume: 88
  year: 2022
  ident: b14
  article-title: Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions
  publication-title: Prog. Energy Combust. Sci.
– volume: 347
  year: 2023
  ident: b21
  article-title: Computational analysis of performances for a hydrogen enriched compressed natural gas engine’by advanced machine learning algorithms
  publication-title: Fuel
– volume: 56
  start-page: 5545
  year: 2023
  end-page: 5589
  ident: b63
  article-title: A survey on ensemble learning under the era of deep learning
  publication-title: Artif. Intell. Rev.
– start-page: 5128
  year: 2016
  end-page: 5137
  ident: b49
  article-title: Improving the performance of evolutionary engine calibration algorithms with principal component analysis
  publication-title: 2016 IEEE Congress on Evolutionary Computation
– volume: 21
  start-page: 1251
  year: 2020
  end-page: 1270
  ident: b13
  article-title: Exploring the potential of machine learning in reducing the computational time/expense and improving the reliability of engine optimization studies
  publication-title: Int. J. Engine Res.
– volume: 80
  start-page: 1458
  year: 2017
  end-page: 1498
  ident: b9
  article-title: Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines-A comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 116
  start-page: 255
  year: 2019
  end-page: 264
  ident: b42
  article-title: Feed-forward neural network training using sparse representation
  publication-title: Expert Syst. Appl.
– volume: 48
  start-page: 23308
  year: 2023
  end-page: 23322
  ident: b17
  article-title: Application of machine learning algorithms for predicting the engine characteristics of a wheat germ oil–Hydrogen fuelled dual fuel engine
  publication-title: Int. J. Hydrog. Energy
– volume: 562
  start-page: 414
  year: 2021
  end-page: 437
  ident: b32
  article-title: Surrogate models in evolutionary single-objective optimization: A new taxonomy and experimental study
  publication-title: Inform. Sci.
– start-page: 165
  year: 2009
  end-page: 176
  ident: b45
  article-title: kNN: k-nearest neighbors
  publication-title: The Top Ten Algorithms in Data Mining
– volume: 21
  start-page: 5777
  year: 2021
  ident: b66
  article-title: A robust UWSN handover prediction system using ensemble learning
  publication-title: Sensors
– volume: 362
  year: 2024
  ident: b23
  article-title: An enhanced automated machine learning model for optimizing cycle-to-cycle variation in hydrogen-enriched methanol engines
  publication-title: Appl. Energy
– volume: 374
  year: 2021
  ident: b28
  article-title: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 33
  start-page: 7245
  year: 2008
  end-page: 7255
  ident: b6
  article-title: Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean burn natural gas SI engine with hydrogen enrichment
  publication-title: Int. J. Hydrog. Energy
– volume: 236
  year: 2021
  ident: b29
  article-title: Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm
  publication-title: Energy Convers. Manage.
– volume: 8
  year: 2018
  ident: b65
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
– volume: 58
  start-page: 75
  year: 2017
  end-page: 91
  ident: b69
  article-title: Considering diversity and accuracy simultaneously for ensemble pruning
  publication-title: Appl. Soft Comput.
– volume: 45
  start-page: 2165
  year: 2015
  end-page: 2176
  ident: b83
  article-title: Oblique decision tree ensemble via multisurface proximal support vector machine
  publication-title: IEEE Trans. Cybern.
– volume: 142
  start-page: E4015010
  year: 2015
  ident: b7
  article-title: Effects of hydrogen addition on automotive lean-burn natural gas engines: critical review
  publication-title: J. Energy Eng.
– volume: 25
  start-page: 1117
  year: 1988
  end-page: 1128
  ident: b53
  article-title: Combustion engine fundamentals
  publication-title: 1© Edição. Estados Unidos
– volume: 103
  year: 2001
  ident: b73
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: TIK-report
– year: 1995
  ident: b87
  article-title: Evolution and Optimum Seeking
– volume: 160
  year: 2020
  ident: b80
  article-title: Probabilistic optimization algorithms for real-coded problems and its application in Latin hypercube problem
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 467
  year: 1997
  end-page: 496
  ident: b78
  article-title: Fast evolution strategies
  publication-title: Control Cybernet.
– volume: 33
  start-page: 18
  year: 2017
  end-page: 45
  ident: b72
  article-title: Noisy evolutionary optimization algorithms–a comprehensive survey
  publication-title: Swarm Evol. Comput.
– volume: 205
  year: 2020
  ident: b30
  article-title: Multi-surrogate multi-tasking optimization of expensive problems
  publication-title: Knowl.-Based Syst.
– volume: 26
  start-page: 2120
  year: 2014
  end-page: 2137
  ident: b81
  article-title: Clustering-based ensembles as an alternative to stacking
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 52
  start-page: 6362
  year: 2022
  end-page: 6372
  ident: b68
  article-title: A novel ensemble machine learning and an evolutionary algorithm in modeling the COVID-19 epidemic and optimizing government policies
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 81
  start-page: 203
  year: 2021
  end-page: 231
  ident: b27
  article-title: Surrogate optimization of deep neural networks for groundwater predictions
  publication-title: J. Global Optim.
– year: 2022
  ident: b61
  article-title: BoostTree and BoostForest for ensemble learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 37
  start-page: 89
  year: 2011
  end-page: 112
  ident: b1
  article-title: Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions
  publication-title: Prog. Energy Combust. Sci.
– volume: 154
  year: 2024
  ident: b54
  article-title: Evolutionary optimization of policy responses to COVID-19 pandemic via surrogate models
  publication-title: Appl. Soft Comput.
– volume: 45
  start-page: 322
  year: 2020
  end-page: 336
  ident: b24
  article-title: Optimization and study of performance parameters in an engine fueled with hydrogen
  publication-title: Int. J. Hydrog. Energy
– volume: 6
  start-page: 21
  year: 2006
  end-page: 45
  ident: b37
  article-title: Ensemble based systems in decision making
  publication-title: IEEE Circuits Syst. Mag.
– volume: 148
  start-page: 3155
  year: 2023
  end-page: 3177
  ident: b15
  article-title: Prediction of IC engine performance and emission parameters using machine learning: A review
  publication-title: J. Therm. Anal. Calorim.
– start-page: 453
  year: 2011
  end-page: 469
  ident: b82
  article-title: On oblique random forests
  publication-title: Machine Learning and Knowledge Discovery in Databases
– volume: 26
  start-page: 805
  year: 2013
  end-page: 821
  ident: b2
  article-title: Research and development of natural-gas fueled engines in Iran
  publication-title: Renew. Sustain. Energy Rev.
– volume: 140
  year: 2018
  ident: b25
  article-title: Computational intelligence nonmodel-based calibration approach for internal combustion engines
  publication-title: J. Dyn. Syst. Meas. Control
– volume: 15
  start-page: 2201
  year: 2011
  end-page: 2220
  ident: b77
  article-title: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-chains
  publication-title: Soft Comput.
– volume: 9
  start-page: 303
  year: 2005
  end-page: 317
  ident: b71
  article-title: Evolutionary optimization in uncertain environments-a survey
  publication-title: IEEE Trans. Evol. Comput.
– volume: 6
  start-page: 2970
  year: 2018
  end-page: 2983
  ident: b75
  article-title: DE-RCO: Rotating crossover operator with multiangle searching strategy for adaptive differential evolution
  publication-title: IEEE Access
– start-page: 1
  year: 2016
  end-page: 6
  ident: b46
  article-title: Pattern recognition neural network as a tool for pest birds detection
  publication-title: 2016 IEEE Symposium Series on Computational Intelligence
– volume: 48
  start-page: 608
  year: 2007
  end-page: 618
  ident: b5
  article-title: Spark ignition natural gas engines:A review
  publication-title: Energy Convers. Manage.
– volume: 37
  start-page: 11495
  year: 2012
  end-page: 11503
  ident: b10
  article-title: Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends
  publication-title: Int. J. Hydrog. Energy
– volume: 303
  year: 2021
  ident: b51
  article-title: Computational optimization of CH4/H2/CO blends in a spark-ignition engine using quasi-dimensional combustion model
  publication-title: Fuel
– volume: 24
  start-page: 49
  year: 1996
  end-page: 64
  ident: b34
  article-title: Stacked regressions
  publication-title: Mach. Learn.
– volume: 22
  start-page: 4235
  year: 2015
  end-page: 4245
  ident: b12
  article-title: Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption
  publication-title: J. Cent. South Univ.
– volume: 7
  start-page: 219
  year: 2014
  end-page: 239
  ident: b70
  article-title: Improvement of the performance of the quantum-inspired evolutionary algorithms: structures, population, operators
  publication-title: Evol. Intell.
– volume: 22
  start-page: 578
  year: 2018
  end-page: 594
  ident: b76
  article-title: A level-based learning swarm optimizer for large-scale optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 333
  year: 2023
  ident: b18
  article-title: Machine learning algorithms for a diesel engine fuelled with biodiesel blends and hydrogen using LSTM networks
  publication-title: Fuel
– volume: 2
  start-page: 458
  year: 1991
  end-page: 461
  ident: b40
  article-title: Learning vector quantization for the probabilistic neural network
  publication-title: IEEE Trans. Neural Netw.
– year: 2012
  ident: b44
  article-title: Neural Networks for Gas Turbine Fault Identification: Multilayer Perceptron or Radial Basis Network?
– volume: 233
  year: 2023
  ident: b67
  article-title: An evolutionary ensemble convolutional neural network for fault diagnosis problem
  publication-title: Expert Syst. Appl.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b38
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 13
  start-page: 108
  year: 2022
  end-page: 121
  ident: b52
  article-title: What an “Ehm” leaks about you: Mapping fillers into personality traits with quantum evolutionary feature selection algorithms
  publication-title: IEEE Trans. Affect. Comput.
– volume: 51
  start-page: 1565
  year: 2015
  end-page: 1573
  ident: b55
  article-title: Wagging for combining weighted one-class support vector machines
  publication-title: Procedia Comput. Sci.
– volume: 25
  start-page: 794
  year: 2021
  end-page: 808
  ident: b31
  article-title: Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 2
  start-page: 568
  year: 1991
  end-page: 576
  ident: b47
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
– year: 1966
  ident: b85
  article-title: Artificial Intelligence through Simulated Evolution
– volume: 8
  start-page: 54
  year: 1997
  end-page: 64
  ident: b33
  article-title: Parallel consensual neural networks
  publication-title: IEEE Trans. Neural Netw.
– volume: 29
  start-page: 1527
  year: 2004
  end-page: 1539
  ident: b8
  article-title: Internal combustion engines fueled by natural gas–hydrogen mixtures
  publication-title: Int. J. Hydrog. Energy
– volume: 57
  start-page: 1553
  year: 2018
  end-page: 1577
  ident: b26
  article-title: Surrogate-based optimization with clustering-based space exploration for expensive multimodal problems
  publication-title: Struct. Multidiscip. Optim.
– volume: vol. 1025
  year: 2018
  ident: b43
  article-title: Cascade forward neural network for time series prediction
  publication-title: Journal of Physics: Conference Series
– volume: 16
  start-page: 980
  year: 2004
  end-page: 991
  ident: b59
  article-title: Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 22
  start-page: 47
  year: 2015
  end-page: 65
  ident: b74
  article-title: Anatomy of the fitness landscape for dense graph-colouring problem
  publication-title: Swarm Evol. Comput.
– volume: 242
  start-page: 1712
  year: 2019
  end-page: 1724
  ident: b50
  article-title: Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm
  publication-title: Appl. Energy
– volume: 48
  start-page: 39599
  year: 2023
  end-page: 39611
  ident: b22
  article-title: Efficacy of machine learning algorithms in estimating emissions in a dual fuel compression ignition engine operating on hydrogen and diesel
  publication-title: Int. J. Hydrog. Energy
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: b39
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 51
  start-page: 1565
  year: 2015
  end-page: 1573
  ident: b60
  article-title: Wagging for combining weighted one-class support vector machines
  publication-title: Procedia Comput. Sci.
– volume: 40
  start-page: 159
  year: 2000
  end-page: 196
  ident: b57
  article-title: MultiBoosting: A technique for combining boosting and wagging
  publication-title: Mach. Learn.
– volume: 263
  year: 2023
  ident: b19
  article-title: Multi-objective optimization of a hydrogen-fueled wankel rotary engine based on machine learning and genetic algorithm
  publication-title: Energy
– volume: 100
  start-page: 144
  year: 2017
  end-page: 151
  ident: b64
  article-title: Superpixel-based online wagging one-class ensemble for feature selection in foreground/background separation
  publication-title: Pattern Recognit. Lett.
– volume: 12
  start-page: 203
  year: 2008
  end-page: 219
  ident: b79
  article-title: Real-valued compact genetic algorithms for embedded microcontroller optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 3
  start-page: 82
  year: 1999
  end-page: 102
  ident: b86
  article-title: Evolutionary programming made faster
  publication-title: Evol. Comput. IEEE Trans.
– volume: 185
  start-page: 903
  year: 2016
  end-page: 915
  ident: b11
  article-title: Methane/hydrogen fueling a spark-ignition engine for studying NO, CO and HC emissions with a research CFD code
  publication-title: Fuel
– volume: 3
  start-page: 109
  year: 1990
  end-page: 118
  ident: b41
  article-title: Probabilistic neural networks
  publication-title: Neural Netw.
– volume: 233
  issn: 0957-4174
  year: 2023
  ident: 10.1016/j.asoc.2024.112468_b67
  article-title: An evolutionary ensemble convolutional neural network for fault diagnosis problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120678
– volume: 185
  start-page: 903
  year: 2016
  ident: 10.1016/j.asoc.2024.112468_b11
  article-title: Methane/hydrogen fueling a spark-ignition engine for studying NO, CO and HC emissions with a research CFD code
  publication-title: Fuel
  doi: 10.1016/j.fuel.2016.08.040
– volume: 56
  start-page: 5545
  issue: 6
  year: 2023
  ident: 10.1016/j.asoc.2024.112468_b63
  article-title: A survey on ensemble learning under the era of deep learning
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10283-5
– volume: 33
  start-page: 7245
  issue: 23
  year: 2008
  ident: 10.1016/j.asoc.2024.112468_b6
  article-title: Study on combustion behaviors and cycle-by-cycle variations in a turbocharged lean burn natural gas SI engine with hydrogen enrichment
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2008.09.016
– volume: 6
  start-page: 2970
  issn: 2169-3536
  year: 2018
  ident: 10.1016/j.asoc.2024.112468_b75
  article-title: DE-RCO: Rotating crossover operator with multiangle searching strategy for adaptive differential evolution
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2786347
– volume: 25
  start-page: 794
  issue: 4
  year: 2021
  ident: 10.1016/j.asoc.2024.112468_b31
  article-title: Dual-surrogate-assisted cooperative particle swarm optimization for expensive multimodal problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3064835
– volume: 48
  start-page: 23308
  issue: 60
  year: 2023
  ident: 10.1016/j.asoc.2024.112468_b17
  article-title: Application of machine learning algorithms for predicting the engine characteristics of a wheat germ oil–Hydrogen fuelled dual fuel engine
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2022.11.101
– volume: 242
  start-page: 1712
  year: 2019
  ident: 10.1016/j.asoc.2024.112468_b50
  article-title: Numerical optimization of methane-based fuel blends under engine-relevant conditions using a multi-objective genetic algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.03.041
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.asoc.2024.112468_b38
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 12
  start-page: 993
  issue: 10
  year: 1990
  ident: 10.1016/j.asoc.2024.112468_b35
  article-title: Neural network ensembles
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.58871
– volume: 6
  start-page: 21
  issue: 3
  year: 2006
  ident: 10.1016/j.asoc.2024.112468_b37
  article-title: Ensemble based systems in decision making
  publication-title: IEEE Circuits Syst. Mag.
  doi: 10.1109/MCAS.2006.1688199
– volume: vol. 1025
  year: 2018
  ident: 10.1016/j.asoc.2024.112468_b43
  article-title: Cascade forward neural network for time series prediction
– volume: 51
  start-page: 1565
  year: 2015
  ident: 10.1016/j.asoc.2024.112468_b55
  article-title: Wagging for combining weighted one-class support vector machines
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.05.351
– volume: 22
  start-page: 47
  issn: 2210-6502
  year: 2015
  ident: 10.1016/j.asoc.2024.112468_b74
  article-title: Anatomy of the fitness landscape for dense graph-colouring problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2015.01.005
– volume: 48
  start-page: 39599
  issue: 99
  year: 2023
  ident: 10.1016/j.asoc.2024.112468_b22
  article-title: Efficacy of machine learning algorithms in estimating emissions in a dual fuel compression ignition engine operating on hydrogen and diesel
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2023.03.477
– volume: 15
  start-page: 2201
  issn: 1432-7643
  year: 2011
  ident: 10.1016/j.asoc.2024.112468_b77
  article-title: Memetic algorithms based on local search chains for large scale continuous optimisation problems: MA-SSW-chains
  publication-title: Soft Comput.
  doi: 10.1007/s00500-010-0647-2
– volume: 22
  start-page: 4235
  year: 2015
  ident: 10.1016/j.asoc.2024.112468_b12
  article-title: Combining artificial neural network and multi-objective optimization to reduce a heavy-duty diesel engine emissions and fuel consumption
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-015-2972-1
– volume: 362
  year: 2024
  ident: 10.1016/j.asoc.2024.112468_b23
  article-title: An enhanced automated machine learning model for optimizing cycle-to-cycle variation in hydrogen-enriched methanol engines
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123019
– volume: 37
  start-page: 89
  issue: 1
  year: 2011
  ident: 10.1016/j.asoc.2024.112468_b1
  article-title: Natural-gas fueled spark-ignition (SI) and compression-ignition (CI) engine performance and emissions
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2010.04.002
– volume: 19
  start-page: 609
  issue: 5
  year: 2015
  ident: 10.1016/j.asoc.2024.112468_b16
  article-title: Meta-heuristic algorithms in car engine design: A literature survey
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2355174
– volume: 333
  year: 2023
  ident: 10.1016/j.asoc.2024.112468_b18
  article-title: Machine learning algorithms for a diesel engine fuelled with biodiesel blends and hydrogen using LSTM networks
  publication-title: Fuel
  doi: 10.1016/j.fuel.2022.126292
– volume: 374
  issn: 0045-7825
  year: 2021
  ident: 10.1016/j.asoc.2024.112468_b28
  article-title: Iterative surrogate model optimization (ISMO): An active learning algorithm for PDE constrained optimization with deep neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113575
– volume: 40
  start-page: 159
  issn: 1573-0565
  issue: 2
  year: 2000
  ident: 10.1016/j.asoc.2024.112468_b57
  article-title: MultiBoosting: A technique for combining boosting and wagging
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007659514849
– volume: 26
  start-page: 467
  year: 1997
  ident: 10.1016/j.asoc.2024.112468_b78
  article-title: Fast evolution strategies
  publication-title: Control Cybernet.
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10.1016/j.asoc.2024.112468_b39
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 21
  start-page: 1251
  issue: 7
  year: 2020
  ident: 10.1016/j.asoc.2024.112468_b13
  article-title: Exploring the potential of machine learning in reducing the computational time/expense and improving the reliability of engine optimization studies
  publication-title: Int. J. Engine Res.
  doi: 10.1177/1468087418808949
– volume: 81
  start-page: 203
  year: 2021
  ident: 10.1016/j.asoc.2024.112468_b27
  article-title: Surrogate optimization of deep neural networks for groundwater predictions
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-020-00912-0
– volume: 13
  start-page: 108
  issue: 1
  year: 2022
  ident: 10.1016/j.asoc.2024.112468_b52
  article-title: What an “Ehm” leaks about you: Mapping fillers into personality traits with quantum evolutionary feature selection algorithms
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2019.2930695
– volume: 51
  start-page: 1565
  year: 2015
  ident: 10.1016/j.asoc.2024.112468_b60
  article-title: Wagging for combining weighted one-class support vector machines
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.05.351
– volume: 58
  start-page: 75
  issn: 1568-4946
  year: 2017
  ident: 10.1016/j.asoc.2024.112468_b69
  article-title: Considering diversity and accuracy simultaneously for ensemble pruning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.04.058
– volume: 116
  start-page: 255
  year: 2019
  ident: 10.1016/j.asoc.2024.112468_b42
  article-title: Feed-forward neural network training using sparse representation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.038
– start-page: 5128
  year: 2016
  ident: 10.1016/j.asoc.2024.112468_b49
  article-title: Improving the performance of evolutionary engine calibration algorithms with principal component analysis
– volume: 8
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2024.112468_b65
  article-title: Ensemble learning: A survey
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1249
– volume: 7
  start-page: 219
  issue: 4
  year: 2014
  ident: 10.1016/j.asoc.2024.112468_b70
  article-title: Improvement of the performance of the quantum-inspired evolutionary algorithms: structures, population, operators
  publication-title: Evol. Intell.
– volume: 38
  start-page: 64
  year: 2014
  ident: 10.1016/j.asoc.2024.112468_b4
  article-title: The influence of fuel composition on the combustion and emission characteristics of natural gas fueled engines
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.05.080
– year: 1975
  ident: 10.1016/j.asoc.2024.112468_b84
– volume: 154
  issn: 1568-4946
  year: 2024
  ident: 10.1016/j.asoc.2024.112468_b54
  article-title: Evolutionary optimization of policy responses to COVID-19 pandemic via surrogate models
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111359
– volume: 52
  start-page: 6362
  issue: 10
  year: 2022
  ident: 10.1016/j.asoc.2024.112468_b68
  article-title: A novel ensemble machine learning and an evolutionary algorithm in modeling the COVID-19 epidemic and optimizing government policies
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2022.3143955
– volume: 3
  start-page: 82
  issue: 2
  year: 1999
  ident: 10.1016/j.asoc.2024.112468_b86
  article-title: Evolutionary programming made faster
  publication-title: Evol. Comput. IEEE Trans.
  doi: 10.1109/4235.771163
– ident: 10.1016/j.asoc.2024.112468_b58
– volume: 57
  start-page: 1553
  year: 2018
  ident: 10.1016/j.asoc.2024.112468_b26
  article-title: Surrogate-based optimization with clustering-based space exploration for expensive multimodal problems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-017-1826-x
– volume: 562
  start-page: 414
  issn: 0020-0255
  year: 2021
  ident: 10.1016/j.asoc.2024.112468_b32
  article-title: Surrogate models in evolutionary single-objective optimization: A new taxonomy and experimental study
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.03.002
– volume: 142
  start-page: E4015010
  issue: 2
  year: 2015
  ident: 10.1016/j.asoc.2024.112468_b7
  article-title: Effects of hydrogen addition on automotive lean-burn natural gas engines: critical review
  publication-title: J. Energy Eng.
  doi: 10.1061/(ASCE)EY.1943-7897.0000319
– volume: 263
  year: 2023
  ident: 10.1016/j.asoc.2024.112468_b19
  article-title: Multi-objective optimization of a hydrogen-fueled wankel rotary engine based on machine learning and genetic algorithm
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125961
– volume: 21
  start-page: 5777
  issue: 17
  year: 2021
  ident: 10.1016/j.asoc.2024.112468_b66
  article-title: A robust UWSN handover prediction system using ensemble learning
  publication-title: Sensors
  doi: 10.3390/s21175777
– volume: 29
  start-page: 1527
  issue: 14
  year: 2004
  ident: 10.1016/j.asoc.2024.112468_b8
  article-title: Internal combustion engines fueled by natural gas–hydrogen mixtures
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2004.01.018
– volume: 2
  start-page: 458
  issue: 4
  year: 1991
  ident: 10.1016/j.asoc.2024.112468_b40
  article-title: Learning vector quantization for the probabilistic neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.88165
– volume: 310
  year: 2022
  ident: 10.1016/j.asoc.2024.112468_b20
  article-title: Comparison and implementation of machine learning models for predicting the combustion phases of hydrogen-enriched Wankel rotary engines
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.122371
– volume: 303
  year: 2021
  ident: 10.1016/j.asoc.2024.112468_b51
  article-title: Computational optimization of CH4/H2/CO blends in a spark-ignition engine using quasi-dimensional combustion model
  publication-title: Fuel
  doi: 10.1016/j.fuel.2021.121281
– start-page: 453
  year: 2011
  ident: 10.1016/j.asoc.2024.112468_b82
  article-title: On oblique random forests
  doi: 10.1007/978-3-642-23783-6_29
– volume: 16
  start-page: 980
  issue: 8
  year: 2004
  ident: 10.1016/j.asoc.2024.112468_b59
  article-title: Multistrategy ensemble learning: Reducing error by combining ensemble learning techniques
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2004.29
– year: 1966
  ident: 10.1016/j.asoc.2024.112468_b85
– volume: 22
  start-page: 578
  issn: 1089-778X
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2024.112468_b76
  article-title: A level-based learning swarm optimizer for large-scale optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2743016
– volume: 25
  start-page: 1117
  year: 1988
  ident: 10.1016/j.asoc.2024.112468_b53
  article-title: Combustion engine fundamentals
  publication-title: 1© Edição. Estados Unidos
– volume: 2
  start-page: 568
  issue: 6
  year: 1991
  ident: 10.1016/j.asoc.2024.112468_b47
  article-title: A general regression neural network
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.97934
– volume: 37
  start-page: 11495
  issue: 15
  year: 2012
  ident: 10.1016/j.asoc.2024.112468_b10
  article-title: Efficiency and emissions in a vehicle spark ignition engine fueled with hydrogen and methane blends
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2012.04.012
– volume: 140
  issue: 4
  year: 2018
  ident: 10.1016/j.asoc.2024.112468_b25
  article-title: Computational intelligence nonmodel-based calibration approach for internal combustion engines
  publication-title: J. Dyn. Syst. Meas. Control
  doi: 10.1115/1.4037835
– volume: 236
  issn: 0196-8904
  year: 2021
  ident: 10.1016/j.asoc.2024.112468_b29
  article-title: Multi-objective optimization of PEM fuel cell by coupled significant variables recognition, surrogate models and a multi-objective genetic algorithm
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2021.114063
– year: 2022
  ident: 10.1016/j.asoc.2024.112468_b61
  article-title: BoostTree and BoostForest for ensemble learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2022.3227370
– volume: 36
  start-page: 105
  issue: 1
  year: 1999
  ident: 10.1016/j.asoc.2024.112468_b56
  article-title: An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007515423169
– volume: 88
  year: 2022
  ident: 10.1016/j.asoc.2024.112468_b14
  article-title: Modeling, diagnostics, optimization, and control of internal combustion engines via modern machine learning techniques: A review and future directions
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2021.100967
– start-page: 165
  year: 2009
  ident: 10.1016/j.asoc.2024.112468_b45
  article-title: kNN: k-nearest neighbors
– volume: 12
  start-page: 203
  issue: 2
  year: 2008
  ident: 10.1016/j.asoc.2024.112468_b79
  article-title: Real-valued compact genetic algorithms for embedded microcontroller optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.896689
– volume: 48
  start-page: 608
  issue: 2
  year: 2007
  ident: 10.1016/j.asoc.2024.112468_b5
  article-title: Spark ignition natural gas engines:A review
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2006.05.023
– volume: 8
  start-page: 54
  issue: 1
  year: 1997
  ident: 10.1016/j.asoc.2024.112468_b33
  article-title: Parallel consensual neural networks
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.554191
– volume: 148
  start-page: 3155
  issue: 9
  year: 2023
  ident: 10.1016/j.asoc.2024.112468_b15
  article-title: Prediction of IC engine performance and emission parameters using machine learning: A review
  publication-title: J. Therm. Anal. Calorim.
  doi: 10.1007/s10973-022-11896-2
– year: 2012
  ident: 10.1016/j.asoc.2024.112468_b44
– volume: 205
  issn: 0950-7051
  year: 2020
  ident: 10.1016/j.asoc.2024.112468_b30
  article-title: Multi-surrogate multi-tasking optimization of expensive problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106262
– volume: 3
  start-page: 109
  issue: 1
  year: 1990
  ident: 10.1016/j.asoc.2024.112468_b41
  article-title: Probabilistic neural networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(90)90049-Q
– volume: 168
  start-page: 877
  year: 2017
  ident: 10.1016/j.asoc.2024.112468_b48
  article-title: Application of radial basis function neural network to predict soil sorption partition coefficient using topological descriptors
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2016.10.122
– volume: 45
  start-page: 2165
  issue: 10
  year: 2015
  ident: 10.1016/j.asoc.2024.112468_b83
  article-title: Oblique decision tree ensemble via multisurface proximal support vector machine
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2366468
– volume: 24
  start-page: 49
  issue: 1
  year: 1996
  ident: 10.1016/j.asoc.2024.112468_b34
  article-title: Stacked regressions
  publication-title: Mach. Learn.
  doi: 10.1007/BF00117832
– start-page: 1
  year: 2016
  ident: 10.1016/j.asoc.2024.112468_b46
  article-title: Pattern recognition neural network as a tool for pest birds detection
– volume: 45
  start-page: 322
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2024.112468_b24
  article-title: Optimization and study of performance parameters in an engine fueled with hydrogen
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.10.250
– volume: 100
  start-page: 144
  year: 2017
  ident: 10.1016/j.asoc.2024.112468_b64
  article-title: Superpixel-based online wagging one-class ensemble for feature selection in foreground/background separation
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.10.034
– volume: 9
  start-page: 303
  issue: 3
  year: 2005
  ident: 10.1016/j.asoc.2024.112468_b71
  article-title: Evolutionary optimization in uncertain environments-a survey
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.846356
– ident: 10.1016/j.asoc.2024.112468_b3
– volume: 26
  start-page: 805
  year: 2013
  ident: 10.1016/j.asoc.2024.112468_b2
  article-title: Research and development of natural-gas fueled engines in Iran
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.05.048
– year: 2005
  ident: 10.1016/j.asoc.2024.112468_b36
– volume: 26
  start-page: 2120
  issue: 9
  year: 2014
  ident: 10.1016/j.asoc.2024.112468_b81
  article-title: Clustering-based ensembles as an alternative to stacking
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.49
– year: 1995
  ident: 10.1016/j.asoc.2024.112468_b87
– volume: 33
  start-page: 18
  year: 2017
  ident: 10.1016/j.asoc.2024.112468_b72
  article-title: Noisy evolutionary optimization algorithms–a comprehensive survey
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2016.09.002
– volume: 103
  year: 2001
  ident: 10.1016/j.asoc.2024.112468_b73
  article-title: SPEA2: Improving the strength Pareto evolutionary algorithm
  publication-title: TIK-report
– volume: 160
  issn: 0957-4174
  year: 2020
  ident: 10.1016/j.asoc.2024.112468_b80
  article-title: Probabilistic optimization algorithms for real-coded problems and its application in Latin hypercube problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113589
– volume: 347
  year: 2023
  ident: 10.1016/j.asoc.2024.112468_b21
  article-title: Computational analysis of performances for a hydrogen enriched compressed natural gas engine’by advanced machine learning algorithms
  publication-title: Fuel
  doi: 10.1016/j.fuel.2023.128244
– volume: 80
  start-page: 1458
  year: 2017
  ident: 10.1016/j.asoc.2024.112468_b9
  article-title: Progress in hydrogen enriched compressed natural gas (HCNG) internal combustion engines-A comprehensive review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.05.061
– volume: 40
  start-page: 159
  year: 2000
  ident: 10.1016/j.asoc.2024.112468_b62
  article-title: Multiboosting: A technique for combining boosting and wagging
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007659514849
SSID ssj0016928
Score 2.435369
Snippet The increasing global demand for sustainable and cleaner transportation has led to extensive research on alternative fuels for Internal Combustion (IC)...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112468
SubjectTerms Ensemble learning
Evolutionary algorithms
Hydrogen
Methane
Spark ignition engine
Surrogate models
Title An ensemble learning algorithm for optimization of spark ignition engine performance fuelled with methane/hydrogen blends
URI https://dx.doi.org/10.1016/j.asoc.2024.112468
Volume 168
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1568-4946
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1568-4946
  databaseCode: .~1
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 1568-4946
  databaseCode: ACRLP
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 1568-4946
  databaseCode: AIKHN
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1568-4946
  databaseCode: AKRWK
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016928
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LT8IwGG8IXrz4NuKD9ODNzMHouu5IiARfxKgk3JauawGFjSAcuPi3-31b5yMxHrxsWdNmy6_d73vkexByjhzoGSUd2UpiBzTi2Al95TtNeOTcJJJpTBS-7_PegN0M_WGFdMpcGAyrtNxfcHrO1nbEtWi688nEfQLLQ7CQcZBJIKQ8tNux-hec6cv3zzCPJg_z_qo42cHZNnGmiPGSgADYiB7DTBqG5VZ_E07fBE53h2xZTZG2i4_ZJRWd7pHtsgsDtT_lPlm3Uwq2qJ7FU01tE4gRldNRBnb_eEZBK6UZEMPMZlzSzFCgkcUrneSRQxkux6KEdP6VREDNCj36CUU_LcU20zLV7nidLDI4cRRelSZvB2TQvXru9BzbUMFRXugvHRBYIpBBK5FCCaMMB3MpBoMlTBqK-0YFgVG6KWACXFuBYU0VK6aZF4TKM6BrHJJqmqX6iFDYRF9g0m0rbDAjYyEkF4lntK9wgNfIRYlkNC_qZkRlQNlLhLhHiHtU4F4jfgl29GP3IyD2P9Yd_3PdCdn0sI9v7ko5JdXlYqXPQLlYxvX89NTJRrvzePeA9-vbXv8DEk3S_Q
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07b8IwELYQDO3Sd1X69NCtioBgO86IUCtaHktB6hY5jg20kCAKA_--d8TpQ6o6dImUyKdEX5zv7nPufITcIgf6VitPNZPYg4g49kKuudeAUyFsopjBQuH-QHRG7OmFv5RIu6iFwbRKx_05p2_Z2l2pOTRri-m09gzKQ7KQCfBJ4KR80O0VxoGTy6TSeux2Bp8_E0S4bbGK4z00cLUzeZqXAhBAJvoMi2kY7rj6m3_65nMeDsieCxZpK3-eQ1Iy6RHZLxoxUPddHpNNK6UgR808nhnq-kCMqZqNM5D-kzmFwJRmwA1zV3RJM0uBSZZvdLpNHsrQHPclpIuvOgJq17ion1BcqqXYaVqlpjbZJMsMJh2FW6XJ-wkZPdwP2x3P9VTwtB_ylQf4yEAFzURJLa22AhRTDJolTOpacKuDwGrTkDAAjs3AsoaONTPMD0LtWwg3Tkk5zVJzRii8Ry6x7rYZ1plVsZRKyMS3hmu8IKrkrkAyWuRbZ0RFTtlrhLhHiHuU414lvAA7-jEBIuD2P-zO_2l3Q3Y6w34v6j0Ouhdk18e2vtuVlUtSXi3X5gpijVV87ebSB6t01BM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+learning+algorithm+for+optimization+of+spark+ignition+engine+performance+fuelled+with+methane%2Fhydrogen+blends&rft.jtitle=Applied+soft+computing&rft.au=Tayarani-N.%2C+Mohammad-H.&rft.au=Paykani%2C+Amin&rft.date=2025-01-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=168&rft_id=info:doi/10.1016%2Fj.asoc.2024.112468&rft.externalDocID=S1568494624012420
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon