A Low-Code Visual Framework for Deep Learning-Based Remaining Useful Life Prediction
In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high...
Saved in:
| Published in | Processes Vol. 13; no. 8; p. 2366 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-9717 2227-9717 |
| DOI | 10.3390/pr13082366 |
Cover
| Abstract | In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high entry barrier. To address this, in this study, we propose and implement a visualization tool that supports multiple model selections and result visualization and eliminates the need for complex coding and mathematical derivations, helping users to efficiently conduct RUL prediction with lower technical requirements. This study introduces and summarizes various novel neural network models for DL-based RUL prediction. The models are validated using the NASA and HNEI datasets, and among the validated models, the LSTM model best met the requirements for remaining useful life (RUL) prediction. In order to achieve the low-code usage of deep learning for RUL prediction, the following tasks were performed: (1) multiple models were developed using the Python (3.9.18) language and were implemented on the PyTorch (1.12.1) framework, providing users with the freedom to choose their desired model; (2) a user-friendly and low-code RUL prediction interface was built using Streamlit, enabling users to easily make predictions; (3) the visualization of prediction results was implemented using Matplotlib (3.8.2), allowing users to better understand and analyze the results. In addition, the tool offers functionalities such as automatic hyperparameter tuning to optimize the performance of the prediction model and reduce the complexity of operations. |
|---|---|
| AbstractList | In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high entry barrier. To address this, in this study, we propose and implement a visualization tool that supports multiple model selections and result visualization and eliminates the need for complex coding and mathematical derivations, helping users to efficiently conduct RUL prediction with lower technical requirements. This study introduces and summarizes various novel neural network models for DL-based RUL prediction. The models are validated using the NASA and HNEI datasets, and among the validated models, the LSTM model best met the requirements for remaining useful life (RUL) prediction. In order to achieve the low-code usage of deep learning for RUL prediction, the following tasks were performed: (1) multiple models were developed using the Python (3.9.18) language and were implemented on the PyTorch (1.12.1) framework, providing users with the freedom to choose their desired model; (2) a user-friendly and low-code RUL prediction interface was built using Streamlit, enabling users to easily make predictions; (3) the visualization of prediction results was implemented using Matplotlib (3.8.2), allowing users to better understand and analyze the results. In addition, the tool offers functionalities such as automatic hyperparameter tuning to optimize the performance of the prediction model and reduce the complexity of operations. |
| Audience | Academic |
| Author | Zhang, Bing Wang, Jipu Chen, Jianhua Nie, Yunfei Yang, Ming Lin, Yuhan Chen, Sijuan Wang, Ming |
| Author_xml | – sequence: 1 givenname: Yuhan surname: Lin fullname: Lin, Yuhan – sequence: 2 givenname: Jianhua surname: Chen fullname: Chen, Jianhua – sequence: 3 givenname: Sijuan orcidid: 0009-0001-3072-1285 surname: Chen fullname: Chen, Sijuan – sequence: 4 givenname: Yunfei surname: Nie fullname: Nie, Yunfei – sequence: 5 givenname: Ming orcidid: 0000-0002-9618-3061 surname: Wang fullname: Wang, Ming – sequence: 6 givenname: Bing surname: Zhang fullname: Zhang, Bing – sequence: 7 givenname: Ming surname: Yang fullname: Yang, Ming – sequence: 8 givenname: Jipu surname: Wang fullname: Wang, Jipu |
| BookMark | eNp9UE1LAzEQDaJgrb34CwLelK3ZpNndHGu1Kiwo0npd0mRSUrebNdml9N-bUkFPzjvMB2-GN-8CnTauAYSuUjJmTJC71qeMFJRl2QkaUErzRORpfvqnPkejEDYkhkhZwbMBWkxx6XbJzGnAHzb0ssZzL7ewc_4TG-fxA0CLS5C-sc06uZcBNH6HrbSHHi8DmL7GpTWA3zxoqzrrmkt0ZmQdYPSTh2g5f1zMnpPy9ellNi0TRQXvEsYnGcmAZDpCSE4406KQQoFKQUC-EjnhGSlM7Eg-4TQ3kmtNKFkpnSnChuj2eLdvWrnfybquWm-30u-rlFQHT6pfTyL7-shuvfvqIXTVxvW-iQIrRicTwvOC0cgaH1lrWUNlG-M6L1WEhq1V0XBj43xacFbEJwiLCzfHBeVdCB7Mfxq-Aetdffg |
| Cites_doi | 10.1109/TIE.2020.2972443 10.1007/978-3-642-24797-2_3 10.1007/s10462-024-10726-1 10.1016/j.engappai.2025.110072 10.1109/CVPR.2015.7298935 10.1016/j.ress.2025.111064 10.3115/v1/D14-1181 10.1109/TMECH.2020.2971503 10.1109/MCSoC64144.2024.00018 10.1162/neco.1997.9.8.1735 10.1016/j.jbusres.2021.08.036 10.1016/j.ress.2017.11.021 10.1016/j.ress.2025.111176 10.1371/journal.pcbi.1012574 10.1109/5.726791 10.1016/j.eswa.2024.125808 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO GNUQQ HCIFZ JG9 KB. LK8 M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY |
| DOI | 10.3390/pr13082366 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Materials Research Database Materials Science Database Biological Sciences Biological Science Database Materials Science Collection Proquest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2227-9717 |
| ExternalDocumentID | 10.3390/pr13082366 A853829503 10_3390_pr13082366 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS ITC KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PQGLB PROAC RNS 7SR 8FD ABUWG AZQEC DWQXO GNUQQ JG9 PKEHL PQEST PQQKQ PQUKI PUEGO ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c295t-354606e06d6d69a5053d98a9cec1e9e7b9705608f1e9074527fa5dd020bcd6c03 |
| IEDL.DBID | BENPR |
| ISSN | 2227-9717 |
| IngestDate | Sun Sep 07 11:11:42 EDT 2025 Fri Aug 29 05:19:22 EDT 2025 Mon Oct 20 16:51:15 EDT 2025 Thu Oct 16 04:44:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-354606e06d6d69a5053d98a9cec1e9e7b9705608f1e9074527fa5dd020bcd6c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-3072-1285 0000-0002-9618-3061 |
| OpenAccessLink | https://www.proquest.com/docview/3244057832?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 3244057832 |
| PQPubID | 2032344 |
| ParticipantIDs | unpaywall_primary_10_3390_pr13082366 proquest_journals_3244057832 gale_infotracacademiconefile_A853829503 crossref_primary_10_3390_pr13082366 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-08-01 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Processes |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | LeCun (ref_16) 2002; 86 Francisco (ref_9) 2021; 137 ref_14 Wang (ref_4) 2025; 261 ref_13 ref_12 ref_22 ref_10 ref_21 ref_20 Gao (ref_3) 2025; 262 ref_1 ref_19 Li (ref_2) 2018; 172 Cheng (ref_8) 2020; 25 Baratchi (ref_11) 2024; 57 ref_18 ref_17 Chen (ref_7) 2020; 68 Zhou (ref_5) 2025; 263 Kim (ref_6) 2025; 143 Hochreiter (ref_15) 1997; 9 |
| References_xml | – volume: 68 start-page: 2521 year: 2020 ident: ref_7 article-title: Machine Remaining Useful Life Prediction via an Attention Based Deep Learning Approach publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2020.2972443 – ident: ref_18 doi: 10.1007/978-3-642-24797-2_3 – volume: 57 start-page: 122 year: 2024 ident: ref_11 article-title: Automated machine learning: Past, present and future publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-024-10726-1 – volume: 143 start-page: 110072 year: 2025 ident: ref_6 article-title: Physics-informed deep learning framework for explainable remaining useful life prediction publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2025.110072 – ident: ref_19 doi: 10.1109/CVPR.2015.7298935 – volume: 261 start-page: 111064 year: 2025 ident: ref_4 article-title: Novel formulations and metaheuristic algorithms for predictive maintenance of aircraft engines with remaining useful life prediction publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2025.111064 – ident: ref_14 doi: 10.3115/v1/D14-1181 – volume: 25 start-page: 1243 year: 2020 ident: ref_8 article-title: A deep learning-based remaining useful life prediction approach for bearings publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2020.2971503 – ident: ref_12 doi: 10.1109/MCSoC64144.2024.00018 – ident: ref_13 – volume: 9 start-page: 1735 year: 1997 ident: ref_15 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – ident: ref_17 – ident: ref_1 – volume: 137 start-page: 393 year: 2021 ident: ref_9 article-title: Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications publication-title: J. Bus. Res. doi: 10.1016/j.jbusres.2021.08.036 – volume: 172 start-page: 1 year: 2018 ident: ref_2 article-title: Remaining useful life estimation in prognostics using deep convolution neural networks publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.11.021 – volume: 262 start-page: 111176 year: 2025 ident: ref_3 article-title: Degradation-Aware Remaining Useful Life Prediction of Industrial Robot via Multiscale Temporal Memory Transformer Framework publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2025.111176 – ident: ref_22 – ident: ref_10 doi: 10.1371/journal.pcbi.1012574 – ident: ref_21 – ident: ref_20 – volume: 86 start-page: 2278 year: 2002 ident: ref_16 article-title: Gradient-based learning applied to document recognition publication-title: Proc. IEEE doi: 10.1109/5.726791 – volume: 263 start-page: 125808 year: 2025 ident: ref_5 article-title: Remaining useful life prediction for machinery using multimodal interactive attention spatial–temporal networks with deep ensembles publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.125808 |
| SSID | ssj0000913856 |
| Score | 2.3016505 |
| Snippet | In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of... |
| SourceID | unpaywall proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| StartPage | 2366 |
| SubjectTerms | Algorithms Complexity Computer programming Data analysis Data processing Data science Deep learning Design Factories Intelligent manufacturing systems Life prediction Linear programming Machine learning Mathematical models Methods Neural networks Optimization Prediction models Repair & maintenance Useful life Visual discrimination learning Visualization |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6N7gH2wNgArTCQBZOAB4_EiR3nsStUExrThFY0niLHPqOJrq3aRNP26zkvCZQ-TChPkeL45PP5vpPvvgM4kFL7VJeO-9gJTvg_5kY7xVHkQlkRK-1DNfLXU3U8Tr9cyIsNeNPVwqzc3ycUjn-cL-I7QhWlHsCmkoS3e7A5Pj0b_Ahd44TIeE4BScM7ujbgH0-zft5uwcN6Ojc312YyWXEoo20YdqI0eSS_DuuqPLS3ayyN98v6BB63eJINmg2wAxs43YWtFZbBXdhp7XfJ3rck0x-ewvmAncyu-XDmkH2_XNb0j1GXp8UIyLJPiHPWsq_-5Efk7Bz7hldNQwk2XqKvJ-zk0iM7W4TLnqDgZzAefT4fHvO2wwK3IpcVT2RKAQxGytGTG0JDicu1yS3aGHPMyjwjgBRpT2-ENaTIvJHOEcQsrVM2Sp5Dbzqb4h6w2GKMqRWJtDJFYU1kPPqMRmpb5hr78LbTRjFviDQKCkDCwhV_F64P74KiimBd1cJY0xYJ0ByBp6oYELrQJHqU9GG_02XRmt2yIHQYACidUn04-KPfe-Z78X-fvYRHIvT9vUv824detajxFYGRqnzd7sbfv0nZSA priority: 102 providerName: Unpaywall |
| Title | A Low-Code Visual Framework for Deep Learning-Based Remaining Useful Life Prediction |
| URI | https://www.proquest.com/docview/3244057832 https://doi.org/10.3390/pr13082366 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: ADMLS dateStart: 20150601 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-9717 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913856 issn: 2227-9717 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB1BOLQcqkJbkRaQpSK1PVjsetcb76FCgSagCqIIkYqeVl57XCGlyTYfQr30t3e88RLEAe3Jh7WtGc_Msz1-A3AkpXKpKi13sRWc8H_MtbIZR5GLzIg4U86_Rr4aZBej9PutvN2AQfMWxqdVNj6xdtR2avwZ-TEFfo8taAGeVH-4rxrlb1ebEho6lFawX2uKsU3YEp4ZqwVbp73B8Prh1MWzYCqZrXhKE9rvH1ezuGZsqWkS15HpqX_ehhfLSaX_3uvx-FEA6r-GVwE5su5K1TuwgZNd2H7EJ7gLO8FS5-xzoJP-8gZuuuxyes_PphbZj7v5kvroNxlZjCAr-4ZYscCz-oufUliz7Bp_r0pHsNEc3XLMLu8csuHMX-t4Vb6FUb93c3bBQy0FbkQuFzyRKW1VMMosfbkm3JPYXOncoIkxx06ZdwgKRcpRi1CFFB2npbUEJktjMxMl76A1mU5wD1hsMMbUiEQamaIwOtIOXYf-VKbMFbbhYyPHolpRZhS01fDSLtbSbsMnL-LC29Fipo0OzwFoDM9IVXQJRyiaepS0Yb_RQhEMbF6sl0Mbjh4088x475_v5QO8FL6yb53atw-txWyJBwQ3FuUhbKr--WFYSdS6-tej1mgw7P78DwHb12w |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDCa69tD1MKzdhqXrNgHrsO1g1JYtRzoUQ_oI0jUNiiIZevNkiR4KZImbB4L-uf22UY7cFDv0VvjkgyWDpMSPEvkRYF8IWSQyt0ERWR4Q_o8CLW0aIFc8NTxKZeGqkS96aWeQ_LgW12vwt66FcWmV9Z5YbdR2bNwZ-QE5foctyAC_l7eB6xrlblfrFhrat1awhxXFmC_sOMe7BYVw08OzE9L3Z87bp_3jTuC7DASGKzELYpEQiMcwtfQoTYggtkpqZdBEqLCZqyaBhFAW9Eb-VvBmoYW1BLNyY1MTxjTuM9hI4kRR8LdxdNq7vLo_5XGsm1KkS17UOFbhQTmJKoaYipZx5Qn_9wdbsDkflfpuoYfDBw6v_RJeeKTKWkvT2oY1HO3A1gP-wh3Y9jvDlH319NXfXkG_xbrjRXA8tsh-3kznNEa7zgBjBJHZCWLJPK_r7-CI3KhlV_hn2aqCDaZYzIese1Mgu5y4ayRnOq9h8CRSfQPro_EI3wKLDEaYGB4LIxLkRoe6wKJJX0qTK4kN-FTLMSuXFB0ZhTZO2tlK2g344kScuXU7m2ijffkBzeEYsLIW4RZJvx7GDdirtZD5BT3NVubXgP17zTwy3-7jo3yEzU7_opt1z3rn7-A5d12Fq7TCPVifTeb4nqDOLP_g7YnBr6c24X_OMg_M |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgE9IFpALBSwRBFwsDZx4sQ5ILR0CS1dqgp1q96CY0-qSu1u2Oxq1b_Gr2Ocj27FobcqpxxiR-Nnz7M98wZgR0pVhCq3vPCt4MT_fa6VjTiKRERG-JEqXDbyz8Nobxz-OJWna_C3y4VxYZXdmlgv1HZq3Bl5nxy_4xYEwH7RhkUcDdMv5R_uKki5m9aunEYDkQO8WtL2rfq8P6Sxfi9E-u14d4-3FQa4EYmc80CGRODRiyw9iSY2ENhE6cSg8THBOE9iIgieKuiNfK0UcaGltUSxcmMj4wXU7j24HzsVd5elnn6_Pt9xeptKRo0iahAkXr-c-bU2TC3IuPKB_3uCDXi4mJT6aqkvLm64uvQJPG45Khs0oNqENZxswcYN5cIt2GzXhIp9bIWrPz2F4wEbTZd8d2qRnZxXC2oj7WK_GJFjNkQsWavoesa_kgO17BdeNkUq2LhCsjkbnRfIjmbuAsmB5hmM78Smz2F9Mp3gC2C-QR9DIwJpZIjCaE8XWMT0pTJ5orAH7zo7ZmUjzpHRpsZZO1tZuwcfnIkzN2PnM210m3hAfTjtq2xAjEXRr3tBD7a7UcjaqVxlK-D1YOd6ZG7p7-XtrbyFBwTcbLR_ePAKHglXTriOJ9yG9flsga-J48zzNzWYGPy-a_T-A1wADWY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6N7gH2wNgArTCQBZOAB4_EiR3nsStUExrThFY0niLHPqOJrq3aRNP26zkvCZQ-TChPkeL45PP5vpPvvgM4kFL7VJeO-9gJTvg_5kY7xVHkQlkRK-1DNfLXU3U8Tr9cyIsNeNPVwqzc3ycUjn-cL-I7QhWlHsCmkoS3e7A5Pj0b_Ahd44TIeE4BScM7ujbgH0-zft5uwcN6Ojc312YyWXEoo20YdqI0eSS_DuuqPLS3ayyN98v6BB63eJINmg2wAxs43YWtFZbBXdhp7XfJ3rck0x-ewvmAncyu-XDmkH2_XNb0j1GXp8UIyLJPiHPWsq_-5Efk7Bz7hldNQwk2XqKvJ-zk0iM7W4TLnqDgZzAefT4fHvO2wwK3IpcVT2RKAQxGytGTG0JDicu1yS3aGHPMyjwjgBRpT2-ENaTIvJHOEcQsrVM2Sp5Dbzqb4h6w2GKMqRWJtDJFYU1kPPqMRmpb5hr78LbTRjFviDQKCkDCwhV_F64P74KiimBd1cJY0xYJ0ByBp6oYELrQJHqU9GG_02XRmt2yIHQYACidUn04-KPfe-Z78X-fvYRHIvT9vUv824detajxFYGRqnzd7sbfv0nZSA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low-Code+Visual+Framework+for+Deep+Learning-Based+Remaining+Useful+Life+Prediction&rft.jtitle=Processes&rft.au=Lin%2C+Yuhan&rft.au=Chen%2C+Jianhua&rft.au=Chen+Sijuan&rft.au=Nie+Yunfei&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=13&rft.issue=8&rft.spage=2366&rft_id=info:doi/10.3390%2Fpr13082366&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |