A Low-Code Visual Framework for Deep Learning-Based Remaining Useful Life Prediction

In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 13; no. 8; p. 2366
Main Authors Lin, Yuhan, Chen, Jianhua, Chen, Sijuan, Nie, Yunfei, Wang, Ming, Zhang, Bing, Yang, Ming, Wang, Jipu
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2025
Subjects
Online AccessGet full text
ISSN2227-9717
2227-9717
DOI10.3390/pr13082366

Cover

Abstract In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high entry barrier. To address this, in this study, we propose and implement a visualization tool that supports multiple model selections and result visualization and eliminates the need for complex coding and mathematical derivations, helping users to efficiently conduct RUL prediction with lower technical requirements. This study introduces and summarizes various novel neural network models for DL-based RUL prediction. The models are validated using the NASA and HNEI datasets, and among the validated models, the LSTM model best met the requirements for remaining useful life (RUL) prediction. In order to achieve the low-code usage of deep learning for RUL prediction, the following tasks were performed: (1) multiple models were developed using the Python (3.9.18) language and were implemented on the PyTorch (1.12.1) framework, providing users with the freedom to choose their desired model; (2) a user-friendly and low-code RUL prediction interface was built using Streamlit, enabling users to easily make predictions; (3) the visualization of prediction results was implemented using Matplotlib (3.8.2), allowing users to better understand and analyze the results. In addition, the tool offers functionalities such as automatic hyperparameter tuning to optimize the performance of the prediction model and reduce the complexity of operations.
AbstractList In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of Prognostics and Health Management (PHM). The traditional approaches often require strong programming skills and repeated model building, posing a high entry barrier. To address this, in this study, we propose and implement a visualization tool that supports multiple model selections and result visualization and eliminates the need for complex coding and mathematical derivations, helping users to efficiently conduct RUL prediction with lower technical requirements. This study introduces and summarizes various novel neural network models for DL-based RUL prediction. The models are validated using the NASA and HNEI datasets, and among the validated models, the LSTM model best met the requirements for remaining useful life (RUL) prediction. In order to achieve the low-code usage of deep learning for RUL prediction, the following tasks were performed: (1) multiple models were developed using the Python (3.9.18) language and were implemented on the PyTorch (1.12.1) framework, providing users with the freedom to choose their desired model; (2) a user-friendly and low-code RUL prediction interface was built using Streamlit, enabling users to easily make predictions; (3) the visualization of prediction results was implemented using Matplotlib (3.8.2), allowing users to better understand and analyze the results. In addition, the tool offers functionalities such as automatic hyperparameter tuning to optimize the performance of the prediction model and reduce the complexity of operations.
Audience Academic
Author Zhang, Bing
Wang, Jipu
Chen, Jianhua
Nie, Yunfei
Yang, Ming
Lin, Yuhan
Chen, Sijuan
Wang, Ming
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Lin
  fullname: Lin, Yuhan
– sequence: 2
  givenname: Jianhua
  surname: Chen
  fullname: Chen, Jianhua
– sequence: 3
  givenname: Sijuan
  orcidid: 0009-0001-3072-1285
  surname: Chen
  fullname: Chen, Sijuan
– sequence: 4
  givenname: Yunfei
  surname: Nie
  fullname: Nie, Yunfei
– sequence: 5
  givenname: Ming
  orcidid: 0000-0002-9618-3061
  surname: Wang
  fullname: Wang, Ming
– sequence: 6
  givenname: Bing
  surname: Zhang
  fullname: Zhang, Bing
– sequence: 7
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
– sequence: 8
  givenname: Jipu
  surname: Wang
  fullname: Wang, Jipu
BookMark eNp9UE1LAzEQDaJgrb34CwLelK3ZpNndHGu1Kiwo0npd0mRSUrebNdml9N-bUkFPzjvMB2-GN-8CnTauAYSuUjJmTJC71qeMFJRl2QkaUErzRORpfvqnPkejEDYkhkhZwbMBWkxx6XbJzGnAHzb0ssZzL7ewc_4TG-fxA0CLS5C-sc06uZcBNH6HrbSHHi8DmL7GpTWA3zxoqzrrmkt0ZmQdYPSTh2g5f1zMnpPy9ellNi0TRQXvEsYnGcmAZDpCSE4406KQQoFKQUC-EjnhGSlM7Eg-4TQ3kmtNKFkpnSnChuj2eLdvWrnfybquWm-30u-rlFQHT6pfTyL7-shuvfvqIXTVxvW-iQIrRicTwvOC0cgaH1lrWUNlG-M6L1WEhq1V0XBj43xacFbEJwiLCzfHBeVdCB7Mfxq-Aetdffg
Cites_doi 10.1109/TIE.2020.2972443
10.1007/978-3-642-24797-2_3
10.1007/s10462-024-10726-1
10.1016/j.engappai.2025.110072
10.1109/CVPR.2015.7298935
10.1016/j.ress.2025.111064
10.3115/v1/D14-1181
10.1109/TMECH.2020.2971503
10.1109/MCSoC64144.2024.00018
10.1162/neco.1997.9.8.1735
10.1016/j.jbusres.2021.08.036
10.1016/j.ress.2017.11.021
10.1016/j.ress.2025.111176
10.1371/journal.pcbi.1012574
10.1109/5.726791
10.1016/j.eswa.2024.125808
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
GNUQQ
HCIFZ
JG9
KB.
LK8
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ADTOC
UNPAY
DOI 10.3390/pr13082366
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Materials Research Database
Materials Science Database
Biological Sciences
Biological Science Database
Materials Science Collection
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10.3390/pr13082366
A853829503
10_3390_pr13082366
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
ITC
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
7SR
8FD
ABUWG
AZQEC
DWQXO
GNUQQ
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PUEGO
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c295t-354606e06d6d69a5053d98a9cec1e9e7b9705608f1e9074527fa5dd020bcd6c03
IEDL.DBID BENPR
ISSN 2227-9717
IngestDate Sun Sep 07 11:11:42 EDT 2025
Fri Aug 29 05:19:22 EDT 2025
Mon Oct 20 16:51:15 EDT 2025
Thu Oct 16 04:44:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-354606e06d6d69a5053d98a9cec1e9e7b9705608f1e9074527fa5dd020bcd6c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-3072-1285
0000-0002-9618-3061
OpenAccessLink https://www.proquest.com/docview/3244057832?pq-origsite=%requestingapplication%&accountid=15518
PQID 3244057832
PQPubID 2032344
ParticipantIDs unpaywall_primary_10_3390_pr13082366
proquest_journals_3244057832
gale_infotracacademiconefile_A853829503
crossref_primary_10_3390_pr13082366
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Processes
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References LeCun (ref_16) 2002; 86
Francisco (ref_9) 2021; 137
ref_14
Wang (ref_4) 2025; 261
ref_13
ref_12
ref_22
ref_10
ref_21
ref_20
Gao (ref_3) 2025; 262
ref_1
ref_19
Li (ref_2) 2018; 172
Cheng (ref_8) 2020; 25
Baratchi (ref_11) 2024; 57
ref_18
ref_17
Chen (ref_7) 2020; 68
Zhou (ref_5) 2025; 263
Kim (ref_6) 2025; 143
Hochreiter (ref_15) 1997; 9
References_xml – volume: 68
  start-page: 2521
  year: 2020
  ident: ref_7
  article-title: Machine Remaining Useful Life Prediction via an Attention Based Deep Learning Approach
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2972443
– ident: ref_18
  doi: 10.1007/978-3-642-24797-2_3
– volume: 57
  start-page: 122
  year: 2024
  ident: ref_11
  article-title: Automated machine learning: Past, present and future
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-024-10726-1
– volume: 143
  start-page: 110072
  year: 2025
  ident: ref_6
  article-title: Physics-informed deep learning framework for explainable remaining useful life prediction
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2025.110072
– ident: ref_19
  doi: 10.1109/CVPR.2015.7298935
– volume: 261
  start-page: 111064
  year: 2025
  ident: ref_4
  article-title: Novel formulations and metaheuristic algorithms for predictive maintenance of aircraft engines with remaining useful life prediction
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2025.111064
– ident: ref_14
  doi: 10.3115/v1/D14-1181
– volume: 25
  start-page: 1243
  year: 2020
  ident: ref_8
  article-title: A deep learning-based remaining useful life prediction approach for bearings
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2020.2971503
– ident: ref_12
  doi: 10.1109/MCSoC64144.2024.00018
– ident: ref_13
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_15
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref_17
– ident: ref_1
– volume: 137
  start-page: 393
  year: 2021
  ident: ref_9
  article-title: Machine learning for marketing on the KNIME Hub: The development of a live repository for marketing applications
  publication-title: J. Bus. Res.
  doi: 10.1016/j.jbusres.2021.08.036
– volume: 172
  start-page: 1
  year: 2018
  ident: ref_2
  article-title: Remaining useful life estimation in prognostics using deep convolution neural networks
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.11.021
– volume: 262
  start-page: 111176
  year: 2025
  ident: ref_3
  article-title: Degradation-Aware Remaining Useful Life Prediction of Industrial Robot via Multiscale Temporal Memory Transformer Framework
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2025.111176
– ident: ref_22
– ident: ref_10
  doi: 10.1371/journal.pcbi.1012574
– ident: ref_21
– ident: ref_20
– volume: 86
  start-page: 2278
  year: 2002
  ident: ref_16
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– volume: 263
  start-page: 125808
  year: 2025
  ident: ref_5
  article-title: Remaining useful life prediction for machinery using multimodal interactive attention spatial–temporal networks with deep ensembles
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.125808
SSID ssj0000913856
Score 2.3016505
Snippet In the context of intelligent manufacturing, deep learning-based remaining useful life (RUL) prediction has become a research hotspot in the field of...
SourceID unpaywall
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2366
SubjectTerms Algorithms
Complexity
Computer programming
Data analysis
Data processing
Data science
Deep learning
Design
Factories
Intelligent manufacturing systems
Life prediction
Linear programming
Machine learning
Mathematical models
Methods
Neural networks
Optimization
Prediction models
Repair & maintenance
Useful life
Visual discrimination learning
Visualization
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6N7gH2wNgArTCQBZOAB4_EiR3nsStUExrThFY0niLHPqOJrq3aRNP26zkvCZQ-TChPkeL45PP5vpPvvgM4kFL7VJeO-9gJTvg_5kY7xVHkQlkRK-1DNfLXU3U8Tr9cyIsNeNPVwqzc3ycUjn-cL-I7QhWlHsCmkoS3e7A5Pj0b_Ahd44TIeE4BScM7ujbgH0-zft5uwcN6Ojc312YyWXEoo20YdqI0eSS_DuuqPLS3ayyN98v6BB63eJINmg2wAxs43YWtFZbBXdhp7XfJ3rck0x-ewvmAncyu-XDmkH2_XNb0j1GXp8UIyLJPiHPWsq_-5Efk7Bz7hldNQwk2XqKvJ-zk0iM7W4TLnqDgZzAefT4fHvO2wwK3IpcVT2RKAQxGytGTG0JDicu1yS3aGHPMyjwjgBRpT2-ENaTIvJHOEcQsrVM2Sp5Dbzqb4h6w2GKMqRWJtDJFYU1kPPqMRmpb5hr78LbTRjFviDQKCkDCwhV_F64P74KiimBd1cJY0xYJ0ByBp6oYELrQJHqU9GG_02XRmt2yIHQYACidUn04-KPfe-Z78X-fvYRHIvT9vUv824detajxFYGRqnzd7sbfv0nZSA
  priority: 102
  providerName: Unpaywall
Title A Low-Code Visual Framework for Deep Learning-Based Remaining Useful Life Prediction
URI https://www.proquest.com/docview/3244057832
https://doi.org/10.3390/pr13082366
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: ADMLS
  dateStart: 20150601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-9717
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913856
  issn: 2227-9717
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NTxsxEB1BOLQcqkJbkRaQpSK1PVjsetcb76FCgSagCqIIkYqeVl57XCGlyTYfQr30t3e88RLEAe3Jh7WtGc_Msz1-A3AkpXKpKi13sRWc8H_MtbIZR5GLzIg4U86_Rr4aZBej9PutvN2AQfMWxqdVNj6xdtR2avwZ-TEFfo8taAGeVH-4rxrlb1ebEho6lFawX2uKsU3YEp4ZqwVbp73B8Prh1MWzYCqZrXhKE9rvH1ezuGZsqWkS15HpqX_ehhfLSaX_3uvx-FEA6r-GVwE5su5K1TuwgZNd2H7EJ7gLO8FS5-xzoJP-8gZuuuxyes_PphbZj7v5kvroNxlZjCAr-4ZYscCz-oufUliz7Bp_r0pHsNEc3XLMLu8csuHMX-t4Vb6FUb93c3bBQy0FbkQuFzyRKW1VMMosfbkm3JPYXOncoIkxx06ZdwgKRcpRi1CFFB2npbUEJktjMxMl76A1mU5wD1hsMMbUiEQamaIwOtIOXYf-VKbMFbbhYyPHolpRZhS01fDSLtbSbsMnL-LC29Fipo0OzwFoDM9IVXQJRyiaepS0Yb_RQhEMbF6sl0Mbjh4088x475_v5QO8FL6yb53atw-txWyJBwQ3FuUhbKr--WFYSdS6-tej1mgw7P78DwHb12w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9swDCa69tD1MKzdhqXrNgHrsO1g1JYtRzoUQ_oI0jUNiiIZevNkiR4KZImbB4L-uf22UY7cFDv0VvjkgyWDpMSPEvkRYF8IWSQyt0ERWR4Q_o8CLW0aIFc8NTxKZeGqkS96aWeQ_LgW12vwt66FcWmV9Z5YbdR2bNwZ-QE5foctyAC_l7eB6xrlblfrFhrat1awhxXFmC_sOMe7BYVw08OzE9L3Z87bp_3jTuC7DASGKzELYpEQiMcwtfQoTYggtkpqZdBEqLCZqyaBhFAW9Eb-VvBmoYW1BLNyY1MTxjTuM9hI4kRR8LdxdNq7vLo_5XGsm1KkS17UOFbhQTmJKoaYipZx5Qn_9wdbsDkflfpuoYfDBw6v_RJeeKTKWkvT2oY1HO3A1gP-wh3Y9jvDlH319NXfXkG_xbrjRXA8tsh-3kznNEa7zgBjBJHZCWLJPK_r7-CI3KhlV_hn2aqCDaZYzIese1Mgu5y4ayRnOq9h8CRSfQPro_EI3wKLDEaYGB4LIxLkRoe6wKJJX0qTK4kN-FTLMSuXFB0ZhTZO2tlK2g344kScuXU7m2ijffkBzeEYsLIW4RZJvx7GDdirtZD5BT3NVubXgP17zTwy3-7jo3yEzU7_opt1z3rn7-A5d12Fq7TCPVifTeb4nqDOLP_g7YnBr6c24X_OMg_M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwEB2VIgE9IFpALBSwRBFwsDZx4sQ5ILR0CS1dqgp1q96CY0-qSu1u2Oxq1b_Gr2Ocj27FobcqpxxiR-Nnz7M98wZgR0pVhCq3vPCt4MT_fa6VjTiKRERG-JEqXDbyz8Nobxz-OJWna_C3y4VxYZXdmlgv1HZq3Bl5nxy_4xYEwH7RhkUcDdMv5R_uKki5m9aunEYDkQO8WtL2rfq8P6Sxfi9E-u14d4-3FQa4EYmc80CGRODRiyw9iSY2ENhE6cSg8THBOE9iIgieKuiNfK0UcaGltUSxcmMj4wXU7j24HzsVd5elnn6_Pt9xeptKRo0iahAkXr-c-bU2TC3IuPKB_3uCDXi4mJT6aqkvLm64uvQJPG45Khs0oNqENZxswcYN5cIt2GzXhIp9bIWrPz2F4wEbTZd8d2qRnZxXC2oj7WK_GJFjNkQsWavoesa_kgO17BdeNkUq2LhCsjkbnRfIjmbuAsmB5hmM78Smz2F9Mp3gC2C-QR9DIwJpZIjCaE8XWMT0pTJ5orAH7zo7ZmUjzpHRpsZZO1tZuwcfnIkzN2PnM210m3hAfTjtq2xAjEXRr3tBD7a7UcjaqVxlK-D1YOd6ZG7p7-XtrbyFBwTcbLR_ePAKHglXTriOJ9yG9flsga-J48zzNzWYGPy-a_T-A1wADWY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwED6N7gH2wNgArTCQBZOAB4_EiR3nsStUExrThFY0niLHPqOJrq3aRNP26zkvCZQ-TChPkeL45PP5vpPvvgM4kFL7VJeO-9gJTvg_5kY7xVHkQlkRK-1DNfLXU3U8Tr9cyIsNeNPVwqzc3ycUjn-cL-I7QhWlHsCmkoS3e7A5Pj0b_Ahd44TIeE4BScM7ujbgH0-zft5uwcN6Ojc312YyWXEoo20YdqI0eSS_DuuqPLS3ayyN98v6BB63eJINmg2wAxs43YWtFZbBXdhp7XfJ3rck0x-ewvmAncyu-XDmkH2_XNb0j1GXp8UIyLJPiHPWsq_-5Efk7Bz7hldNQwk2XqKvJ-zk0iM7W4TLnqDgZzAefT4fHvO2wwK3IpcVT2RKAQxGytGTG0JDicu1yS3aGHPMyjwjgBRpT2-ENaTIvJHOEcQsrVM2Sp5Dbzqb4h6w2GKMqRWJtDJFYU1kPPqMRmpb5hr78LbTRjFviDQKCkDCwhV_F64P74KiimBd1cJY0xYJ0ByBp6oYELrQJHqU9GG_02XRmt2yIHQYACidUn04-KPfe-Z78X-fvYRHIvT9vUv824detajxFYGRqnzd7sbfv0nZSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Low-Code+Visual+Framework+for+Deep+Learning-Based+Remaining+Useful+Life+Prediction&rft.jtitle=Processes&rft.au=Lin%2C+Yuhan&rft.au=Chen%2C+Jianhua&rft.au=Chen+Sijuan&rft.au=Nie+Yunfei&rft.date=2025-08-01&rft.pub=MDPI+AG&rft.eissn=2227-9717&rft.volume=13&rft.issue=8&rft.spage=2366&rft_id=info:doi/10.3390%2Fpr13082366&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon