Photonics Inverse Design: Pairing Deep Neural Networks With Evolutionary Algorithms

Deep Neural Networks (DNN) have shown early promise for inverse design with their ability to arrive at working designs much faster than conventional optimization techniques. Current approaches, however, require complicated workflows involving training more than one DNN to address the problem of non-...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of selected topics in quantum electronics Vol. 26; no. 1; pp. 1 - 8
Main Author Hegde, Ravi S.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1077-260X
1558-4542
DOI10.1109/JSTQE.2019.2933796

Cover

Abstract Deep Neural Networks (DNN) have shown early promise for inverse design with their ability to arrive at working designs much faster than conventional optimization techniques. Current approaches, however, require complicated workflows involving training more than one DNN to address the problem of non-uniqueness in the inversion and the emphasis on speed has overshadowed the far more important consideration of solution optimality. We propose and demonstrate a simplified workflow that pairs forward-model DNN with evolutionary algorithms which are widely used for inverse gg design. Our evolutionary search in forward-model space is global and exploits the massive parallelism of modern GPUs for a speedy inversion. We propose a hybrid approach where the DNN is used only for preselection and initialization that is more effective at optimization than a standalone DNN and performs nearly as well as a vanilla evolutionary search with a significantly reduced function evaluation budget. We finally show the utility of an iterative procedure for building the training dataset which further boosts the effectiveness of this approach.
AbstractList Deep Neural Networks (DNN) have shown early promise for inverse design with their ability to arrive at working designs much faster than conventional optimization techniques. Current approaches, however, require complicated workflows involving training more than one DNN to address the problem of non-uniqueness in the inversion and the emphasis on speed has overshadowed the far more important consideration of solution optimality. We propose and demonstrate a simplified workflow that pairs forward-model DNN with evolutionary algorithms which are widely used for inverse gg design. Our evolutionary search in forward-model space is global and exploits the massive parallelism of modern GPUs for a speedy inversion. We propose a hybrid approach where the DNN is used only for preselection and initialization that is more effective at optimization than a standalone DNN and performs nearly as well as a vanilla evolutionary search with a significantly reduced function evaluation budget. We finally show the utility of an iterative procedure for building the training dataset which further boosts the effectiveness of this approach.
Author Hegde, Ravi S.
Author_xml – sequence: 1
  givenname: Ravi S.
  orcidid: 0000-0002-0418-5861
  surname: Hegde
  fullname: Hegde, Ravi S.
  email: hegder@iitgn.ac.in
  organization: Department of Electrical Engineering, Indian Institute of Technology, Gandhinagar, India
BookMark eNp9kE1PAjEQhhuDiYD-Ab1s4nmx2_1qvRFExRDFgNHbprSzUFy22HYx_nuLEA8ePM1H5pmZ9-2gVq1rQOg8wr0owuzqYTp7HvYIjliPsDjOWXaE2lGa0jBJE9LyOc7zkGT47QR1rF1hjGlCcRtNJ0vtdK2EDUb1FoyF4AasWtTXwYQro-qFr2ETPEJjeOWD-9Tm3Qavyi2D4VZXjVO65uYr6FcLbXx3bU_RcckrC2eH2EUvt8PZ4D4cP92NBv1xKAhLXRjJrGQYMJY0ZiLGc5ELRkoRZZKCSARwKmUpxZwzkkBSSplQoFxyynOS4zLuosv93o3RHw1YV6x0Y2p_siAk90u9dOKn6H5KGG2tgbIQyvHd185wVRURLnYWFj8WFjsLi4OFHiV_0I1Ray_2f-hiDykA-AVoznCW0PgbiMqBNg
CODEN IJSQEN
CitedBy_id crossref_primary_10_3390_app11093822
crossref_primary_10_1021_acs_nanolett_9b03971
crossref_primary_10_1021_acsbiomaterials_4c01986
crossref_primary_10_1515_nanoph_2022_0715
crossref_primary_10_1515_nanoph_2023_0527
crossref_primary_10_1016_j_yofte_2024_103998
crossref_primary_10_1364_OE_387504
crossref_primary_10_1016_j_engappai_2024_109853
crossref_primary_10_1103_PhysRevB_106_085408
crossref_primary_10_1364_OE_422119
crossref_primary_10_1016_j_jmat_2020_02_011
crossref_primary_10_1021_acsphotonics_4c02081
crossref_primary_10_1364_OE_389231
crossref_primary_10_1038_s41467_025_56122_3
crossref_primary_10_1364_OE_389474
crossref_primary_10_1364_OSAC_420977
crossref_primary_10_1515_nanoph_2022_0692
crossref_primary_10_1109_JPHOT_2023_3258071
crossref_primary_10_1117_1_JNP_17_036006
crossref_primary_10_3390_nano13233073
crossref_primary_10_1002_aisy_201900132
crossref_primary_10_3390_photonics10070852
crossref_primary_10_1021_acsphotonics_2c00968
crossref_primary_10_1039_D0CP05882C
crossref_primary_10_1364_AO_522776
crossref_primary_10_1038_s41566_020_0685_y
crossref_primary_10_1109_JLT_2021_3050083
crossref_primary_10_1364_OL_458746
crossref_primary_10_1021_acsphotonics_2c01331
crossref_primary_10_1038_s41598_021_92996_1
crossref_primary_10_1016_j_cossms_2023_101129
crossref_primary_10_1364_PRJ_415960
crossref_primary_10_1016_j_optlastec_2022_108478
crossref_primary_10_1364_OE_523907
crossref_primary_10_1002_adfm_202101748
crossref_primary_10_1109_JSTQE_2025_3535573
crossref_primary_10_1364_AO_514987
crossref_primary_10_1002_advs_202002923
crossref_primary_10_1039_C9NA00656G
crossref_primary_10_29026_oea_2022_210061
crossref_primary_10_1021_acsnano_0c09424
crossref_primary_10_1007_s00521_020_05061_9
crossref_primary_10_1109_TMTT_2023_3276202
crossref_primary_10_1016_j_engappai_2024_109971
crossref_primary_10_1016_j_photonics_2022_101070
crossref_primary_10_1515_nanoph_2021_0540
crossref_primary_10_1364_OME_409186
crossref_primary_10_1016_j_cma_2025_117848
Cites_doi 10.1364/AO.32.005417
10.1364/AO.51.008277
10.1063/1.5033327
10.1364/JOSA.55.001205
10.1016/j.tsf.2007.09.016
10.1364/AO.45.001507
10.1126/sciadv.aar4206
10.1002/adom.201600250
10.1364/PRJ.7.000368
10.1021/acsnano.8b03569
10.1021/acs.nanolett.8b03171
10.1364/AO.35.000644
10.1364/AO.40.003256
10.1038/nature14539
10.1364/AO.32.004265
10.1364/AO.53.000A88
10.1080/09500340.2018.1552331
10.1023/A:1008202821328
10.1007/s00500-003-0328-5
10.1038/s41565-018-0346-1
10.2528/PIER14010809
10.1515/nanoph-2018-0183
10.1021/acsphotonics.7b01377
10.1007/s11082-018-1453-9
10.1038/s41377-018-0060-7
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7U5
8FD
L7M
DOI 10.1109/JSTQE.2019.2933796
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Physics
EISSN 1558-4542
EndPage 8
ExternalDocumentID 10_1109_JSTQE_2019_2933796
8790648
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AFFNX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
H~9
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
7U5
8FD
L7M
ID FETCH-LOGICAL-c295t-1d6f90e00d839c30bc7c92fc16d8ec4cea8ddfdcba924e4fdd48e8ada8a7270f3
IEDL.DBID RIE
ISSN 1077-260X
IngestDate Mon Jun 30 10:32:09 EDT 2025
Wed Oct 01 04:42:59 EDT 2025
Thu Apr 24 22:50:47 EDT 2025
Wed Aug 27 02:41:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-1d6f90e00d839c30bc7c92fc16d8ec4cea8ddfdcba924e4fdd48e8ada8a7270f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0418-5861
PQID 2278395422
PQPubID 75740
PageCount 8
ParticipantIDs crossref_citationtrail_10_1109_JSTQE_2019_2933796
ieee_primary_8790648
crossref_primary_10_1109_JSTQE_2019_2933796
proquest_journals_2278395422
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-Jan.-Feb.
2020-1-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-Jan.-Feb.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal of selected topics in quantum electronics
PublicationTitleAbbrev JSTQE
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
byrnes (ref30) 2018
ref36
ref14
ref11
ref10
ref17
hegde (ref33) 2018
gandhi (ref13) 2019; 66
ref19
gal (ref16) 2016
ref18
tahersima (ref12) 2018
lecun (ref3) 2015; 521
ref24
chollet (ref31) 2015
ref23
ref26
ref25
peter (ref28) 2018
ref20
ref22
ramachandran (ref34) 2017
ref21
ref27
ref29
ref8
ref7
ref9
ref4
(ref1) 2003
ref6
ref5
langhabel (ref2) 2016
chen (ref32) 2015
schwartz-ziv (ref15) 2017
References_xml – ident: ref20
  doi: 10.1364/AO.32.005417
– ident: ref21
  doi: 10.1364/AO.51.008277
– ident: ref11
  doi: 10.1063/1.5033327
– ident: ref35
  doi: 10.1364/JOSA.55.001205
– year: 2015
  ident: ref31
  article-title: Keras: The python deep learning library
  publication-title: Github Repository
– year: 2016
  ident: ref16
  article-title: Uncertainty in deep learning
– ident: ref25
  doi: 10.1016/j.tsf.2007.09.016
– ident: ref17
  doi: 10.1364/AO.45.001507
– ident: ref14
  doi: 10.1126/sciadv.aar4206
– ident: ref36
  doi: 10.1002/adom.201600250
– ident: ref6
  doi: 10.1364/PRJ.7.000368
– ident: ref10
  doi: 10.1021/acsnano.8b03569
– ident: ref5
  doi: 10.1021/acs.nanolett.8b03171
– year: 2018
  ident: ref28
  article-title: Using deep learning as a surrogate model in multi-objective evolutionary algorithms
– start-page: 1
  year: 2018
  ident: ref30
  article-title: Multilayer optical calculations
– ident: ref19
  doi: 10.1364/AO.35.000644
– start-page: 1
  year: 2018
  ident: ref12
  article-title: Deep neural network inverse design of integrated nanophotonic devices
– year: 2018
  ident: ref33
  article-title: DeepMie - Deep learning electromagnetic scattering
  publication-title: Bitbucket Repository
– ident: ref23
  doi: 10.1364/AO.40.003256
– volume: 521
  start-page: 436
  year: 2015
  ident: ref3
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref18
  doi: 10.1364/AO.32.004265
– start-page: 1
  year: 2017
  ident: ref34
  article-title: Searching for activation functions
– ident: ref26
  doi: 10.1364/AO.53.000A88
– volume: 66
  start-page: 557
  year: 2019
  ident: ref13
  article-title: Modal classification in optical waveguides using deep learning
  publication-title: J Modern Opt
  doi: 10.1080/09500340.2018.1552331
– ident: ref27
  doi: 10.1023/A:1008202821328
– ident: ref29
  doi: 10.1007/s00500-003-0328-5
– start-page: 1
  year: 2015
  ident: ref32
  article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems
– ident: ref8
  doi: 10.1038/s41565-018-0346-1
– ident: ref22
  doi: 10.2528/PIER14010809
– ident: ref9
  doi: 10.1515/nanoph-2018-0183
– year: 2003
  ident: ref1
  publication-title: Dynamic Programming
– start-page: 1
  year: 2017
  ident: ref15
  article-title: Opening the black box of deep neural networks via information
– ident: ref4
  doi: 10.1021/acsphotonics.7b01377
– start-page: 1
  year: 2016
  ident: ref2
  article-title: Learning to optimise: Using Bayesian deep learning for transfer learning in optimisation
  publication-title: Proc 3rd Workshop Bayesian Deep Learn
– ident: ref24
  doi: 10.1007/s11082-018-1453-9
– ident: ref7
  doi: 10.1038/s41377-018-0060-7
SSID ssj0008480
Score 2.5136366
Snippet Deep Neural Networks (DNN) have shown early promise for inverse design with their ability to arrive at working designs much faster than conventional...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms artificial intelligence
Artificial neural networks
deep learning
Evolutionary algorithms
Evolutionary computation
evolutionary optimization
Genetic algorithms
Inverse design
Iterative methods
Neural networks
Optical system design
optics and lens design
Optimization
Optimization techniques
Photonics
Python
Sociology
Statistics
thin films
Training
Workflow
Title Photonics Inverse Design: Pairing Deep Neural Networks With Evolutionary Algorithms
URI https://ieeexplore.ieee.org/document/8790648
https://www.proquest.com/docview/2278395422
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-4542
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008480
  issn: 1077-260X
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4B0iT2MLayaR0_5Ie9jRQ3cWKbNwRFaBKIaaD1LYrt80BjLWrSSeOv5-ykFdoQ4i2J7MTSd_Z959x9BvhsnCyIB6SJEblMBHEOmnM6TYY-L5ThRhof6p3PzovTK_F1nI9XYG9ZC4OIMfkMB-Ey_st3UzsPW2X79BbyoGoVVqUq2lqt5aqrhGqVB6RMiKOPFwUyXO-TiX8bhSwuPSDnlskg0P_ICcVTVf5biqN_OdmAs8XI2rSSX4N5Ywb2_h_RxpcO_S286YgmO2wt4x2s4KQHrx_JD_bgVUz_tHUP1gPnbCWbN-H7xfW0CYq5NQsqHLMa2XHM8zhgF9VN6Er3eMeCrgd94bxNJK_Zj5vmmo3-dLZczf6yw9uf0xk9_V2_h6uT0eXRadKdvZDYVOdNMnSF1xw5d8SgbMaNlVan3g4Lp9AKi5VyzjtrKgrgUHjnhEJVuUpVxIi4zz7A2mQ6wY_AKIRDCsN0pbwUFM0o1J7naL3LvMkL3YfhAozSdsLk4XyM2zIGKFyXEcAyAFh2APbhy7LPXSvL8WzrzYDIsmUHRh-2F5iX3cyty1AanOlcpOmnp3ttwXoaYu64DbMNa81sjjtETBqzGy3yAf6j38E
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcR44Ec3RGGAH3iDdG5iJzZvE3QqsFZDbKJvUWyf2cRopyZFgr-es5NWEyDEWxLZiaXv7PvOufsM8MK4IicekCZGyCIRxDlozuk0GXqZK8NNYXyod55M8_GZeD-Tsy14tamFQcSYfIaDcBn_5buFXYWtsgN6C3lQdQNuSiGEbKu1NuuuEqrVHiiKhFj6bF0iw_UBGfnHUcjj0gNyb1kRJPqvuaF4rsofi3H0MEf3YLIeW5tY8nWwaszA_vxNtvF_B38f7nZUkx22tvEAtnDegzvXBAh7cCsmgNq6BzuBdbaizbvw6eR80QTN3JoFHY5ljextzPR4zU6qi9CV7vGKBWUP-sK0TSWv2eeL5pyNvnfWXC1_sMPLL4slPf1W78HZ0ej0zTjpTl9IbKplkwxd7jVHzh1xKJtxYwurU2-HuVNohcVKOeedNRWFcCi8c0KhqlylKuJE3GcPYXu-mOMjYBTEIQViulK-EBTPKNSeS7TeZd7IXPdhuAajtJ00eTgh47KMIQrXZQSwDACWHYB9eLnpc9UKc_yz9W5AZNOyA6MP-2vMy27u1mUoDs60FGn6-O-9nsPt8enkuDx-N_3wBHbSEIHHTZl92G6WK3xKNKUxz6J1_gLb2uMO
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonics+Inverse+Design%3A+Pairing+Deep+Neural+Networks+With+Evolutionary+Algorithms&rft.jtitle=IEEE+journal+of+selected+topics+in+quantum+electronics&rft.au=Hegde%2C+Ravi+S&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-260X&rft.eissn=1558-4542&rft.volume=26&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1109%2FJSTQE.2019.2933796&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-260X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-260X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-260X&client=summon