Photonics Inverse Design: Pairing Deep Neural Networks With Evolutionary Algorithms
Deep Neural Networks (DNN) have shown early promise for inverse design with their ability to arrive at working designs much faster than conventional optimization techniques. Current approaches, however, require complicated workflows involving training more than one DNN to address the problem of non-...
Saved in:
| Published in | IEEE journal of selected topics in quantum electronics Vol. 26; no. 1; pp. 1 - 8 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1077-260X 1558-4542 |
| DOI | 10.1109/JSTQE.2019.2933796 |
Cover
| Abstract | Deep Neural Networks (DNN) have shown early promise for inverse design with their ability to arrive at working designs much faster than conventional optimization techniques. Current approaches, however, require complicated workflows involving training more than one DNN to address the problem of non-uniqueness in the inversion and the emphasis on speed has overshadowed the far more important consideration of solution optimality. We propose and demonstrate a simplified workflow that pairs forward-model DNN with evolutionary algorithms which are widely used for inverse gg design. Our evolutionary search in forward-model space is global and exploits the massive parallelism of modern GPUs for a speedy inversion. We propose a hybrid approach where the DNN is used only for preselection and initialization that is more effective at optimization than a standalone DNN and performs nearly as well as a vanilla evolutionary search with a significantly reduced function evaluation budget. We finally show the utility of an iterative procedure for building the training dataset which further boosts the effectiveness of this approach. |
|---|---|
| AbstractList | Deep Neural Networks (DNN) have shown early promise for inverse design with their ability to arrive at working designs much faster than conventional optimization techniques. Current approaches, however, require complicated workflows involving training more than one DNN to address the problem of non-uniqueness in the inversion and the emphasis on speed has overshadowed the far more important consideration of solution optimality. We propose and demonstrate a simplified workflow that pairs forward-model DNN with evolutionary algorithms which are widely used for inverse gg design. Our evolutionary search in forward-model space is global and exploits the massive parallelism of modern GPUs for a speedy inversion. We propose a hybrid approach where the DNN is used only for preselection and initialization that is more effective at optimization than a standalone DNN and performs nearly as well as a vanilla evolutionary search with a significantly reduced function evaluation budget. We finally show the utility of an iterative procedure for building the training dataset which further boosts the effectiveness of this approach. |
| Author | Hegde, Ravi S. |
| Author_xml | – sequence: 1 givenname: Ravi S. orcidid: 0000-0002-0418-5861 surname: Hegde fullname: Hegde, Ravi S. email: hegder@iitgn.ac.in organization: Department of Electrical Engineering, Indian Institute of Technology, Gandhinagar, India |
| BookMark | eNp9kE1PAjEQhhuDiYD-Ab1s4nmx2_1qvRFExRDFgNHbprSzUFy22HYx_nuLEA8ePM1H5pmZ9-2gVq1rQOg8wr0owuzqYTp7HvYIjliPsDjOWXaE2lGa0jBJE9LyOc7zkGT47QR1rF1hjGlCcRtNJ0vtdK2EDUb1FoyF4AasWtTXwYQro-qFr2ETPEJjeOWD-9Tm3Qavyi2D4VZXjVO65uYr6FcLbXx3bU_RcckrC2eH2EUvt8PZ4D4cP92NBv1xKAhLXRjJrGQYMJY0ZiLGc5ELRkoRZZKCSARwKmUpxZwzkkBSSplQoFxyynOS4zLuosv93o3RHw1YV6x0Y2p_siAk90u9dOKn6H5KGG2tgbIQyvHd185wVRURLnYWFj8WFjsLi4OFHiV_0I1Ray_2f-hiDykA-AVoznCW0PgbiMqBNg |
| CODEN | IJSQEN |
| CitedBy_id | crossref_primary_10_3390_app11093822 crossref_primary_10_1021_acs_nanolett_9b03971 crossref_primary_10_1021_acsbiomaterials_4c01986 crossref_primary_10_1515_nanoph_2022_0715 crossref_primary_10_1515_nanoph_2023_0527 crossref_primary_10_1016_j_yofte_2024_103998 crossref_primary_10_1364_OE_387504 crossref_primary_10_1016_j_engappai_2024_109853 crossref_primary_10_1103_PhysRevB_106_085408 crossref_primary_10_1364_OE_422119 crossref_primary_10_1016_j_jmat_2020_02_011 crossref_primary_10_1021_acsphotonics_4c02081 crossref_primary_10_1364_OE_389231 crossref_primary_10_1038_s41467_025_56122_3 crossref_primary_10_1364_OE_389474 crossref_primary_10_1364_OSAC_420977 crossref_primary_10_1515_nanoph_2022_0692 crossref_primary_10_1109_JPHOT_2023_3258071 crossref_primary_10_1117_1_JNP_17_036006 crossref_primary_10_3390_nano13233073 crossref_primary_10_1002_aisy_201900132 crossref_primary_10_3390_photonics10070852 crossref_primary_10_1021_acsphotonics_2c00968 crossref_primary_10_1039_D0CP05882C crossref_primary_10_1364_AO_522776 crossref_primary_10_1038_s41566_020_0685_y crossref_primary_10_1109_JLT_2021_3050083 crossref_primary_10_1364_OL_458746 crossref_primary_10_1021_acsphotonics_2c01331 crossref_primary_10_1038_s41598_021_92996_1 crossref_primary_10_1016_j_cossms_2023_101129 crossref_primary_10_1364_PRJ_415960 crossref_primary_10_1016_j_optlastec_2022_108478 crossref_primary_10_1364_OE_523907 crossref_primary_10_1002_adfm_202101748 crossref_primary_10_1109_JSTQE_2025_3535573 crossref_primary_10_1364_AO_514987 crossref_primary_10_1002_advs_202002923 crossref_primary_10_1039_C9NA00656G crossref_primary_10_29026_oea_2022_210061 crossref_primary_10_1021_acsnano_0c09424 crossref_primary_10_1007_s00521_020_05061_9 crossref_primary_10_1109_TMTT_2023_3276202 crossref_primary_10_1016_j_engappai_2024_109971 crossref_primary_10_1016_j_photonics_2022_101070 crossref_primary_10_1515_nanoph_2021_0540 crossref_primary_10_1364_OME_409186 crossref_primary_10_1016_j_cma_2025_117848 |
| Cites_doi | 10.1364/AO.32.005417 10.1364/AO.51.008277 10.1063/1.5033327 10.1364/JOSA.55.001205 10.1016/j.tsf.2007.09.016 10.1364/AO.45.001507 10.1126/sciadv.aar4206 10.1002/adom.201600250 10.1364/PRJ.7.000368 10.1021/acsnano.8b03569 10.1021/acs.nanolett.8b03171 10.1364/AO.35.000644 10.1364/AO.40.003256 10.1038/nature14539 10.1364/AO.32.004265 10.1364/AO.53.000A88 10.1080/09500340.2018.1552331 10.1023/A:1008202821328 10.1007/s00500-003-0328-5 10.1038/s41565-018-0346-1 10.2528/PIER14010809 10.1515/nanoph-2018-0183 10.1021/acsphotonics.7b01377 10.1007/s11082-018-1453-9 10.1038/s41377-018-0060-7 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7U5 8FD L7M |
| DOI | 10.1109/JSTQE.2019.2933796 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Solid State and Superconductivity Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Statistics Physics |
| EISSN | 1558-4542 |
| EndPage | 8 |
| ExternalDocumentID | 10_1109_JSTQE_2019_2933796 8790648 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AFFNX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ H~9 IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TN5 VH1 AAYXX CITATION 7SP 7U5 8FD L7M |
| ID | FETCH-LOGICAL-c295t-1d6f90e00d839c30bc7c92fc16d8ec4cea8ddfdcba924e4fdd48e8ada8a7270f3 |
| IEDL.DBID | RIE |
| ISSN | 1077-260X |
| IngestDate | Mon Jun 30 10:32:09 EDT 2025 Wed Oct 01 04:42:59 EDT 2025 Thu Apr 24 22:50:47 EDT 2025 Wed Aug 27 02:41:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c295t-1d6f90e00d839c30bc7c92fc16d8ec4cea8ddfdcba924e4fdd48e8ada8a7270f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0418-5861 |
| PQID | 2278395422 |
| PQPubID | 75740 |
| PageCount | 8 |
| ParticipantIDs | crossref_citationtrail_10_1109_JSTQE_2019_2933796 ieee_primary_8790648 crossref_primary_10_1109_JSTQE_2019_2933796 proquest_journals_2278395422 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-Jan.-Feb. 2020-1-00 20200101 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-Jan.-Feb. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE journal of selected topics in quantum electronics |
| PublicationTitleAbbrev | JSTQE |
| PublicationYear | 2020 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 byrnes (ref30) 2018 ref36 ref14 ref11 ref10 ref17 hegde (ref33) 2018 gandhi (ref13) 2019; 66 ref19 gal (ref16) 2016 ref18 tahersima (ref12) 2018 lecun (ref3) 2015; 521 ref24 chollet (ref31) 2015 ref23 ref26 ref25 peter (ref28) 2018 ref20 ref22 ramachandran (ref34) 2017 ref21 ref27 ref29 ref8 ref7 ref9 ref4 (ref1) 2003 ref6 ref5 langhabel (ref2) 2016 chen (ref32) 2015 schwartz-ziv (ref15) 2017 |
| References_xml | – ident: ref20 doi: 10.1364/AO.32.005417 – ident: ref21 doi: 10.1364/AO.51.008277 – ident: ref11 doi: 10.1063/1.5033327 – ident: ref35 doi: 10.1364/JOSA.55.001205 – year: 2015 ident: ref31 article-title: Keras: The python deep learning library publication-title: Github Repository – year: 2016 ident: ref16 article-title: Uncertainty in deep learning – ident: ref25 doi: 10.1016/j.tsf.2007.09.016 – ident: ref17 doi: 10.1364/AO.45.001507 – ident: ref14 doi: 10.1126/sciadv.aar4206 – ident: ref36 doi: 10.1002/adom.201600250 – ident: ref6 doi: 10.1364/PRJ.7.000368 – ident: ref10 doi: 10.1021/acsnano.8b03569 – ident: ref5 doi: 10.1021/acs.nanolett.8b03171 – year: 2018 ident: ref28 article-title: Using deep learning as a surrogate model in multi-objective evolutionary algorithms – start-page: 1 year: 2018 ident: ref30 article-title: Multilayer optical calculations – ident: ref19 doi: 10.1364/AO.35.000644 – start-page: 1 year: 2018 ident: ref12 article-title: Deep neural network inverse design of integrated nanophotonic devices – year: 2018 ident: ref33 article-title: DeepMie - Deep learning electromagnetic scattering publication-title: Bitbucket Repository – ident: ref23 doi: 10.1364/AO.40.003256 – volume: 521 start-page: 436 year: 2015 ident: ref3 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref18 doi: 10.1364/AO.32.004265 – start-page: 1 year: 2017 ident: ref34 article-title: Searching for activation functions – ident: ref26 doi: 10.1364/AO.53.000A88 – volume: 66 start-page: 557 year: 2019 ident: ref13 article-title: Modal classification in optical waveguides using deep learning publication-title: J Modern Opt doi: 10.1080/09500340.2018.1552331 – ident: ref27 doi: 10.1023/A:1008202821328 – ident: ref29 doi: 10.1007/s00500-003-0328-5 – start-page: 1 year: 2015 ident: ref32 article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems – ident: ref8 doi: 10.1038/s41565-018-0346-1 – ident: ref22 doi: 10.2528/PIER14010809 – ident: ref9 doi: 10.1515/nanoph-2018-0183 – year: 2003 ident: ref1 publication-title: Dynamic Programming – start-page: 1 year: 2017 ident: ref15 article-title: Opening the black box of deep neural networks via information – ident: ref4 doi: 10.1021/acsphotonics.7b01377 – start-page: 1 year: 2016 ident: ref2 article-title: Learning to optimise: Using Bayesian deep learning for transfer learning in optimisation publication-title: Proc 3rd Workshop Bayesian Deep Learn – ident: ref24 doi: 10.1007/s11082-018-1453-9 – ident: ref7 doi: 10.1038/s41377-018-0060-7 |
| SSID | ssj0008480 |
| Score | 2.5136366 |
| Snippet | Deep Neural Networks (DNN) have shown early promise for inverse design with their ability to arrive at working designs much faster than conventional... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | artificial intelligence Artificial neural networks deep learning Evolutionary algorithms Evolutionary computation evolutionary optimization Genetic algorithms Inverse design Iterative methods Neural networks Optical system design optics and lens design Optimization Optimization techniques Photonics Python Sociology Statistics thin films Training Workflow |
| Title | Photonics Inverse Design: Pairing Deep Neural Networks With Evolutionary Algorithms |
| URI | https://ieeexplore.ieee.org/document/8790648 https://www.proquest.com/docview/2278395422 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-4542 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008480 issn: 1077-260X databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fT9swED4B0iT2MLayaR0_5Ie9jRQ3cWKbNwRFaBKIaaD1LYrt80BjLWrSSeOv5-ykFdoQ4i2J7MTSd_Z959x9BvhsnCyIB6SJEblMBHEOmnM6TYY-L5ThRhof6p3PzovTK_F1nI9XYG9ZC4OIMfkMB-Ey_st3UzsPW2X79BbyoGoVVqUq2lqt5aqrhGqVB6RMiKOPFwUyXO-TiX8bhSwuPSDnlskg0P_ICcVTVf5biqN_OdmAs8XI2rSSX4N5Ywb2_h_RxpcO_S286YgmO2wt4x2s4KQHrx_JD_bgVUz_tHUP1gPnbCWbN-H7xfW0CYq5NQsqHLMa2XHM8zhgF9VN6Er3eMeCrgd94bxNJK_Zj5vmmo3-dLZczf6yw9uf0xk9_V2_h6uT0eXRadKdvZDYVOdNMnSF1xw5d8SgbMaNlVan3g4Lp9AKi5VyzjtrKgrgUHjnhEJVuUpVxIi4zz7A2mQ6wY_AKIRDCsN0pbwUFM0o1J7naL3LvMkL3YfhAozSdsLk4XyM2zIGKFyXEcAyAFh2APbhy7LPXSvL8WzrzYDIsmUHRh-2F5iX3cyty1AanOlcpOmnp3ttwXoaYu64DbMNa81sjjtETBqzGy3yAf6j38E |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED6NIcR44Ec3RGGAH3iDdG5iJzZvE3QqsFZDbKJvUWyf2cRopyZFgr-es5NWEyDEWxLZiaXv7PvOufsM8MK4IicekCZGyCIRxDlozuk0GXqZK8NNYXyod55M8_GZeD-Tsy14tamFQcSYfIaDcBn_5buFXYWtsgN6C3lQdQNuSiGEbKu1NuuuEqrVHiiKhFj6bF0iw_UBGfnHUcjj0gNyb1kRJPqvuaF4rsofi3H0MEf3YLIeW5tY8nWwaszA_vxNtvF_B38f7nZUkx22tvEAtnDegzvXBAh7cCsmgNq6BzuBdbaizbvw6eR80QTN3JoFHY5ljextzPR4zU6qi9CV7vGKBWUP-sK0TSWv2eeL5pyNvnfWXC1_sMPLL4slPf1W78HZ0ej0zTjpTl9IbKplkwxd7jVHzh1xKJtxYwurU2-HuVNohcVKOeedNRWFcCi8c0KhqlylKuJE3GcPYXu-mOMjYBTEIQViulK-EBTPKNSeS7TeZd7IXPdhuAajtJ00eTgh47KMIQrXZQSwDACWHYB9eLnpc9UKc_yz9W5AZNOyA6MP-2vMy27u1mUoDs60FGn6-O-9nsPt8enkuDx-N_3wBHbSEIHHTZl92G6WK3xKNKUxz6J1_gLb2uMO |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photonics+Inverse+Design%3A+Pairing+Deep+Neural+Networks+With+Evolutionary+Algorithms&rft.jtitle=IEEE+journal+of+selected+topics+in+quantum+electronics&rft.au=Hegde%2C+Ravi+S&rft.date=2020-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1077-260X&rft.eissn=1558-4542&rft.volume=26&rft.issue=1&rft.spage=1&rft_id=info:doi/10.1109%2FJSTQE.2019.2933796&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-260X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-260X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-260X&client=summon |