A Bi-Hemisphere Domain Adversarial Neural Network Model for EEG Emotion Recognition

In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG) emotion recognition. The BiDANN model is inspired by the neuroscience findings that the left and right hemispheres of human's brain are...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on affective computing Vol. 12; no. 2; pp. 494 - 504
Main Authors Li, Yang, Zheng, Wenming, Zong, Yuan, Cui, Zhen, Zhang, Tong, Zhou, Xiaoyan
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1949-3045
1949-3045
DOI10.1109/TAFFC.2018.2885474

Cover

Abstract In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG) emotion recognition. The BiDANN model is inspired by the neuroscience findings that the left and right hemispheres of human's brain are asymmetric to the emotional response. It contains a global and two local domain discriminators that work adversarially with a classifier to learn discriminative emotional features for each hemisphere. At the same time, it tries to reduce the possible domain differences in each hemisphere between the source and target domains so as to improve the generality of the recognition model. In addition, we also propose an improved version of BiDANN, denoted by BiDANN-S, for subject-independent EEG emotion recognition problem by lowering the influences of the personal information of subjects to the EEG emotion recognition. Extensive experiments on the SEED database are conducted to evaluate the performance of both BiDANN and BiDANN-S. The experimental results have shown that the proposed BiDANN and BiDANN models achieve state-of-the-art performance in the EEG emotion recognition.
AbstractList In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG) emotion recognition. The BiDANN model is inspired by the neuroscience findings that the left and right hemispheres of human's brain are asymmetric to the emotional response. It contains a global and two local domain discriminators that work adversarially with a classifier to learn discriminative emotional features for each hemisphere. At the same time, it tries to reduce the possible domain differences in each hemisphere between the source and target domains so as to improve the generality of the recognition model. In addition, we also propose an improved version of BiDANN, denoted by BiDANN-S, for subject-independent EEG emotion recognition problem by lowering the influences of the personal information of subjects to the EEG emotion recognition. Extensive experiments on the SEED database are conducted to evaluate the performance of both BiDANN and BiDANN-S. The experimental results have shown that the proposed BiDANN and BiDANN models achieve state-of-the-art performance in the EEG emotion recognition.
Author Zong, Yuan
Cui, Zhen
Zhang, Tong
Li, Yang
Zhou, Xiaoyan
Zheng, Wenming
Author_xml – sequence: 1
  givenname: Yang
  orcidid: 0000-0002-5093-2151
  surname: Li
  fullname: Li, Yang
  email: yang_li@seu.edu.cn
  organization: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Southeast University, Nanjing, China
– sequence: 2
  givenname: Wenming
  orcidid: 0000-0002-7764-5179
  surname: Zheng
  fullname: Zheng, Wenming
  email: wenming_zheng@seu.edu.cn
  organization: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Southeast University, Nanjing, China
– sequence: 3
  givenname: Yuan
  orcidid: 0000-0002-0839-8792
  surname: Zong
  fullname: Zong, Yuan
  email: xhzongyuan@seu.edu.cn
  organization: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Southeast University, Nanjing, China
– sequence: 4
  givenname: Zhen
  orcidid: 0000-0003-1837-664X
  surname: Cui
  fullname: Cui, Zhen
  email: zhen.cui@seu.edu.cn
  organization: School of Computer Science, Nanjing University of Science and Technology, Nanjing, Jiangsu, China
– sequence: 5
  givenname: Tong
  orcidid: 0000-0001-6212-4891
  surname: Zhang
  fullname: Zhang, Tong
  email: tongzhang@seu.edu.cn
  organization: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Southeast University, Nanjing, China
– sequence: 6
  givenname: Xiaoyan
  surname: Zhou
  fullname: Zhou, Xiaoyan
  email: xiaoyan_zhou@nuist.edu.cn
  organization: School of Electronic and Information Engineering, Nanjing University of Information Science and Engineering Technology, Nanjing, Jiangsu, China
BookMark eNp9kM1OwzAQhC0EEqX0BeBiiXOK_-McQ0lbpAISlHNkkg24JHFxUhBvT9JWCHFgLzuH-Xa0c4IOa1cDQmeUjCkl0eUynk4nY0aoHjOtpQjFARrQSEQBJ0Ie_tLHaNQ0K9IN51yxcIAeY3xlgzlUtlm_ggd87SpjaxznH-Ab460p8R1s_Ha1n86_4VuXQ4kL53GSzHBSuda6Gj9A5l5q2-tTdFSYsoHRfg_R0zRZTubB4n52M4kXQcYi2QY0Z4UCkRMpjQq1JkyTgvGMMsmfmcxVDjwUkClJhNIRAx1pFdFchkaD0owP0cXu7tq79w00bbpyG193kWl3gouOUbJzsZ0r865pPBTp2tvK-K-UkrTvL932l_b9pfv-Okj_gTLbmv651htb_o-e71ALAD9ZWqowUop_A_4YfSU
CODEN ITACBQ
CitedBy_id crossref_primary_10_1007_s12559_022_10016_4
crossref_primary_10_1109_TIM_2023_3276515
crossref_primary_10_1109_JAS_2022_105515
crossref_primary_10_1016_j_patcog_2023_110015
crossref_primary_10_1109_TAFFC_2023_3261867
crossref_primary_10_1088_1741_2552_acb79e
crossref_primary_10_1631_FITEE_2100489
crossref_primary_10_3389_fnhum_2024_1464431
crossref_primary_10_3390_brainsci13050759
crossref_primary_10_1109_TNNLS_2023_3243339
crossref_primary_10_3389_fnins_2022_974673
crossref_primary_10_1109_TIM_2022_3216829
crossref_primary_10_1109_JBHI_2023_3335854
crossref_primary_10_1109_TNSRE_2022_3219418
crossref_primary_10_1109_TAFFC_2024_3349770
crossref_primary_10_1088_1741_2552_acae06
crossref_primary_10_1109_ACCESS_2022_3155647
crossref_primary_10_1016_j_jneumeth_2024_110276
crossref_primary_10_1016_j_knosys_2023_110661
crossref_primary_10_3389_fnins_2023_1274320
crossref_primary_10_1088_1361_6579_ad2eb6
crossref_primary_10_1109_TAFFC_2021_3051332
crossref_primary_10_3389_fpsyg_2024_1275142
crossref_primary_10_1016_j_knosys_2023_111199
crossref_primary_10_1016_j_knosys_2024_112287
crossref_primary_10_1016_j_neunet_2024_106655
crossref_primary_10_1007_s11571_024_10215_9
crossref_primary_10_1109_TCDS_2020_3007453
crossref_primary_10_1109_JBHI_2022_3198688
crossref_primary_10_3389_fnins_2024_1458815
crossref_primary_10_3390_brainsci13040685
crossref_primary_10_1109_ACCESS_2024_3454082
crossref_primary_10_1016_j_bspc_2024_106465
crossref_primary_10_3389_fnins_2023_1135850
crossref_primary_10_1109_TKDE_2020_2985365
crossref_primary_10_1109_TCSS_2024_3386621
crossref_primary_10_1007_s12652_020_02338_8
crossref_primary_10_1109_JPROC_2023_3309299
crossref_primary_10_1109_TAFFC_2020_2994159
crossref_primary_10_3390_app12052527
crossref_primary_10_1109_TIM_2023_3277985
crossref_primary_10_1016_j_compbiomed_2023_107450
crossref_primary_10_1109_RBME_2024_3449790
crossref_primary_10_1109_TMM_2024_3385676
crossref_primary_10_3390_brainsci14030271
crossref_primary_10_3389_fpsyt_2021_837149
crossref_primary_10_3390_s21144758
crossref_primary_10_1007_s11571_021_09751_5
crossref_primary_10_1016_j_cmpb_2023_107927
crossref_primary_10_3389_fnins_2023_1247082
crossref_primary_10_1016_j_bspc_2024_106953
crossref_primary_10_1007_s00521_024_10821_y
crossref_primary_10_1109_TAFFC_2023_3282704
crossref_primary_10_1109_TIM_2024_3451593
crossref_primary_10_1109_LSENS_2023_3307111
crossref_primary_10_1109_TAFFC_2024_3394436
crossref_primary_10_1016_j_aei_2022_101601
crossref_primary_10_1109_ACCESS_2023_3237268
crossref_primary_10_1109_JBHI_2022_3232497
crossref_primary_10_1016_j_compbiomed_2023_107901
crossref_primary_10_1049_cit2_12174
crossref_primary_10_3389_fnins_2024_1293962
crossref_primary_10_1109_JBHI_2024_3416944
crossref_primary_10_1016_j_neucom_2024_128445
crossref_primary_10_3390_s24061979
crossref_primary_10_1109_TIM_2025_3544334
crossref_primary_10_1016_j_neucom_2023_126262
crossref_primary_10_7717_peerj_cs_2065
crossref_primary_10_1016_j_neunet_2025_107127
crossref_primary_10_3390_s23041917
crossref_primary_10_1109_TETCI_2023_3301385
crossref_primary_10_1109_TAFFC_2023_3288118
crossref_primary_10_1109_ACCESS_2023_3270977
crossref_primary_10_1109_LSP_2022_3179946
crossref_primary_10_1109_TAFFC_2024_3433613
crossref_primary_10_1007_s11760_024_03178_1
crossref_primary_10_1109_TNNLS_2023_3265730
crossref_primary_10_1088_1741_2552_ace07d
crossref_primary_10_1007_s10586_024_04994_3
crossref_primary_10_1007_s11760_023_02702_z
crossref_primary_10_1109_TNNLS_2023_3236635
crossref_primary_10_1016_j_compbiomed_2022_106002
crossref_primary_10_1109_JBHI_2023_3242090
crossref_primary_10_1109_TCDS_2023_3270170
crossref_primary_10_1016_j_knosys_2022_108819
crossref_primary_10_1016_j_eswa_2023_122356
crossref_primary_10_1016_j_neunet_2023_12_034
crossref_primary_10_1109_TAFFC_2023_3288885
crossref_primary_10_1186_s40708_024_00242_x
crossref_primary_10_34133_cbsystems_0088
crossref_primary_10_1109_TIM_2024_3369130
crossref_primary_10_1109_TBME_2024_3432934
crossref_primary_10_1109_JSEN_2023_3239507
crossref_primary_10_1145_3674975
crossref_primary_10_1109_TCDS_2024_3432752
crossref_primary_10_1016_j_neucom_2024_128624
crossref_primary_10_1016_j_jneumeth_2024_110358
crossref_primary_10_1109_LSP_2024_3465348
crossref_primary_10_1109_TNNLS_2023_3319315
crossref_primary_10_1145_3712259
crossref_primary_10_1109_TAFFC_2022_3169001
crossref_primary_10_1109_TAFFC_2022_3179717
crossref_primary_10_1109_JBHI_2022_3212475
crossref_primary_10_1109_TBME_2023_3339892
crossref_primary_10_3389_fncom_2022_942979
crossref_primary_10_1109_TAFFC_2024_3371540
crossref_primary_10_1109_TCDS_2023_3314351
crossref_primary_10_3389_fncom_2023_1195334
crossref_primary_10_3390_app14020726
crossref_primary_10_1109_TNSRE_2023_3304660
crossref_primary_10_1109_TAFFC_2022_3164516
crossref_primary_10_1016_j_engappai_2024_109825
crossref_primary_10_1088_1741_2552_ac59a4
crossref_primary_10_1109_TAFFC_2024_3407380
crossref_primary_10_1109_TNSRE_2021_3059166
crossref_primary_10_1007_s11042_024_18943_0
crossref_primary_10_1109_TCSS_2023_3314508
crossref_primary_10_1016_j_eswa_2023_121889
crossref_primary_10_1109_TNNLS_2022_3145365
crossref_primary_10_3389_fnins_2023_1213099
crossref_primary_10_1109_ACCESS_2025_3536549
crossref_primary_10_1016_j_eswa_2024_125420
crossref_primary_10_3389_fnins_2021_611653
crossref_primary_10_1109_TIM_2022_3194858
crossref_primary_10_1016_j_eswa_2024_126028
crossref_primary_10_1088_1741_2552_ad5fbd
crossref_primary_10_1016_j_bspc_2023_105422
crossref_primary_10_1109_TAFFC_2024_3394873
crossref_primary_10_1109_JBHI_2021_3083525
crossref_primary_10_1109_TNSRE_2023_3236434
crossref_primary_10_1007_s11760_022_02248_6
crossref_primary_10_1109_ACCESS_2021_3134628
crossref_primary_10_1007_s11517_022_02686_x
crossref_primary_10_3389_fncom_2024_1416494
crossref_primary_10_3389_fnhum_2023_1132254
crossref_primary_10_1109_JBHI_2023_3307606
crossref_primary_10_1016_j_eswa_2024_125452
crossref_primary_10_1109_ACCESS_2024_3458833
crossref_primary_10_1109_TNNLS_2023_3292179
crossref_primary_10_1016_j_bspc_2024_107054
crossref_primary_10_1109_JTEHM_2023_3320132
crossref_primary_10_1016_j_measurement_2022_112379
crossref_primary_10_1016_j_physa_2022_127700
crossref_primary_10_1109_ACCESS_2020_2980893
crossref_primary_10_1016_j_bspc_2023_105138
crossref_primary_10_1016_j_bspc_2024_107337
crossref_primary_10_1016_j_bspc_2025_107756
crossref_primary_10_1016_j_bspc_2023_105013
crossref_primary_10_1016_j_jneumeth_2024_110223
crossref_primary_10_1109_TAFFC_2021_3064940
crossref_primary_10_1109_JSEN_2021_3108471
crossref_primary_10_1109_TAFFC_2023_3305982
crossref_primary_10_1109_JSEN_2024_3390799
crossref_primary_10_1088_1741_2552_ac41ac
crossref_primary_10_1016_j_knosys_2024_112599
crossref_primary_10_3389_fnhum_2020_605246
crossref_primary_10_1007_s00521_022_07643_1
crossref_primary_10_1109_TNSRE_2023_3246989
crossref_primary_10_1109_ACCESS_2023_3282982
crossref_primary_10_3390_s24113464
Cites_doi 10.1007/978-3-7908-2604-3_16
10.1037/0033-2909.89.1.19
10.1109/ICCV.2013.368
10.1016/j.clinph.2007.07.019
10.1037/0022-3514.58.2.330
10.1016/j.tics.2012.09.005
10.1109/TKDE.2014.2373376
10.1002/0470013192.bsa068
10.1016/j.neunet.2014.06.012
10.1109/TAFFC.2018.2817622
10.1023/A:1010933404324
10.1016/j.yebeh.2011.12.017
10.1001/archneur.1985.04060050026008
10.1162/jocn_a_00405
10.1146/annurev.psych.53.100901.135148
10.1109/CVPR.2016.261
10.1109/ICRA.2016.7487478
10.1109/TCDS.2016.2587290
10.7551/mitpress/1140.001.0001
10.1023/A:1018628609742
10.1109/TAMD.2015.2431497
10.1080/2326263X.2014.912881
10.1162/089976698300017467
10.1016/j.neuroimage.2005.11.027
10.1109/TNN.2010.2091281
10.1016/j.bbr.2015.04.006
10.1126/science.1076358
10.3389/fnins.2018.00162
10.1109/TAFFC.2017.2768030
10.1038/261690a0
10.1038/360339a0
10.1155/2013/573734
10.1007/978-981-10-7641-1_10
https://doi.org/10.1007/s11063-018-9829-1
10.1145/2647868.2654916
10.1016/j.tics.2010.11.004
10.1162/neco.1997.9.8.1735
10.1007/s11517-009-0554-9
10.1109/TPAMI.2016.2547397
10.24963/ijcai.2018/216
10.1007/BF02471106
10.1109/TAFFC.2014.2339834
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TAFFC.2018.2885474
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1949-3045
EndPage 504
ExternalDocumentID 10_1109_TAFFC_2018_2885474
8567966
Genre orig-research
GrantInformation_xml – fundername: Key Research and Development Program of Jiangsu Province, China
  grantid: BE2016616
– fundername: National Natural Science Foundation of China
  grantid: 61572009; 61772276
  funderid: 10.13039/501100001809
– fundername: National Key Research and Development Program of China; National Basic Research Program of China
  grantid: 2015CB351704
  funderid: 10.13039/501100012166
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNI
RZB
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-1d2f6e4d055a67880280f23c1253b25d6de374ec65046892e898691d57a8e6823
IEDL.DBID RIE
ISSN 1949-3045
IngestDate Sun Jun 29 15:26:17 EDT 2025
Tue Jul 01 05:09:39 EDT 2025
Thu Apr 24 23:03:32 EDT 2025
Wed Aug 27 02:03:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-1d2f6e4d055a67880280f23c1253b25d6de374ec65046892e898691d57a8e6823
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5093-2151
0000-0001-6212-4891
0000-0002-7764-5179
0000-0003-1837-664X
0000-0002-0839-8792
PQID 2533489265
PQPubID 2040414
PageCount 11
ParticipantIDs crossref_primary_10_1109_TAFFC_2018_2885474
proquest_journals_2533489265
ieee_primary_8567966
crossref_citationtrail_10_1109_TAFFC_2018_2885474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on affective computing
PublicationTitleAbbrev TAFFC
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref16
ref19
ref18
ref51
ref50
defferrard (ref40) 2016
ref46
picard (ref2) 1997; 252
ref45
ref47
collobert (ref49) 2006; 7
ref44
ref43
sugiyama (ref41) 2008
donahue (ref52) 2014
ref8
ref7
ref9
ref4
zheng (ref36) 2016
ref3
ref6
ref5
gong (ref48) 2012
ref35
ref34
ref37
ref31
ref30
ref33
goodfellow (ref32) 2014
ref1
ref39
ref38
davison (ref25) 1995
ref24
ref23
ref26
ref20
ref22
ganin (ref17) 2016; 17
ref21
ref28
ref27
ref29
kanamori (ref42) 2009; 10
References_xml – ident: ref35
  doi: 10.1007/978-3-7908-2604-3_16
– volume: 17
  start-page: 1
  year: 2016
  ident: ref17
  article-title: Domain-adversarial training of neural networks
  publication-title: J Mach Learn Res
– ident: ref19
  doi: 10.1037/0033-2909.89.1.19
– ident: ref47
  doi: 10.1109/ICCV.2013.368
– start-page: 2732
  year: 2016
  ident: ref36
  article-title: Personalizing eeg-based affective models with transfer learning
  publication-title: Proc 25th Int Joint Conf Artif Intell
– ident: ref28
  doi: 10.1016/j.clinph.2007.07.019
– ident: ref24
  doi: 10.1037/0022-3514.58.2.330
– ident: ref7
  doi: 10.1016/j.tics.2012.09.005
– start-page: 2672
  year: 2014
  ident: ref32
  article-title: Generative adversarial nets
  publication-title: Proc Neural Inf Process Syst
– ident: ref46
  doi: 10.1109/TKDE.2014.2373376
– ident: ref39
  doi: 10.1002/0470013192.bsa068
– ident: ref4
  doi: 10.1016/j.neunet.2014.06.012
– ident: ref14
  doi: 10.1109/TAFFC.2018.2817622
– volume: 7
  start-page: 1687
  year: 2006
  ident: ref49
  article-title: Large scale transductive svms
  publication-title: J Mach Learn Res
– ident: ref38
  doi: 10.1023/A:1010933404324
– ident: ref30
  doi: 10.1016/j.yebeh.2011.12.017
– ident: ref20
  doi: 10.1001/archneur.1985.04060050026008
– ident: ref22
  doi: 10.1162/jocn_a_00405
– ident: ref26
  doi: 10.1146/annurev.psych.53.100901.135148
– ident: ref34
  doi: 10.1109/CVPR.2016.261
– ident: ref33
  doi: 10.1109/ICRA.2016.7487478
– start-page: 2066
  year: 2012
  ident: ref48
  article-title: Geodesic flow kernel for unsupervised domain adaptation
  publication-title: Proc IEEE Conf Comput Vis Pattern Recognit
– ident: ref11
  doi: 10.1109/TCDS.2016.2587290
– volume: 252
  year: 1997
  ident: ref2
  publication-title: Affective Computing
  doi: 10.7551/mitpress/1140.001.0001
– start-page: 361
  year: 1995
  ident: ref25
  article-title: Cerebral asymmetry, emotion, and affective style
– ident: ref37
  doi: 10.1023/A:1018628609742
– ident: ref13
  doi: 10.1109/TAMD.2015.2431497
– ident: ref3
  doi: 10.1080/2326263X.2014.912881
– ident: ref44
  doi: 10.1162/089976698300017467
– ident: ref5
  doi: 10.1016/j.neuroimage.2005.11.027
– ident: ref45
  doi: 10.1109/TNN.2010.2091281
– ident: ref27
  doi: 10.1016/j.bbr.2015.04.006
– ident: ref1
  doi: 10.1126/science.1076358
– ident: ref16
  doi: 10.3389/fnins.2018.00162
– start-page: 647
  year: 2014
  ident: ref52
  article-title: Decaf: A deep convolutional activation feature for generic visual recognition
  publication-title: Proc Int Conf Mach Learn
– ident: ref51
  doi: 10.1109/TAFFC.2017.2768030
– ident: ref23
  doi: 10.1038/261690a0
– ident: ref21
  doi: 10.1038/360339a0
– ident: ref10
  doi: 10.1155/2013/573734
– ident: ref15
  doi: 10.1007/978-981-10-7641-1_10
– ident: ref12
  doi: https://doi.org/10.1007/s11063-018-9829-1
– ident: ref50
  doi: 10.1145/2647868.2654916
– ident: ref6
  doi: 10.1016/j.tics.2010.11.004
– start-page: 3844
  year: 2016
  ident: ref40
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
  publication-title: Proc Neural Inf Process Syst
– ident: ref31
  doi: 10.1162/neco.1997.9.8.1735
– ident: ref29
  doi: 10.1007/s11517-009-0554-9
– start-page: 1433
  year: 2008
  ident: ref41
  article-title: Direct importance estimation with model selection and its application to covariate shift adaptation
  publication-title: Proc Neural Inf Process Syst
– ident: ref43
  doi: 10.1109/TPAMI.2016.2547397
– ident: ref18
  doi: 10.24963/ijcai.2018/216
– ident: ref9
  doi: 10.1007/BF02471106
– ident: ref8
  doi: 10.1109/TAFFC.2014.2339834
– volume: 10
  start-page: 1391
  year: 2009
  ident: ref42
  article-title: A least-squares approach to direct importance estimation
  publication-title: J Mach Learn Res
SSID ssj0000333627
Score 2.6357045
Snippet In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG)...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 494
SubjectTerms adversarial network
Biological neural networks
Brain modeling
cerebral hemisphere asymmetry
Data models
Discriminators
Domains
EEG emotion recognition
Electroencephalography
Emotion recognition
Emotional factors
Emotions
Feature extraction
Generative adversarial networks
long short term memory (LSTM)
Neural networks
Neuroscience
Performance evaluation
Title A Bi-Hemisphere Domain Adversarial Neural Network Model for EEG Emotion Recognition
URI https://ieeexplore.ieee.org/document/8567966
https://www.proquest.com/docview/2533489265
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJy-iohFF04M3XVj62vaICBITPCgk3Da7bUmIuBiBi7_etrtL4iPG0-6hTZqZ6XQ6_WY-gCutEkkkNUESJSqg2PlBqu3FVVmL1pxGc-6Kk8ePfDSlDzM2q8DNrhbGGOPBZ6btfv1bvl6prUuVdQRzWQ9ehao1s7xWa5dPCQmxvjgq62JC2Zn0hsO-A2-JNhaC0Yh-OXs8mcoPD-yPlWEdxuWCcjTJS3u7Sdvq41uvxv-u-AD2i_gS9XKDOISKyY6gXnI3oGIrN-C5h24XwcixvbnGAgbdrV6TRYY8QfM6cWaJXOMO__FIceRo05bIBrloMLhHg5z_Bz2VCKRVdgzT4WDSHwUFwUKgsGSboKvxnBuqQ8YSe2gJ98w6x0TZoIekmGmuDYmoUTaKo1xIbIQUXHY1ixJhuMDkBGrZKjOngOxFGqeMEpKGCdWRFJRFdI65okTLMCVN6Jaij1XRfdyRYCxjfwsJZezVFTt1xYW6mnC9m_OW9974c3TDyX83shB9E1qlhuNie65j7AuQJebs7PdZ57CHHXjFQ3RaUNu8b82FjT426aU3u0_A5tRb
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH_qxoFd2KCbVijgAzdIl9rPjn0sXUvZ2h6glXqLEtuRKkqKaHvZXz_bSSrxIcQpOdiS5ff8Puzfez-Ad0Zniim0UZZkOkLq7SAal7hqp9FGYFIIX5w8m4vJEu9WfNWCD8daGGttAJ_Znv8Nb_lmqw_-quxGcn_rIU7gifP7iFW11vFGJWbMWeOkqYyJ1c1iMB4PPXxL9qiUHBP8xfsEOpU_bHBwLONzmDVLqvAk33qHfd7TD791a_zfNV_AszrCJINKJZ5Dy5Yv4LxhbyD1YW7D1wH5uI4mnu_Ntxaw5Hb7PVuXJFA07zKvmMS37gifgBUnnjhtQ1yYS0ajT2RUMQCRLw0GaVtewnI8WgwnUU2xEGmq-D7qG1oIiybmPHNuS_qH1oIy7cIellNuhLEsQatdHIdCKmqlkkL1DU8yaYWk7ApOy21pr4G4VJrmHBnL4wxNoiTyBAsqNDKj4px1oN9sfarr_uOeBmOThjwkVmkQV-rFldbi6sD745wfVfeNf45u-_0_jqy3vgPdRsJpfUB3KQ0lyIoK_vLvs97C08liNk2nn-f3r-CMeihLAOx04XT_82Bfu1hkn78JKvgICXLXpw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bi-Hemisphere+Domain+Adversarial+Neural+Network+Model+for+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Li%2C+Yang&rft.au=Zheng%2C+Wenming&rft.au=Zong%2C+Yuan&rft.au=Cui%2C+Zhen&rft.date=2021-04-01&rft.issn=1949-3045&rft.eissn=1949-3045&rft.volume=12&rft.issue=2&rft.spage=494&rft.epage=504&rft_id=info:doi/10.1109%2FTAFFC.2018.2885474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2018_2885474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon