A Bi-Hemisphere Domain Adversarial Neural Network Model for EEG Emotion Recognition
In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG) emotion recognition. The BiDANN model is inspired by the neuroscience findings that the left and right hemispheres of human's brain are...
Saved in:
Published in | IEEE transactions on affective computing Vol. 12; no. 2; pp. 494 - 504 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.04.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1949-3045 1949-3045 |
DOI | 10.1109/TAFFC.2018.2885474 |
Cover
Abstract | In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG) emotion recognition. The BiDANN model is inspired by the neuroscience findings that the left and right hemispheres of human's brain are asymmetric to the emotional response. It contains a global and two local domain discriminators that work adversarially with a classifier to learn discriminative emotional features for each hemisphere. At the same time, it tries to reduce the possible domain differences in each hemisphere between the source and target domains so as to improve the generality of the recognition model. In addition, we also propose an improved version of BiDANN, denoted by BiDANN-S, for subject-independent EEG emotion recognition problem by lowering the influences of the personal information of subjects to the EEG emotion recognition. Extensive experiments on the SEED database are conducted to evaluate the performance of both BiDANN and BiDANN-S. The experimental results have shown that the proposed BiDANN and BiDANN models achieve state-of-the-art performance in the EEG emotion recognition. |
---|---|
AbstractList | In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG) emotion recognition. The BiDANN model is inspired by the neuroscience findings that the left and right hemispheres of human's brain are asymmetric to the emotional response. It contains a global and two local domain discriminators that work adversarially with a classifier to learn discriminative emotional features for each hemisphere. At the same time, it tries to reduce the possible domain differences in each hemisphere between the source and target domains so as to improve the generality of the recognition model. In addition, we also propose an improved version of BiDANN, denoted by BiDANN-S, for subject-independent EEG emotion recognition problem by lowering the influences of the personal information of subjects to the EEG emotion recognition. Extensive experiments on the SEED database are conducted to evaluate the performance of both BiDANN and BiDANN-S. The experimental results have shown that the proposed BiDANN and BiDANN models achieve state-of-the-art performance in the EEG emotion recognition. |
Author | Zong, Yuan Cui, Zhen Zhang, Tong Li, Yang Zhou, Xiaoyan Zheng, Wenming |
Author_xml | – sequence: 1 givenname: Yang orcidid: 0000-0002-5093-2151 surname: Li fullname: Li, Yang email: yang_li@seu.edu.cn organization: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Southeast University, Nanjing, China – sequence: 2 givenname: Wenming orcidid: 0000-0002-7764-5179 surname: Zheng fullname: Zheng, Wenming email: wenming_zheng@seu.edu.cn organization: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Southeast University, Nanjing, China – sequence: 3 givenname: Yuan orcidid: 0000-0002-0839-8792 surname: Zong fullname: Zong, Yuan email: xhzongyuan@seu.edu.cn organization: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Southeast University, Nanjing, China – sequence: 4 givenname: Zhen orcidid: 0000-0003-1837-664X surname: Cui fullname: Cui, Zhen email: zhen.cui@seu.edu.cn organization: School of Computer Science, Nanjing University of Science and Technology, Nanjing, Jiangsu, China – sequence: 5 givenname: Tong orcidid: 0000-0001-6212-4891 surname: Zhang fullname: Zhang, Tong email: tongzhang@seu.edu.cn organization: Key Laboratory of Child Development and Learning Science (Southeast University), Ministry of Education, Southeast University, Nanjing, China – sequence: 6 givenname: Xiaoyan surname: Zhou fullname: Zhou, Xiaoyan email: xiaoyan_zhou@nuist.edu.cn organization: School of Electronic and Information Engineering, Nanjing University of Information Science and Engineering Technology, Nanjing, Jiangsu, China |
BookMark | eNp9kM1OwzAQhC0EEqX0BeBiiXOK_-McQ0lbpAISlHNkkg24JHFxUhBvT9JWCHFgLzuH-Xa0c4IOa1cDQmeUjCkl0eUynk4nY0aoHjOtpQjFARrQSEQBJ0Ie_tLHaNQ0K9IN51yxcIAeY3xlgzlUtlm_ggd87SpjaxznH-Ab460p8R1s_Ha1n86_4VuXQ4kL53GSzHBSuda6Gj9A5l5q2-tTdFSYsoHRfg_R0zRZTubB4n52M4kXQcYi2QY0Z4UCkRMpjQq1JkyTgvGMMsmfmcxVDjwUkClJhNIRAx1pFdFchkaD0owP0cXu7tq79w00bbpyG193kWl3gouOUbJzsZ0r865pPBTp2tvK-K-UkrTvL932l_b9pfv-Okj_gTLbmv651htb_o-e71ALAD9ZWqowUop_A_4YfSU |
CODEN | ITACBQ |
CitedBy_id | crossref_primary_10_1007_s12559_022_10016_4 crossref_primary_10_1109_TIM_2023_3276515 crossref_primary_10_1109_JAS_2022_105515 crossref_primary_10_1016_j_patcog_2023_110015 crossref_primary_10_1109_TAFFC_2023_3261867 crossref_primary_10_1088_1741_2552_acb79e crossref_primary_10_1631_FITEE_2100489 crossref_primary_10_3389_fnhum_2024_1464431 crossref_primary_10_3390_brainsci13050759 crossref_primary_10_1109_TNNLS_2023_3243339 crossref_primary_10_3389_fnins_2022_974673 crossref_primary_10_1109_TIM_2022_3216829 crossref_primary_10_1109_JBHI_2023_3335854 crossref_primary_10_1109_TNSRE_2022_3219418 crossref_primary_10_1109_TAFFC_2024_3349770 crossref_primary_10_1088_1741_2552_acae06 crossref_primary_10_1109_ACCESS_2022_3155647 crossref_primary_10_1016_j_jneumeth_2024_110276 crossref_primary_10_1016_j_knosys_2023_110661 crossref_primary_10_3389_fnins_2023_1274320 crossref_primary_10_1088_1361_6579_ad2eb6 crossref_primary_10_1109_TAFFC_2021_3051332 crossref_primary_10_3389_fpsyg_2024_1275142 crossref_primary_10_1016_j_knosys_2023_111199 crossref_primary_10_1016_j_knosys_2024_112287 crossref_primary_10_1016_j_neunet_2024_106655 crossref_primary_10_1007_s11571_024_10215_9 crossref_primary_10_1109_TCDS_2020_3007453 crossref_primary_10_1109_JBHI_2022_3198688 crossref_primary_10_3389_fnins_2024_1458815 crossref_primary_10_3390_brainsci13040685 crossref_primary_10_1109_ACCESS_2024_3454082 crossref_primary_10_1016_j_bspc_2024_106465 crossref_primary_10_3389_fnins_2023_1135850 crossref_primary_10_1109_TKDE_2020_2985365 crossref_primary_10_1109_TCSS_2024_3386621 crossref_primary_10_1007_s12652_020_02338_8 crossref_primary_10_1109_JPROC_2023_3309299 crossref_primary_10_1109_TAFFC_2020_2994159 crossref_primary_10_3390_app12052527 crossref_primary_10_1109_TIM_2023_3277985 crossref_primary_10_1016_j_compbiomed_2023_107450 crossref_primary_10_1109_RBME_2024_3449790 crossref_primary_10_1109_TMM_2024_3385676 crossref_primary_10_3390_brainsci14030271 crossref_primary_10_3389_fpsyt_2021_837149 crossref_primary_10_3390_s21144758 crossref_primary_10_1007_s11571_021_09751_5 crossref_primary_10_1016_j_cmpb_2023_107927 crossref_primary_10_3389_fnins_2023_1247082 crossref_primary_10_1016_j_bspc_2024_106953 crossref_primary_10_1007_s00521_024_10821_y crossref_primary_10_1109_TAFFC_2023_3282704 crossref_primary_10_1109_TIM_2024_3451593 crossref_primary_10_1109_LSENS_2023_3307111 crossref_primary_10_1109_TAFFC_2024_3394436 crossref_primary_10_1016_j_aei_2022_101601 crossref_primary_10_1109_ACCESS_2023_3237268 crossref_primary_10_1109_JBHI_2022_3232497 crossref_primary_10_1016_j_compbiomed_2023_107901 crossref_primary_10_1049_cit2_12174 crossref_primary_10_3389_fnins_2024_1293962 crossref_primary_10_1109_JBHI_2024_3416944 crossref_primary_10_1016_j_neucom_2024_128445 crossref_primary_10_3390_s24061979 crossref_primary_10_1109_TIM_2025_3544334 crossref_primary_10_1016_j_neucom_2023_126262 crossref_primary_10_7717_peerj_cs_2065 crossref_primary_10_1016_j_neunet_2025_107127 crossref_primary_10_3390_s23041917 crossref_primary_10_1109_TETCI_2023_3301385 crossref_primary_10_1109_TAFFC_2023_3288118 crossref_primary_10_1109_ACCESS_2023_3270977 crossref_primary_10_1109_LSP_2022_3179946 crossref_primary_10_1109_TAFFC_2024_3433613 crossref_primary_10_1007_s11760_024_03178_1 crossref_primary_10_1109_TNNLS_2023_3265730 crossref_primary_10_1088_1741_2552_ace07d crossref_primary_10_1007_s10586_024_04994_3 crossref_primary_10_1007_s11760_023_02702_z crossref_primary_10_1109_TNNLS_2023_3236635 crossref_primary_10_1016_j_compbiomed_2022_106002 crossref_primary_10_1109_JBHI_2023_3242090 crossref_primary_10_1109_TCDS_2023_3270170 crossref_primary_10_1016_j_knosys_2022_108819 crossref_primary_10_1016_j_eswa_2023_122356 crossref_primary_10_1016_j_neunet_2023_12_034 crossref_primary_10_1109_TAFFC_2023_3288885 crossref_primary_10_1186_s40708_024_00242_x crossref_primary_10_34133_cbsystems_0088 crossref_primary_10_1109_TIM_2024_3369130 crossref_primary_10_1109_TBME_2024_3432934 crossref_primary_10_1109_JSEN_2023_3239507 crossref_primary_10_1145_3674975 crossref_primary_10_1109_TCDS_2024_3432752 crossref_primary_10_1016_j_neucom_2024_128624 crossref_primary_10_1016_j_jneumeth_2024_110358 crossref_primary_10_1109_LSP_2024_3465348 crossref_primary_10_1109_TNNLS_2023_3319315 crossref_primary_10_1145_3712259 crossref_primary_10_1109_TAFFC_2022_3169001 crossref_primary_10_1109_TAFFC_2022_3179717 crossref_primary_10_1109_JBHI_2022_3212475 crossref_primary_10_1109_TBME_2023_3339892 crossref_primary_10_3389_fncom_2022_942979 crossref_primary_10_1109_TAFFC_2024_3371540 crossref_primary_10_1109_TCDS_2023_3314351 crossref_primary_10_3389_fncom_2023_1195334 crossref_primary_10_3390_app14020726 crossref_primary_10_1109_TNSRE_2023_3304660 crossref_primary_10_1109_TAFFC_2022_3164516 crossref_primary_10_1016_j_engappai_2024_109825 crossref_primary_10_1088_1741_2552_ac59a4 crossref_primary_10_1109_TAFFC_2024_3407380 crossref_primary_10_1109_TNSRE_2021_3059166 crossref_primary_10_1007_s11042_024_18943_0 crossref_primary_10_1109_TCSS_2023_3314508 crossref_primary_10_1016_j_eswa_2023_121889 crossref_primary_10_1109_TNNLS_2022_3145365 crossref_primary_10_3389_fnins_2023_1213099 crossref_primary_10_1109_ACCESS_2025_3536549 crossref_primary_10_1016_j_eswa_2024_125420 crossref_primary_10_3389_fnins_2021_611653 crossref_primary_10_1109_TIM_2022_3194858 crossref_primary_10_1016_j_eswa_2024_126028 crossref_primary_10_1088_1741_2552_ad5fbd crossref_primary_10_1016_j_bspc_2023_105422 crossref_primary_10_1109_TAFFC_2024_3394873 crossref_primary_10_1109_JBHI_2021_3083525 crossref_primary_10_1109_TNSRE_2023_3236434 crossref_primary_10_1007_s11760_022_02248_6 crossref_primary_10_1109_ACCESS_2021_3134628 crossref_primary_10_1007_s11517_022_02686_x crossref_primary_10_3389_fncom_2024_1416494 crossref_primary_10_3389_fnhum_2023_1132254 crossref_primary_10_1109_JBHI_2023_3307606 crossref_primary_10_1016_j_eswa_2024_125452 crossref_primary_10_1109_ACCESS_2024_3458833 crossref_primary_10_1109_TNNLS_2023_3292179 crossref_primary_10_1016_j_bspc_2024_107054 crossref_primary_10_1109_JTEHM_2023_3320132 crossref_primary_10_1016_j_measurement_2022_112379 crossref_primary_10_1016_j_physa_2022_127700 crossref_primary_10_1109_ACCESS_2020_2980893 crossref_primary_10_1016_j_bspc_2023_105138 crossref_primary_10_1016_j_bspc_2024_107337 crossref_primary_10_1016_j_bspc_2025_107756 crossref_primary_10_1016_j_bspc_2023_105013 crossref_primary_10_1016_j_jneumeth_2024_110223 crossref_primary_10_1109_TAFFC_2021_3064940 crossref_primary_10_1109_JSEN_2021_3108471 crossref_primary_10_1109_TAFFC_2023_3305982 crossref_primary_10_1109_JSEN_2024_3390799 crossref_primary_10_1088_1741_2552_ac41ac crossref_primary_10_1016_j_knosys_2024_112599 crossref_primary_10_3389_fnhum_2020_605246 crossref_primary_10_1007_s00521_022_07643_1 crossref_primary_10_1109_TNSRE_2023_3246989 crossref_primary_10_1109_ACCESS_2023_3282982 crossref_primary_10_3390_s24113464 |
Cites_doi | 10.1007/978-3-7908-2604-3_16 10.1037/0033-2909.89.1.19 10.1109/ICCV.2013.368 10.1016/j.clinph.2007.07.019 10.1037/0022-3514.58.2.330 10.1016/j.tics.2012.09.005 10.1109/TKDE.2014.2373376 10.1002/0470013192.bsa068 10.1016/j.neunet.2014.06.012 10.1109/TAFFC.2018.2817622 10.1023/A:1010933404324 10.1016/j.yebeh.2011.12.017 10.1001/archneur.1985.04060050026008 10.1162/jocn_a_00405 10.1146/annurev.psych.53.100901.135148 10.1109/CVPR.2016.261 10.1109/ICRA.2016.7487478 10.1109/TCDS.2016.2587290 10.7551/mitpress/1140.001.0001 10.1023/A:1018628609742 10.1109/TAMD.2015.2431497 10.1080/2326263X.2014.912881 10.1162/089976698300017467 10.1016/j.neuroimage.2005.11.027 10.1109/TNN.2010.2091281 10.1016/j.bbr.2015.04.006 10.1126/science.1076358 10.3389/fnins.2018.00162 10.1109/TAFFC.2017.2768030 10.1038/261690a0 10.1038/360339a0 10.1155/2013/573734 10.1007/978-981-10-7641-1_10 https://doi.org/10.1007/s11063-018-9829-1 10.1145/2647868.2654916 10.1016/j.tics.2010.11.004 10.1162/neco.1997.9.8.1735 10.1007/s11517-009-0554-9 10.1109/TPAMI.2016.2547397 10.24963/ijcai.2018/216 10.1007/BF02471106 10.1109/TAFFC.2014.2339834 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021 |
DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
DOI | 10.1109/TAFFC.2018.2885474 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1949-3045 |
EndPage | 504 |
ExternalDocumentID | 10_1109_TAFFC_2018_2885474 8567966 |
Genre | orig-research |
GrantInformation_xml | – fundername: Key Research and Development Program of Jiangsu Province, China grantid: BE2016616 – fundername: National Natural Science Foundation of China grantid: 61572009; 61772276 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China; National Basic Research Program of China grantid: 2015CB351704 funderid: 10.13039/501100012166 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNI RZB AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c295t-1d2f6e4d055a67880280f23c1253b25d6de374ec65046892e898691d57a8e6823 |
IEDL.DBID | RIE |
ISSN | 1949-3045 |
IngestDate | Sun Jun 29 15:26:17 EDT 2025 Tue Jul 01 05:09:39 EDT 2025 Thu Apr 24 23:03:32 EDT 2025 Wed Aug 27 02:03:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c295t-1d2f6e4d055a67880280f23c1253b25d6de374ec65046892e898691d57a8e6823 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5093-2151 0000-0001-6212-4891 0000-0002-7764-5179 0000-0003-1837-664X 0000-0002-0839-8792 |
PQID | 2533489265 |
PQPubID | 2040414 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1109_TAFFC_2018_2885474 proquest_journals_2533489265 ieee_primary_8567966 crossref_citationtrail_10_1109_TAFFC_2018_2885474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-01 |
PublicationDateYYYYMMDD | 2021-04-01 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE transactions on affective computing |
PublicationTitleAbbrev | TAFFC |
PublicationYear | 2021 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref16 ref19 ref18 ref51 ref50 defferrard (ref40) 2016 ref46 picard (ref2) 1997; 252 ref45 ref47 collobert (ref49) 2006; 7 ref44 ref43 sugiyama (ref41) 2008 donahue (ref52) 2014 ref8 ref7 ref9 ref4 zheng (ref36) 2016 ref3 ref6 ref5 gong (ref48) 2012 ref35 ref34 ref37 ref31 ref30 ref33 goodfellow (ref32) 2014 ref1 ref39 ref38 davison (ref25) 1995 ref24 ref23 ref26 ref20 ref22 ganin (ref17) 2016; 17 ref21 ref28 ref27 ref29 kanamori (ref42) 2009; 10 |
References_xml | – ident: ref35 doi: 10.1007/978-3-7908-2604-3_16 – volume: 17 start-page: 1 year: 2016 ident: ref17 article-title: Domain-adversarial training of neural networks publication-title: J Mach Learn Res – ident: ref19 doi: 10.1037/0033-2909.89.1.19 – ident: ref47 doi: 10.1109/ICCV.2013.368 – start-page: 2732 year: 2016 ident: ref36 article-title: Personalizing eeg-based affective models with transfer learning publication-title: Proc 25th Int Joint Conf Artif Intell – ident: ref28 doi: 10.1016/j.clinph.2007.07.019 – ident: ref24 doi: 10.1037/0022-3514.58.2.330 – ident: ref7 doi: 10.1016/j.tics.2012.09.005 – start-page: 2672 year: 2014 ident: ref32 article-title: Generative adversarial nets publication-title: Proc Neural Inf Process Syst – ident: ref46 doi: 10.1109/TKDE.2014.2373376 – ident: ref39 doi: 10.1002/0470013192.bsa068 – ident: ref4 doi: 10.1016/j.neunet.2014.06.012 – ident: ref14 doi: 10.1109/TAFFC.2018.2817622 – volume: 7 start-page: 1687 year: 2006 ident: ref49 article-title: Large scale transductive svms publication-title: J Mach Learn Res – ident: ref38 doi: 10.1023/A:1010933404324 – ident: ref30 doi: 10.1016/j.yebeh.2011.12.017 – ident: ref20 doi: 10.1001/archneur.1985.04060050026008 – ident: ref22 doi: 10.1162/jocn_a_00405 – ident: ref26 doi: 10.1146/annurev.psych.53.100901.135148 – ident: ref34 doi: 10.1109/CVPR.2016.261 – ident: ref33 doi: 10.1109/ICRA.2016.7487478 – start-page: 2066 year: 2012 ident: ref48 article-title: Geodesic flow kernel for unsupervised domain adaptation publication-title: Proc IEEE Conf Comput Vis Pattern Recognit – ident: ref11 doi: 10.1109/TCDS.2016.2587290 – volume: 252 year: 1997 ident: ref2 publication-title: Affective Computing doi: 10.7551/mitpress/1140.001.0001 – start-page: 361 year: 1995 ident: ref25 article-title: Cerebral asymmetry, emotion, and affective style – ident: ref37 doi: 10.1023/A:1018628609742 – ident: ref13 doi: 10.1109/TAMD.2015.2431497 – ident: ref3 doi: 10.1080/2326263X.2014.912881 – ident: ref44 doi: 10.1162/089976698300017467 – ident: ref5 doi: 10.1016/j.neuroimage.2005.11.027 – ident: ref45 doi: 10.1109/TNN.2010.2091281 – ident: ref27 doi: 10.1016/j.bbr.2015.04.006 – ident: ref1 doi: 10.1126/science.1076358 – ident: ref16 doi: 10.3389/fnins.2018.00162 – start-page: 647 year: 2014 ident: ref52 article-title: Decaf: A deep convolutional activation feature for generic visual recognition publication-title: Proc Int Conf Mach Learn – ident: ref51 doi: 10.1109/TAFFC.2017.2768030 – ident: ref23 doi: 10.1038/261690a0 – ident: ref21 doi: 10.1038/360339a0 – ident: ref10 doi: 10.1155/2013/573734 – ident: ref15 doi: 10.1007/978-981-10-7641-1_10 – ident: ref12 doi: https://doi.org/10.1007/s11063-018-9829-1 – ident: ref50 doi: 10.1145/2647868.2654916 – ident: ref6 doi: 10.1016/j.tics.2010.11.004 – start-page: 3844 year: 2016 ident: ref40 article-title: Convolutional neural networks on graphs with fast localized spectral filtering publication-title: Proc Neural Inf Process Syst – ident: ref31 doi: 10.1162/neco.1997.9.8.1735 – ident: ref29 doi: 10.1007/s11517-009-0554-9 – start-page: 1433 year: 2008 ident: ref41 article-title: Direct importance estimation with model selection and its application to covariate shift adaptation publication-title: Proc Neural Inf Process Syst – ident: ref43 doi: 10.1109/TPAMI.2016.2547397 – ident: ref18 doi: 10.24963/ijcai.2018/216 – ident: ref9 doi: 10.1007/BF02471106 – ident: ref8 doi: 10.1109/TAFFC.2014.2339834 – volume: 10 start-page: 1391 year: 2009 ident: ref42 article-title: A least-squares approach to direct importance estimation publication-title: J Mach Learn Res |
SSID | ssj0000333627 |
Score | 2.6357045 |
Snippet | In this paper, we propose a novel neural network model, called bi-hemisphere domain adversarial neural network (BiDANN) model, for electroencephalograph (EEG)... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 494 |
SubjectTerms | adversarial network Biological neural networks Brain modeling cerebral hemisphere asymmetry Data models Discriminators Domains EEG emotion recognition Electroencephalography Emotion recognition Emotional factors Emotions Feature extraction Generative adversarial networks long short term memory (LSTM) Neural networks Neuroscience Performance evaluation |
Title | A Bi-Hemisphere Domain Adversarial Neural Network Model for EEG Emotion Recognition |
URI | https://ieeexplore.ieee.org/document/8567966 https://www.proquest.com/docview/2533489265 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEJ4AJy-iohFF04M3XVj62vaICBITPCgk3Da7bUmIuBiBi7_etrtL4iPG0-6hTZqZ6XQ6_WY-gCutEkkkNUESJSqg2PlBqu3FVVmL1pxGc-6Kk8ePfDSlDzM2q8DNrhbGGOPBZ6btfv1bvl6prUuVdQRzWQ9ehao1s7xWa5dPCQmxvjgq62JC2Zn0hsO-A2-JNhaC0Yh-OXs8mcoPD-yPlWEdxuWCcjTJS3u7Sdvq41uvxv-u-AD2i_gS9XKDOISKyY6gXnI3oGIrN-C5h24XwcixvbnGAgbdrV6TRYY8QfM6cWaJXOMO__FIceRo05bIBrloMLhHg5z_Bz2VCKRVdgzT4WDSHwUFwUKgsGSboKvxnBuqQ8YSe2gJ98w6x0TZoIekmGmuDYmoUTaKo1xIbIQUXHY1ixJhuMDkBGrZKjOngOxFGqeMEpKGCdWRFJRFdI65okTLMCVN6Jaij1XRfdyRYCxjfwsJZezVFTt1xYW6mnC9m_OW9974c3TDyX83shB9E1qlhuNie65j7AuQJebs7PdZ57CHHXjFQ3RaUNu8b82FjT426aU3u0_A5tRb |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Nb9MwFH_qxoFd2KCbVijgAzdIl9rPjn0sXUvZ2h6glXqLEtuRKkqKaHvZXz_bSSrxIcQpOdiS5ff8Puzfez-Ad0Zniim0UZZkOkLq7SAal7hqp9FGYFIIX5w8m4vJEu9WfNWCD8daGGttAJ_Znv8Nb_lmqw_-quxGcn_rIU7gifP7iFW11vFGJWbMWeOkqYyJ1c1iMB4PPXxL9qiUHBP8xfsEOpU_bHBwLONzmDVLqvAk33qHfd7TD791a_zfNV_AszrCJINKJZ5Dy5Yv4LxhbyD1YW7D1wH5uI4mnu_Ntxaw5Hb7PVuXJFA07zKvmMS37gifgBUnnjhtQ1yYS0ajT2RUMQCRLw0GaVtewnI8WgwnUU2xEGmq-D7qG1oIiybmPHNuS_qH1oIy7cIellNuhLEsQatdHIdCKmqlkkL1DU8yaYWk7ApOy21pr4G4VJrmHBnL4wxNoiTyBAsqNDKj4px1oN9sfarr_uOeBmOThjwkVmkQV-rFldbi6sD745wfVfeNf45u-_0_jqy3vgPdRsJpfUB3KQ0lyIoK_vLvs97C08liNk2nn-f3r-CMeihLAOx04XT_82Bfu1hkn78JKvgICXLXpw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Bi-Hemisphere+Domain+Adversarial+Neural+Network+Model+for+EEG+Emotion+Recognition&rft.jtitle=IEEE+transactions+on+affective+computing&rft.au=Li%2C+Yang&rft.au=Zheng%2C+Wenming&rft.au=Zong%2C+Yuan&rft.au=Cui%2C+Zhen&rft.date=2021-04-01&rft.issn=1949-3045&rft.eissn=1949-3045&rft.volume=12&rft.issue=2&rft.spage=494&rft.epage=504&rft_id=info:doi/10.1109%2FTAFFC.2018.2885474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAFFC_2018_2885474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1949-3045&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1949-3045&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1949-3045&client=summon |