One-Class Double Compression Detection of Advanced Videos Based on Simple Gaussian Distribution Model

Passive video forensics has become an active topic in recent years. Generally, a pristine video obtained from surveillance cameras or other video recording devices is single compressed. At the same time, double lossy compression will certainly be introduced in tampered videos since it needs to go th...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on circuits and systems for video technology Vol. 32; no. 4; pp. 2496 - 2500
Main Authors Li, Qiushi, Chen, Shengda, Tan, Shunquan, Li, Bin, Huang, Jiwu
Format Journal Article
LanguageEnglish
Published New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1051-8215
1558-2205
DOI10.1109/TCSVT.2021.3069254

Cover

Abstract Passive video forensics has become an active topic in recent years. Generally, a pristine video obtained from surveillance cameras or other video recording devices is single compressed. At the same time, double lossy compression will certainly be introduced in tampered videos since it needs to go through recompression to perform tampering on a commonly used compressed video. In the video's double compression, some traces are left due to the intrinsic effects of recompression. Traditional supervised learning is inefficient because it requires two classes (the pristine and the manipulated) that occur in the video to be exhaustively assigned labels. Actually, compared with pristine videos, manipulated videos with labels are more difficult to obtain. To address this problem, in this paper, one-class classification, which is often used for anomaly detection and only needs the target class, is introduced. We first treat all decompressed video frames as still images and extract subtractive pixel adjacency matrix (SPAM) steganalysis features to detect traces left in the double compression process. Then we adopt a Gaussian density-based one-class classifier since SPAM features extracted from pristine video frames approximately subject to the Gaussian distribution. Furthermore, we improve the robustness of the classifier by using ensemble strategy. Experimental results indicate that our proposed method exceeds other more complex one-class classification methods, and outperforms fully-supervised learning methods only by feeding features from single compressed video frames to our one-class classifier.
AbstractList Passive video forensics has become an active topic in recent years. Generally, a pristine video obtained from surveillance cameras or other video recording devices is single compressed. At the same time, double lossy compression will certainly be introduced in tampered videos since it needs to go through recompression to perform tampering on a commonly used compressed video. In the video’s double compression, some traces are left due to the intrinsic effects of recompression. Traditional supervised learning is inefficient because it requires two classes (the pristine and the manipulated) that occur in the video to be exhaustively assigned labels. Actually, compared with pristine videos, manipulated videos with labels are more difficult to obtain. To address this problem, in this paper, one-class classification, which is often used for anomaly detection and only needs the target class, is introduced. We first treat all decompressed video frames as still images and extract subtractive pixel adjacency matrix (SPAM) steganalysis features to detect traces left in the double compression process. Then we adopt a Gaussian density-based one-class classifier since SPAM features extracted from pristine video frames approximately subject to the Gaussian distribution. Furthermore, we improve the robustness of the classifier by using ensemble strategy. Experimental results indicate that our proposed method exceeds other more complex one-class classification methods, and outperforms fully-supervised learning methods only by feeding features from single compressed video frames to our one-class classifier.
Author Huang, Jiwu
Li, Qiushi
Chen, Shengda
Li, Bin
Tan, Shunquan
Author_xml – sequence: 1
  givenname: Qiushi
  orcidid: 0000-0002-4976-3346
  surname: Li
  fullname: Li, Qiushi
  organization: Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China
– sequence: 2
  givenname: Shengda
  surname: Chen
  fullname: Chen, Shengda
  organization: College of Computer Science and Technology, Sun Yat-sen University, Guangzhou, China
– sequence: 3
  givenname: Shunquan
  orcidid: 0000-0002-7457-3691
  surname: Tan
  fullname: Tan, Shunquan
  email: tansq@szu.edu.cn
  organization: Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China
– sequence: 4
  givenname: Bin
  orcidid: 0000-0002-2613-5451
  surname: Li
  fullname: Li, Bin
  organization: Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China
– sequence: 5
  givenname: Jiwu
  orcidid: 0000-0002-7625-5689
  surname: Huang
  fullname: Huang, Jiwu
  organization: Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China
BookMark eNp90E9PwyAYBnBiNNGpX0AvTTx38reFo3Y6TTQ7bHollL5NMF2Z0Jr47aXOePDgiZfw_IA8M3TY-x4QuiB4TghW15tq_bqZU0zJnOFCUcEP0AkRQuaUYnGYZixILikRx2gW4xvGhEteniBY9ZBXnYkxW_ix7iCr_HYXIEbn-2wBA9hhmnyb3TQfprfQZK-uAR-zWxPTJp2t3XaX4NKMSZmkXByCq8dv-Owb6M7QUWu6COc_6yl6ub_bVA_502r5WN085ZYqMeSESd5awaxSHDAhDa9ZW0BRYlaoEupWtbgpa8qJJSkg6pLxFmPBBaVKWsZO0dX-3l3w7yPEQb_5MfTpSU0LXnIqBKYpJfcpG3yMAVpt3WCm3w7BuE4TrKdS9XepeipV_5SaKP1Dd8FtTfj8H13ukQOAX6CYlIVk7AsB-YRG
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2022_3218587
crossref_primary_10_1109_ACCESS_2022_3140588
crossref_primary_10_1007_s11042_023_16065_7
crossref_primary_10_1109_JIOT_2024_3406954
crossref_primary_10_1109_TCSVT_2023_3295364
crossref_primary_10_3390_electronics12030532
crossref_primary_10_1007_s10489_024_06040_6
crossref_primary_10_1109_ACCESS_2024_3450814
crossref_primary_10_3390_s22239291
crossref_primary_10_1007_s11042_023_15170_x
crossref_primary_10_1007_s42979_021_00800_8
crossref_primary_10_1109_TIFS_2022_3176188
crossref_primary_10_1016_j_neucom_2022_09_153
Cites_doi 10.1007/978-1-4471-2063-6_225
10.1109/TIFS.2019.2951313
10.1016/j.ins.2013.12.019
10.1016/j.jvcir.2015.11.014
10.1109/TCSVT.2018.2804768
10.1109/LSP.2013.2251632
10.1007/978-3-642-04438-0_2
10.1117/12.876566
10.1109/TCSVT.2015.2473436
10.1145/1161366.1161375
10.1016/j.sigpro.2013.12.026
10.1109/TIFS.2012.2190402
10.1017/S026988891300043X
10.1109/TIFS.2010.2045842
10.1093/oso/9780198538493.003.0002
10.1109/ICIP.2019.8802966
10.1109/TIP.2016.2541960
10.2352/ISSN.2470-1173.2017.7.MWSF-330
10.1109/TIFS.2017.2745687
10.1145/1541880.1541882
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TCSVT.2021.3069254
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: Consulter via IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 2500
ExternalDocumentID 10_1109_TCSVT_2021_3069254
9388683
Genre orig-research
GrantInformation_xml – fundername: Key-Area Research and Development Program of Guangdong Province
  grantid: 2019B010139003
– fundername: NSFC
  grantid: 61772349; U19B2022; 61872244
  funderid: 10.13039/501100001809
– fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation
  grantid: 2019B151502001
  funderid: 10.13039/501100021171
– fundername: Alibaba Group through the Alibaba Innovative Research (AIR) Program
– fundername: Shenzhen Research and Development Program
  grantid: GJHZ20180928155814437; JCYJ20200109105008228; JCYJ20180305124325555
  funderid: 10.13039/501100017622
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c295t-1384fc53c994e011d4b3f6e6703697ebf9f0d7b241c14e05b734f005452298c33
IEDL.DBID RIE
ISSN 1051-8215
IngestDate Sun Jun 29 12:21:00 EDT 2025
Thu Apr 24 22:52:35 EDT 2025
Wed Oct 01 01:07:02 EDT 2025
Wed Aug 27 02:40:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c295t-1384fc53c994e011d4b3f6e6703697ebf9f0d7b241c14e05b734f005452298c33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4976-3346
0000-0002-7457-3691
0000-0002-7625-5689
0000-0002-2613-5451
PQID 2647425502
PQPubID 85433
PageCount 5
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2021_3069254
ieee_primary_9388683
crossref_primary_10_1109_TCSVT_2021_3069254
proquest_journals_2647425502
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
(ref23) 2021
ref12
Juszczak (ref16) 2006
Juszczak (ref15)
ref11
ref10
ref2
ref1
ref17
ref19
ref18
ref24
Elghlan (ref25) 2019
ref20
(ref22) 2021
Moya (ref14)
ref21
ref27
ref8
(ref26) 2021
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – volume-title: t-SNE
  year: 2021
  ident: ref26
– ident: ref11
  doi: 10.1007/978-1-4471-2063-6_225
– ident: ref10
  doi: 10.1109/TIFS.2019.2951313
– ident: ref21
  doi: 10.1016/j.ins.2013.12.019
– ident: ref7
  doi: 10.1016/j.jvcir.2015.11.014
– ident: ref2
  doi: 10.1109/TCSVT.2018.2804768
– start-page: 81
  volume-title: Proc. ICML
  ident: ref15
  article-title: Uncertainty sampling for one-class classifiers
– ident: ref6
  doi: 10.1109/LSP.2013.2251632
– ident: ref4
  doi: 10.1007/978-3-642-04438-0_2
– start-page: 797
  volume-title: Proc. World Congr. Neural Netw.
  ident: ref14
  article-title: One-class classifier networks for target recognition applications
– year: 2019
  ident: ref25
  article-title: One-class classification for high-dimensional data
– ident: ref5
  doi: 10.1117/12.876566
– ident: ref1
  doi: 10.1109/TCSVT.2015.2473436
– ident: ref3
  doi: 10.1145/1161366.1161375
– ident: ref13
  doi: 10.1016/j.sigpro.2013.12.026
– ident: ref24
  doi: 10.1109/TIFS.2012.2190402
– ident: ref17
  doi: 10.1017/S026988891300043X
– ident: ref19
  doi: 10.1109/TIFS.2010.2045842
– ident: ref20
  doi: 10.1093/oso/9780198538493.003.0002
– volume-title: JM 19.0 Codec
  year: 2021
  ident: ref22
– ident: ref27
  doi: 10.1109/ICIP.2019.8802966
– ident: ref8
  doi: 10.1109/TIP.2016.2541960
– volume-title: Xiph.org Video Test Media
  year: 2021
  ident: ref23
– ident: ref18
  doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-330
– ident: ref9
  doi: 10.1109/TIFS.2017.2745687
– ident: ref12
  doi: 10.1145/1541880.1541882
– year: 2006
  ident: ref16
  article-title: Learning to recognise: A study on one-class classification and active learning
SSID ssj0014847
Score 2.4513006
Snippet Passive video forensics has become an active topic in recent years. Generally, a pristine video obtained from surveillance cameras or other video recording...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2496
SubjectTerms Anomalies
Cameras
Classification
Classifiers
Compressing
Discrete cosine transforms
Double compression detection
ensemble strategy
Feature extraction
Forensic science
Frames (data processing)
Image coding
Labels
Normal distribution
one-class classification
SPAM
Supervised learning
Surveillance
Training
Video compression
Video data
video forensics
Videos
Title One-Class Double Compression Detection of Advanced Videos Based on Simple Gaussian Distribution Model
URI https://ieeexplore.ieee.org/document/9388683
https://www.proquest.com/docview/2647425502
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: Consulter via IEEE Xplore
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4Bp3KgUECk0MqH3sqGfdi7niOPUlSJcshDua38GEuIaINIcumvr-3dRIUixG0l25Klz_Z8Xs98H8C3ilvlMjKJKzOVcOl3uq6kSjAVKlWISkVRn9vf5c2I_5qIyQacrmthiCgmn1E_fMa3fDszy_Cr7AwLKUtZbMJmJcu2Vmv9YsBlNBPzdCFLpI9jqwKZFM-Gl4Px0F8F86zvCTLmgj8LQtFV5b-jOMaX649wu5pZm1by0F8udN_8eSHa-N6p78JORzTZebsy9mCDmk-w_Y_84D7QXUNJdMVknkfrKbFwOrSJsQ27okVM02rYzLHzLlWAje8tzebswgc_y3zb4D7IC7OfajkP5ZjsKgjxdh5aLBitTQ9gdP1jeHmTdLYLiclRBHN6yZ0RhUHk5Le_5bpwJZVBqgsr0g5daivtQ7_JfAehq4K7QP08lUNpiuIQtppZQ0fAbJFpzBRq4xwnK1GjFmStvwJb1FL0IFvhUJtOkzxYY0zreDdJsY7Y1QG7usOuB9_XYx5bRY43e-8HMNY9Oxx6cLKCu-427bz23LDyR5hI88-vjzqGD3mofoiJOyewtXha0hfPSRb6a1yMfwHPvt0y
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remg50BZasTxaH3orWfKwE8-RR-m2ZemBBXGL_BhLqKssYncv_HpsJ7tqAVW9RYotWfrimc_xzPcBfK64VS4jk7gyUwmXfqfrSqoEU6FShahUFPUZnpeDS_7jWlyvwP6yF4aIYvEZ9cNjvMu3EzMPv8oOsJCylMULeCk456Lt1lreGXAZ7cQ8YcgS6TPZokUmxYPR8cXVyB8G86zvKTLmgv-VhqKvypNgHDPM6RsYLtbWFpb87s9num_uH8k2_u_i38J6RzXZYfttvIMVajZg7Q8Bwk2gXw0l0ReTeSatx8RCfGhLYxt2QrNYqNWwiWOHXbEAu7qxNJmyI5_-LPPvLm6CwDD7pubT0JDJToIUb-eixYLV2vg9XJ5-HR0Pks54ITE5imBPL7kzojCInHwAsFwXrqQyiHVhRdqhS22lffI3mR8gdFVwF8ifJ3MoTVF8gNVm0tAWMFtkGjOF2jjHyUrUqAVZ6w_BFrUUPcgWONSmUyUP5hjjOp5OUqwjdnXAru6w68GX5ZzbVpPjn6M3AxjLkR0OPdhdwF1323Zae3ZY-SAm0nz7-Vmf4NVgNDyrz76f_9yB13nohYhlPLuwOrub055nKDP9MX6YD42G4H8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Class+Double+Compression+Detection+of+Advanced+Videos+Based+on+Simple+Gaussian+Distribution+Model&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Li%2C+Qiushi&rft.au=Chen%2C+Shengda&rft.au=Tan%2C+Shunquan&rft.au=Li%2C+Bin&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=4&rft.spage=2496&rft.epage=2500&rft_id=info:doi/10.1109%2FTCSVT.2021.3069254&rft.externalDocID=9388683
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon