One-Class Double Compression Detection of Advanced Videos Based on Simple Gaussian Distribution Model
Passive video forensics has become an active topic in recent years. Generally, a pristine video obtained from surveillance cameras or other video recording devices is single compressed. At the same time, double lossy compression will certainly be introduced in tampered videos since it needs to go th...
        Saved in:
      
    
          | Published in | IEEE transactions on circuits and systems for video technology Vol. 32; no. 4; pp. 2496 - 2500 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.04.2022
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1051-8215 1558-2205  | 
| DOI | 10.1109/TCSVT.2021.3069254 | 
Cover
| Abstract | Passive video forensics has become an active topic in recent years. Generally, a pristine video obtained from surveillance cameras or other video recording devices is single compressed. At the same time, double lossy compression will certainly be introduced in tampered videos since it needs to go through recompression to perform tampering on a commonly used compressed video. In the video's double compression, some traces are left due to the intrinsic effects of recompression. Traditional supervised learning is inefficient because it requires two classes (the pristine and the manipulated) that occur in the video to be exhaustively assigned labels. Actually, compared with pristine videos, manipulated videos with labels are more difficult to obtain. To address this problem, in this paper, one-class classification, which is often used for anomaly detection and only needs the target class, is introduced. We first treat all decompressed video frames as still images and extract subtractive pixel adjacency matrix (SPAM) steganalysis features to detect traces left in the double compression process. Then we adopt a Gaussian density-based one-class classifier since SPAM features extracted from pristine video frames approximately subject to the Gaussian distribution. Furthermore, we improve the robustness of the classifier by using ensemble strategy. Experimental results indicate that our proposed method exceeds other more complex one-class classification methods, and outperforms fully-supervised learning methods only by feeding features from single compressed video frames to our one-class classifier. | 
    
|---|---|
| AbstractList | Passive video forensics has become an active topic in recent years. Generally, a pristine video obtained from surveillance cameras or other video recording devices is single compressed. At the same time, double lossy compression will certainly be introduced in tampered videos since it needs to go through recompression to perform tampering on a commonly used compressed video. In the video’s double compression, some traces are left due to the intrinsic effects of recompression. Traditional supervised learning is inefficient because it requires two classes (the pristine and the manipulated) that occur in the video to be exhaustively assigned labels. Actually, compared with pristine videos, manipulated videos with labels are more difficult to obtain. To address this problem, in this paper, one-class classification, which is often used for anomaly detection and only needs the target class, is introduced. We first treat all decompressed video frames as still images and extract subtractive pixel adjacency matrix (SPAM) steganalysis features to detect traces left in the double compression process. Then we adopt a Gaussian density-based one-class classifier since SPAM features extracted from pristine video frames approximately subject to the Gaussian distribution. Furthermore, we improve the robustness of the classifier by using ensemble strategy. Experimental results indicate that our proposed method exceeds other more complex one-class classification methods, and outperforms fully-supervised learning methods only by feeding features from single compressed video frames to our one-class classifier. | 
    
| Author | Huang, Jiwu Li, Qiushi Chen, Shengda Li, Bin Tan, Shunquan  | 
    
| Author_xml | – sequence: 1 givenname: Qiushi orcidid: 0000-0002-4976-3346 surname: Li fullname: Li, Qiushi organization: Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China – sequence: 2 givenname: Shengda surname: Chen fullname: Chen, Shengda organization: College of Computer Science and Technology, Sun Yat-sen University, Guangzhou, China – sequence: 3 givenname: Shunquan orcidid: 0000-0002-7457-3691 surname: Tan fullname: Tan, Shunquan email: tansq@szu.edu.cn organization: Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China – sequence: 4 givenname: Bin orcidid: 0000-0002-2613-5451 surname: Li fullname: Li, Bin organization: Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China – sequence: 5 givenname: Jiwu orcidid: 0000-0002-7625-5689 surname: Huang fullname: Huang, Jiwu organization: Guangdong Key Laboratory of Intelligent Information Processing, Shenzhen University, Shenzhen, China  | 
    
| BookMark | eNp90E9PwyAYBnBiNNGpX0AvTTx38reFo3Y6TTQ7bHollL5NMF2Z0Jr47aXOePDgiZfw_IA8M3TY-x4QuiB4TghW15tq_bqZU0zJnOFCUcEP0AkRQuaUYnGYZixILikRx2gW4xvGhEteniBY9ZBXnYkxW_ix7iCr_HYXIEbn-2wBA9hhmnyb3TQfprfQZK-uAR-zWxPTJp2t3XaX4NKMSZmkXByCq8dv-Owb6M7QUWu6COc_6yl6ub_bVA_502r5WN085ZYqMeSESd5awaxSHDAhDa9ZW0BRYlaoEupWtbgpa8qJJSkg6pLxFmPBBaVKWsZO0dX-3l3w7yPEQb_5MfTpSU0LXnIqBKYpJfcpG3yMAVpt3WCm3w7BuE4TrKdS9XepeipV_5SaKP1Dd8FtTfj8H13ukQOAX6CYlIVk7AsB-YRG | 
    
| CODEN | ITCTEM | 
    
| CitedBy_id | crossref_primary_10_1109_TCSVT_2022_3218587 crossref_primary_10_1109_ACCESS_2022_3140588 crossref_primary_10_1007_s11042_023_16065_7 crossref_primary_10_1109_JIOT_2024_3406954 crossref_primary_10_1109_TCSVT_2023_3295364 crossref_primary_10_3390_electronics12030532 crossref_primary_10_1007_s10489_024_06040_6 crossref_primary_10_1109_ACCESS_2024_3450814 crossref_primary_10_3390_s22239291 crossref_primary_10_1007_s11042_023_15170_x crossref_primary_10_1007_s42979_021_00800_8 crossref_primary_10_1109_TIFS_2022_3176188 crossref_primary_10_1016_j_neucom_2022_09_153  | 
    
| Cites_doi | 10.1007/978-1-4471-2063-6_225 10.1109/TIFS.2019.2951313 10.1016/j.ins.2013.12.019 10.1016/j.jvcir.2015.11.014 10.1109/TCSVT.2018.2804768 10.1109/LSP.2013.2251632 10.1007/978-3-642-04438-0_2 10.1117/12.876566 10.1109/TCSVT.2015.2473436 10.1145/1161366.1161375 10.1016/j.sigpro.2013.12.026 10.1109/TIFS.2012.2190402 10.1017/S026988891300043X 10.1109/TIFS.2010.2045842 10.1093/oso/9780198538493.003.0002 10.1109/ICIP.2019.8802966 10.1109/TIP.2016.2541960 10.2352/ISSN.2470-1173.2017.7.MWSF-330 10.1109/TIFS.2017.2745687 10.1145/1541880.1541882  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/TCSVT.2021.3069254 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Technology Research Database | 
    
| Database_xml | – sequence: 1 dbid: RIE name: Consulter via IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-2205 | 
    
| EndPage | 2500 | 
    
| ExternalDocumentID | 10_1109_TCSVT_2021_3069254 9388683  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Key-Area Research and Development Program of Guangdong Province grantid: 2019B010139003 – fundername: NSFC grantid: 61772349; U19B2022; 61872244 funderid: 10.13039/501100001809 – fundername: Basic and Applied Basic Research Foundation of Guangdong Province; Guangdong Basic and Applied Basic Research Foundation grantid: 2019B151502001 funderid: 10.13039/501100021171 – fundername: Alibaba Group through the Alibaba Innovative Research (AIR) Program – fundername: Shenzhen Research and Development Program grantid: GJHZ20180928155814437; JCYJ20200109105008228; JCYJ20180305124325555 funderid: 10.13039/501100017622  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c295t-1384fc53c994e011d4b3f6e6703697ebf9f0d7b241c14e05b734f005452298c33 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1051-8215 | 
    
| IngestDate | Sun Jun 29 12:21:00 EDT 2025 Thu Apr 24 22:52:35 EDT 2025 Wed Oct 01 01:07:02 EDT 2025 Wed Aug 27 02:40:50 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c295t-1384fc53c994e011d4b3f6e6703697ebf9f0d7b241c14e05b734f005452298c33 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-4976-3346 0000-0002-7457-3691 0000-0002-7625-5689 0000-0002-2613-5451  | 
    
| PQID | 2647425502 | 
    
| PQPubID | 85433 | 
    
| PageCount | 5 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TCSVT_2021_3069254 ieee_primary_9388683 crossref_primary_10_1109_TCSVT_2021_3069254 proquest_journals_2647425502  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-04-01 | 
    
| PublicationDateYYYYMMDD | 2022-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on circuits and systems for video technology | 
    
| PublicationTitleAbbrev | TCSVT | 
    
| PublicationYear | 2022 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 (ref23) 2021 ref12 Juszczak (ref16) 2006 Juszczak (ref15) ref11 ref10 ref2 ref1 ref17 ref19 ref18 ref24 Elghlan (ref25) 2019 ref20 (ref22) 2021 Moya (ref14) ref21 ref27 ref8 (ref26) 2021 ref7 ref9 ref4 ref3 ref6 ref5  | 
    
| References_xml | – volume-title: t-SNE year: 2021 ident: ref26 – ident: ref11 doi: 10.1007/978-1-4471-2063-6_225 – ident: ref10 doi: 10.1109/TIFS.2019.2951313 – ident: ref21 doi: 10.1016/j.ins.2013.12.019 – ident: ref7 doi: 10.1016/j.jvcir.2015.11.014 – ident: ref2 doi: 10.1109/TCSVT.2018.2804768 – start-page: 81 volume-title: Proc. ICML ident: ref15 article-title: Uncertainty sampling for one-class classifiers – ident: ref6 doi: 10.1109/LSP.2013.2251632 – ident: ref4 doi: 10.1007/978-3-642-04438-0_2 – start-page: 797 volume-title: Proc. World Congr. Neural Netw. ident: ref14 article-title: One-class classifier networks for target recognition applications – year: 2019 ident: ref25 article-title: One-class classification for high-dimensional data – ident: ref5 doi: 10.1117/12.876566 – ident: ref1 doi: 10.1109/TCSVT.2015.2473436 – ident: ref3 doi: 10.1145/1161366.1161375 – ident: ref13 doi: 10.1016/j.sigpro.2013.12.026 – ident: ref24 doi: 10.1109/TIFS.2012.2190402 – ident: ref17 doi: 10.1017/S026988891300043X – ident: ref19 doi: 10.1109/TIFS.2010.2045842 – ident: ref20 doi: 10.1093/oso/9780198538493.003.0002 – volume-title: JM 19.0 Codec year: 2021 ident: ref22 – ident: ref27 doi: 10.1109/ICIP.2019.8802966 – ident: ref8 doi: 10.1109/TIP.2016.2541960 – volume-title: Xiph.org Video Test Media year: 2021 ident: ref23 – ident: ref18 doi: 10.2352/ISSN.2470-1173.2017.7.MWSF-330 – ident: ref9 doi: 10.1109/TIFS.2017.2745687 – ident: ref12 doi: 10.1145/1541880.1541882 – year: 2006 ident: ref16 article-title: Learning to recognise: A study on one-class classification and active learning  | 
    
| SSID | ssj0014847 | 
    
| Score | 2.4513006 | 
    
| Snippet | Passive video forensics has become an active topic in recent years. Generally, a pristine video obtained from surveillance cameras or other video recording... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 2496 | 
    
| SubjectTerms | Anomalies Cameras Classification Classifiers Compressing Discrete cosine transforms Double compression detection ensemble strategy Feature extraction Forensic science Frames (data processing) Image coding Labels Normal distribution one-class classification SPAM Supervised learning Surveillance Training Video compression Video data video forensics Videos  | 
    
| Title | One-Class Double Compression Detection of Advanced Videos Based on Simple Gaussian Distribution Model | 
    
| URI | https://ieeexplore.ieee.org/document/9388683 https://www.proquest.com/docview/2647425502  | 
    
| Volume | 32 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: Consulter via IEEE Xplore customDbUrl: eissn: 1558-2205 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014847 issn: 1051-8215 databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTxsxEB4Bp3KgUECk0MqH3sqGfdi7niOPUlSJcshDua38GEuIaINIcumvr-3dRIUixG0l25Klz_Z8Xs98H8C3ilvlMjKJKzOVcOl3uq6kSjAVKlWISkVRn9vf5c2I_5qIyQacrmthiCgmn1E_fMa3fDszy_Cr7AwLKUtZbMJmJcu2Vmv9YsBlNBPzdCFLpI9jqwKZFM-Gl4Px0F8F86zvCTLmgj8LQtFV5b-jOMaX649wu5pZm1by0F8udN_8eSHa-N6p78JORzTZebsy9mCDmk-w_Y_84D7QXUNJdMVknkfrKbFwOrSJsQ27okVM02rYzLHzLlWAje8tzebswgc_y3zb4D7IC7OfajkP5ZjsKgjxdh5aLBitTQ9gdP1jeHmTdLYLiclRBHN6yZ0RhUHk5Le_5bpwJZVBqgsr0g5daivtQ7_JfAehq4K7QP08lUNpiuIQtppZQ0fAbJFpzBRq4xwnK1GjFmStvwJb1FL0IFvhUJtOkzxYY0zreDdJsY7Y1QG7usOuB9_XYx5bRY43e-8HMNY9Oxx6cLKCu-427bz23LDyR5hI88-vjzqGD3mofoiJOyewtXha0hfPSRb6a1yMfwHPvt0y | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB5Remg50BZasTxaH3orWfKwE8-RR-m2ZemBBXGL_BhLqKssYncv_HpsJ7tqAVW9RYotWfrimc_xzPcBfK64VS4jk7gyUwmXfqfrSqoEU6FShahUFPUZnpeDS_7jWlyvwP6yF4aIYvEZ9cNjvMu3EzMPv8oOsJCylMULeCk456Lt1lreGXAZ7cQ8YcgS6TPZokUmxYPR8cXVyB8G86zvKTLmgv-VhqKvypNgHDPM6RsYLtbWFpb87s9num_uH8k2_u_i38J6RzXZYfttvIMVajZg7Q8Bwk2gXw0l0ReTeSatx8RCfGhLYxt2QrNYqNWwiWOHXbEAu7qxNJmyI5_-LPPvLm6CwDD7pubT0JDJToIUb-eixYLV2vg9XJ5-HR0Pks54ITE5imBPL7kzojCInHwAsFwXrqQyiHVhRdqhS22lffI3mR8gdFVwF8ifJ3MoTVF8gNVm0tAWMFtkGjOF2jjHyUrUqAVZ6w_BFrUUPcgWONSmUyUP5hjjOp5OUqwjdnXAru6w68GX5ZzbVpPjn6M3AxjLkR0OPdhdwF1323Zae3ZY-SAm0nz7-Vmf4NVgNDyrz76f_9yB13nohYhlPLuwOrub055nKDP9MX6YD42G4H8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=One-Class+Double+Compression+Detection+of+Advanced+Videos+Based+on+Simple+Gaussian+Distribution+Model&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Li%2C+Qiushi&rft.au=Chen%2C+Shengda&rft.au=Tan%2C+Shunquan&rft.au=Li%2C+Bin&rft.date=2022-04-01&rft.pub=IEEE&rft.issn=1051-8215&rft.volume=32&rft.issue=4&rft.spage=2496&rft.epage=2500&rft_id=info:doi/10.1109%2FTCSVT.2021.3069254&rft.externalDocID=9388683 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon |