LOBO Optimization-Tuned Deep-Convolutional Neural Network for Brain Tumor Classification Approach
The categorization of brain tumors is a significant issue for healthcare applications. Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease. Brain tumors possess high changes in terms of size, shape, and amount, and hence the classificat...
Saved in:
| Published in | Shanghai jiao tong da xue xue bao Vol. 30; no. 1; pp. 107 - 114 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Shanghai
Shanghai Jiaotong University Press
01.02.2025
Springer Nature B.V School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1007-1172 1674-8115 1995-8188 |
| DOI | 10.1007/s12204-023-2625-8 |
Cover
| Abstract | The categorization of brain tumors is a significant issue for healthcare applications. Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease. Brain tumors possess high changes in terms of size, shape, and amount, and hence the classification process acts as a more difficult research problem. This paper suggests a deep learning model using the magnetic resonance imaging technique that overcomes the limitations associated with the existing classification methods. The effectiveness of the suggested method depends on the coyote optimization algorithm, also known as the LOBO algorithm, which optimizes the weights of the deep-convolutional neural network classifier. The accuracy, sensitivity, and specificity indices, which are obtained to be 92.40%, 94.15%, and 91.92%, respectively, are used to validate the effectiveness of the suggested method. The result suggests that the suggested strategy is superior for effectively classifying brain tumors. |
|---|---|
| AbstractList | R739.91%TP391; The categorization of brain tumors is a significant issue for healthcare applications.Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease.Brain tumors possess high changes in terms of size,shape,and amount,and hence the classification process acts as a more difficult research problem.This paper suggests a deep learning model using the magnetic resonance imaging technique that overcomes the limitations associated with the existing classification methods.The effectiveness of the suggested method depends on the coyote optimization algorithm,also known as the LOBO algorithm,which optimizes the weights of the deep-convolutional neural network classifier.The accuracy,sensitivity,and specificity indices,which are obtained to be 92.40%,94.15%,and 91.92%,respectively,are used to validate the effectiveness of the suggested method.The result suggests that the suggested strategy is superior for effectively classifying brain tumors. The categorization of brain tumors is a significant issue for healthcare applications. Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease. Brain tumors possess high changes in terms of size, shape, and amount, and hence the classification process acts as a more difficult research problem. This paper suggests a deep learning model using the magnetic resonance imaging technique that overcomes the limitations associated with the existing classification methods. The effectiveness of the suggested method depends on the coyote optimization algorithm, also known as the LOBO algorithm, which optimizes the weights of the deep-convolutional neural network classifier. The accuracy, sensitivity, and specificity indices, which are obtained to be 92.40%, 94.15%, and 91.92%, respectively, are used to validate the effectiveness of the suggested method. The result suggests that the suggested strategy is superior for effectively classifying brain tumors. |
| Author | Nisha, A. Sahaya Anselin Amirthalakshmi, T. M. Vedanarayanan, V. Narmadha, R. Balamurugan, V. |
| AuthorAffiliation | School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India |
| AuthorAffiliation_xml | – name: School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India |
| Author_xml | – sequence: 1 givenname: A. Sahaya Anselin surname: Nisha fullname: Nisha, A. Sahaya Anselin email: anselinnisha.ece@sathyabama.ac.in organization: School of Electrical and Electronics, Sathyabama Institute of Science and Technology – sequence: 2 givenname: R. surname: Narmadha fullname: Narmadha, R. organization: School of Electrical and Electronics, Sathyabama Institute of Science and Technology – sequence: 3 givenname: T. M. surname: Amirthalakshmi fullname: Amirthalakshmi, T. M. organization: Department of Electronics and Communication Engineering, SRM Institute of Science and Technology – sequence: 4 givenname: V. surname: Balamurugan fullname: Balamurugan, V. organization: School of Electrical and Electronics, Sathyabama Institute of Science and Technology – sequence: 5 givenname: V. surname: Vedanarayanan fullname: Vedanarayanan, V. organization: School of Electrical and Electronics, Sathyabama Institute of Science and Technology |
| BookMark | eNp9kU9v1DAQxS1UJNrCB-AWiSMyjMeO1z62y19pxV6Ws-Ukdpslawc7aQufHu8GqRISPc2T9Xvj0XsX5CzE4Ah5zeAdA1i9zwwRBAXkFCXWVD0j50zrIphSZ0UXiDK2whfkIuc9gADO9Tmxm-31ttqOU3_of9upj4Hu5uC66oNzI13HcBeH-fhsh-qbm9NpTPcx_ah8TNV1sn2odvOh6PVgc-59357WVFfjmKJtb1-S594O2b36Oy_J908fd-svdLP9_HV9taEt6prR1ndSKs-dE6oFL0CvHGLXeO0BfafA1141gltUouFedtgo6bRG13YOeMMvydtl770N3oYbs49zKmdnk2_3U_fw0BiHgDUwYKzQbxa6HPlzdnl6xHmhBEqQ8CTFaqEkCi0LxRaqTTHn5LwZU3-w6ZdhYI7Bm6UdU9oxx3aMKp7VP562n07BTSXS4UknLs5cfgk3Lj3e9H_TH9UPpUM |
| CitedBy_id | crossref_primary_10_1007_s12065_024_00925_8 crossref_primary_10_1007_s11042_024_20398_2 |
| Cites_doi | 10.1016/j.compbiomed.2020.103804 10.3390/s21062222 10.1166/jmihi.2018.2285 10.1109/ICSIPR.2013.6497966 10.5815/ijigsp.2013.02.07 10.5120/21205-3885 10.1371/journal.pone.0140381 10.1016/j.compmedimag.2019.05.001 10.1109/ISMS.2011.32 10.1007/978-3-319-30858-6_17 10.1016/j.compbiomed.2019.103345 10.1007/s40747-021-00321-0 10.1007/s10278-013-9600-0 10.1007/s10278-020-00347-9 10.1016/j.jocs.2018.12.003 10.1016/j.procs.2016.07.370 |
| ClassificationCodes | R739.91%TP391 |
| ContentType | Journal Article |
| Copyright | Shanghai Jiao Tong University 2023 Copyright Springer Nature B.V. 2025 Copyright Shanghai Jiaotong University Press 2025 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| Copyright_xml | – notice: Shanghai Jiao Tong University 2023 – notice: Copyright Springer Nature B.V. 2025 – notice: Copyright Shanghai Jiaotong University Press 2025 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
| DBID | AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D 7QL 7QO 7QP 7T5 7TK 7TM 7TO 7U9 C1K H94 M7N P64 RC3 2B. 4A8 92I 93N PSX TCJ |
| DOI | 10.1007/s12204-023-2625-8 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Bacteriology Abstracts (Microbiology B) Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Environmental Sciences and Pollution Management AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Nucleic Acids Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Genetics Abstracts Biotechnology Research Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Immunology Abstracts Calcium & Calcified Tissue Abstracts |
| DatabaseTitleList | Materials Research Database Virology and AIDS Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Architecture Sciences (General) Computer Science |
| DocumentTitle_FL | LOBO优化的深度卷积神经网络用于脑肿瘤分类 |
| EISSN | 1995-8188 |
| EndPage | 114 |
| ExternalDocumentID | shjtdxxb_e202501011 10_1007_s12204_023_2625_8 |
| GroupedDBID | -5B -5G -BR -EM -SC -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 6NX 8RM 8TC 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFRAH AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CAJEC CCEZO CEKLB CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J OK1 P9P PF0 PT4 Q-- QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TSV TUC U1G U2A U5M UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D -05 7QL 7QO 7QP 7T5 7TK 7TM 7TO 7U9 C1K CIEJG GROUPED_DOAJ H94 M7N P64 RC3 4A8 PSX |
| ID | FETCH-LOGICAL-c2951-cfd668f3ee48c0f4097e22dbf9f02fd80f5f8b43a284b3f6d2b86e992ecde03b3 |
| IEDL.DBID | U2A |
| ISSN | 1007-1172 1674-8115 |
| IngestDate | Thu May 29 03:56:07 EDT 2025 Mon Jun 30 10:34:28 EDT 2025 Fri Jul 25 11:09:36 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 Wed Oct 01 03:06:00 EDT 2025 Fri Feb 21 02:37:45 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | A magnetic resonance imaging 脑肿瘤 deep-convolutional neural network classifier 深度学习 brain tumor TP 391 LOBO optimization deep learning 磁共振成像 深度卷积神经网络分类器 LOBO优化 R 739.91 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2951-cfd668f3ee48c0f4097e22dbf9f02fd80f5f8b43a284b3f6d2b86e992ecde03b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3154862496 |
| PQPubID | 2043647 |
| PageCount | 8 |
| ParticipantIDs | wanfang_journals_shjtdxxb_e202501011 proquest_journals_3202426060 proquest_journals_3154862496 crossref_primary_10_1007_s12204_023_2625_8 crossref_citationtrail_10_1007_s12204_023_2625_8 springer_journals_10_1007_s12204_023_2625_8 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20250200 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
| PublicationDecade | 2020 |
| PublicationPlace | Shanghai |
| PublicationPlace_xml | – name: Shanghai – name: Heidelberg |
| PublicationTitle | Shanghai jiao tong da xue xue bao |
| PublicationTitleAbbrev | J. Shanghai Jiaotong Univ. (Sci.) |
| PublicationTitle_FL | Journal of Shanghai Jiaotong University(Science) |
| PublicationYear | 2025 |
| Publisher | Shanghai Jiaotong University Press Springer Nature B.V School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India |
| Publisher_xml | – name: Shanghai Jiaotong University Press – name: Springer Nature B.V – name: School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India |
| References | T L Jones (2625_CR7) 2015; 17 N Sumitra (2625_CR19) 2013; 5 M F Othman (2625_CR3) 2011 J Sachdeva (2625_CR5) 2013; 26 S Dawood Salman Al-Shaikhli (2625_CR10) 2015 J Sachdeva (2625_CR16) 2012 S Deepak (2625_CR12) 2019; 111 J Kang (2625_CR13) 2021; 21 Z N K Swati (2625_CR9) 2019; 75 S Hussain (2625_CR25) 2017 M I Sharif (2625_CR14) 2022; 8 M Sajjad (2625_CR1) 2019; 30 V Vijay (2625_CR18) 2016; 92 D Sridhar (2625_CR6) 2013 J Cheng (2625_CR4) 2015; 10 A Kharrat (2625_CR17) 2016 X Z Xie (2625_CR22) 2018; 8 P Sapra (2625_CR23) 2013; 1 P Madhusudhanareddy (2625_CR11) 2013; 3 M Havaei (2625_CR24) 2016 G S Tandel (2625_CR2) 2020; 122 J Pierezan (2625_CR20) 2018 2625_CR21 H Mzoughi (2625_CR15) 2020; 33 S B Gaikwad (2625_CR8) 2015; 120 |
| References_xml | – ident: 2625_CR21 – volume: 3 start-page: 2378 issue: 4 year: 2013 ident: 2625_CR11 publication-title: International Journal of Engineering Research and Applications – start-page: 1998 volume-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society year: 2017 ident: 2625_CR25 – volume: 122 start-page: 103804 year: 2020 ident: 2625_CR2 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2020.103804 – start-page: 1 volume-title: 2018 IEEE Congress on Evolutionary Computation year: 2018 ident: 2625_CR20 – volume: 21 start-page: 2222 issue: 6 year: 2021 ident: 2625_CR13 publication-title: Sensors doi: 10.3390/s21062222 – volume: 8 start-page: 180 issue: 2 year: 2018 ident: 2625_CR22 publication-title: Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2018.2285 – start-page: 92 volume-title: 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition year: 2013 ident: 2625_CR6 doi: 10.1109/ICSIPR.2013.6497966 – volume: 5 start-page: 45 issue: 2 year: 2013 ident: 2625_CR19 publication-title: International Journal of Image, Graphics and Signal Processing doi: 10.5815/ijigsp.2013.02.07 – start-page: 182 volume-title: 2011 Developments in E-systems Engineering year: 2012 ident: 2625_CR16 – volume: 120 start-page: 5 issue: 3 year: 2015 ident: 2625_CR8 publication-title: International Journal of Computer Applications doi: 10.5120/21205-3885 – volume: 10 start-page: e0140381 issue: 10 year: 2015 ident: 2625_CR4 publication-title: PLoS One doi: 10.1371/journal.pone.0140381 – volume: 17 start-page: 466 issue: 3 year: 2015 ident: 2625_CR7 publication-title: Neuro-oncology – volume: 75 start-page: 34 year: 2019 ident: 2625_CR9 publication-title: Computerized Medical Imaging and Graphics doi: 10.1016/j.compmedimag.2019.05.001 – start-page: 136 volume-title: 2011 Second International Conference on Intelligent Systems, Modelling and Simulation year: 2011 ident: 2625_CR3 doi: 10.1109/ISMS.2011.32 – start-page: 195 volume-title: Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries year: 2016 ident: 2625_CR24 doi: 10.1007/978-3-319-30858-6_17 – volume: 111 start-page: 103345 year: 2019 ident: 2625_CR12 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2019.103345 – volume: 1 start-page: 83 issue: 9 year: 2013 ident: 2625_CR23 publication-title: International Journal of Science and Modern Engineering – start-page: 2774 volume-title: 2014 IEEE International Conference on Image Processing year: 2015 ident: 2625_CR10 – start-page: 446 volume-title: 2015 15th International Conference on Intelligent Systems Design and Applications year: 2016 ident: 2625_CR17 – volume: 8 start-page: 3007 issue: 4 year: 2022 ident: 2625_CR14 publication-title: Complex & Intelligent Systems doi: 10.1007/s40747-021-00321-0 – volume: 26 start-page: 1141 issue: 6 year: 2013 ident: 2625_CR5 publication-title: Journal of Digital Imaging doi: 10.1007/s10278-013-9600-0 – volume: 33 start-page: 903 issue: 4 year: 2020 ident: 2625_CR15 publication-title: Journal of Digital Imaging doi: 10.1007/s10278-020-00347-9 – volume: 30 start-page: 174 year: 2019 ident: 2625_CR1 publication-title: Journal of Computational Science doi: 10.1016/j.jocs.2018.12.003 – volume: 92 start-page: 475 year: 2016 ident: 2625_CR18 publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.07.370 |
| SSID | ssj0040339 ssj0001538017 |
| Score | 2.327464 |
| Snippet | The categorization of brain tumors is a significant issue for healthcare applications. Perfect and timely identification of brain tumors is important for... R739.91%TP391; The categorization of brain tumors is a significant issue for healthcare applications.Perfect and timely identification of brain tumors is... |
| SourceID | wanfang proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 107 |
| SubjectTerms | Algorithms Architecture Artificial neural networks Brain Brain tumors Classification Computer Science Deep learning Effectiveness Electrical Engineering Engineering Imaging techniques Life Sciences Machine learning Magnetic resonance imaging Materials Science Neural networks Neuroimaging Optimization Tumors |
| Title | LOBO Optimization-Tuned Deep-Convolutional Neural Network for Brain Tumor Classification Approach |
| URI | https://link.springer.com/article/10.1007/s12204-023-2625-8 https://www.proquest.com/docview/3154862496 https://www.proquest.com/docview/3202426060 https://d.wanfangdata.com.cn/periodical/shjtdxxb-e202501011 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1995-8188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001538017 issn: 1007-1172 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1995-8188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0040339 issn: 1007-1172 databaseCode: AFBBN dateStart: 20080201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1995-8188 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0040339 issn: 1007-1172 databaseCode: AGYKE dateStart: 20080101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1995-8188 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0040339 issn: 1007-1172 databaseCode: U2A dateStart: 20080201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gJI0C4gFsrKhx54yJLXThznmJY-1Bb2siuVUxS_WiGaVuwu6s9n7HWaRaoqcUoUv6TMeOazPf4GYE8VTSMYt7RAb04z5zgtbVPSvHQ4s5h1Ii4Uv32XJ7Ps9CK_SPe45120e3ckGS11f9mN8xAxwQXlCNqpegJbeWDzQiWe8aozvxkTMX1YaEPH6J67o8yHuvjXGfUI8_5QNF7laX3TXq55naNteJHgIqlW8t2BDdcO4Hm1tvs_gJddZgaSJuoAnq3RDA5gJ32fk4-JZfrTK2jOJ_sTMkGLcZ2uYtLpEm0u-ercLT24af8kpcThA4NHfMSQcYI4l-yH1BJkurzG95hYM4QcxW5IlWjKX8Ps6HB6cEJTvgVqOAItaryVUnnhXKYM84EJy3FutS89494q5nOvdCYadGlaeGm5VtKVJXfGOia0eAOb7U3r3gIplCm8NLkpC4SEbKy1GTubG8WbLGuYHwLrfnxtEhl5yInxq-5plIOsapRVHWRVqyF8vm9yu2LieKzybifNOk3KeS3C8kzielM-XMwjXmGSDeFLpwB98SNj7SUd6SvPr34u7N2drh0PIBPt3vjdf3X6Hp6Glqv48F3YXPxeug8IfxZ6BFvV8Y-zw1HcPhhF5f8LTRj81g |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BOfCQgAYQgQI-9MBDlhx71-s9poUqQNpcEqk3a22PixDdViRB_fnYjrcbpKoSp12tX5JnPP68nvkGYF9VTSMYd7QKuzktEDmtXVPTssawsphDkQ6Kxydysii-nZanOY572Xm7d1eSyVL3wW6cR48JLigPoJ2qu3Av8ldFwvwFH3fmt2AipQ-LbegobM_dVeZNXfy7GfUI8_pSNIXytL5pz7Z2naOn8DjDRTLeyHcX7mA7gEfjrb__A3jSZWYgeaEO4OEWzeAAdvP3JXmfWaY_PINmOjuYkVmwGOc5FJPO18Hmks-Il_Twov2TlTIMHxk80iO5jJOAc8lBTC1B5uvz8J4Sa0aXo9QNGWea8uewOPoyP5zQnG-BWh6AFrXeSam8QCyUZT4yYSHnzvjaM-6dYr70yhSiCZNuhJeOGyWxrjlah0wY8QJ22osWXwKplK28tKWtqwAJ2cgYO0JXWsWbomiYHwLrJl7bTEYec2L80j2NcpSVDrLSUVZaDeHjdZPLDRPHbZX3OmnqvCiXWsTjmQznTXlzMU94hUk2hE-dAvTFt4y1n3Wkr7z88XPlrq6MRh5BZrB7o1f_1ek7uD-ZH0_19OvJ99fwIPay8RXfg53V7zW-CVBoZd4m1f8LbJ39OQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB7aFEoTSBq3Ic6rOuTQByKytKvVHp2HSds07sGG3MTq1VKSjYntkp9fSdZmHQiBnnZZSSPYGc18QqNvAA5FUVWMUIMLH81xZi3FpalKnJfWryxiLIsbxR-X_HycfbvKr1Kd02mT7d4cSS7uNASWpnp2NDHuqL34RmnInqAMUw_gsXgJr7LAk-ANekz7jSvOCIulxMIY3POhujnWfErE48DUos2HA9J4rad2Vf1rKQIN3sJ6go6ov9D1JrywdQfW-ksnAR3YaKo0oLRoO7C6RDnYgc30fYo-JsbpT--guhgeD9HQe4-bdC0Tj-be_6JTayf45Lb-mwzUTx_YPOIjpo8jj3nRcSgzgUbzG_8ei2yG9KMoBvUTZfl7GA_ORifnONVewJp60IW1M5wLx6zNhCYusGJZSo1ypSPUGUFc7oTKWOXDm2KOG6oEt2VJrTaWMMW2YKW-re02oELownGd67Lw8JD0lNI9a3ItaJVlFXFdIM2PlzoRk4f6GNeypVQOupJeVzLoSooufH4YMlmwcjzXea_RpkwLdCpZ2Kpxv_fkTzfTiF0IJ1340hhA2_zMXIfJRtrO099_Zub-XklLA-D0PrC3819CP8Drn6cDefH18vsuvAlCFmnje7Ayu5vbfY-KZuogWv4_83IBhA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LOBO+Optimization-Tuned+Deep-Convolutional+Neural+Network+for+Brain+Tumor+Classification+Approach&rft.jtitle=Shanghai+jiao+tong+da+xue+xue+bao&rft.au=Nisha%2C+A.+Sahaya+Anselin&rft.au=Narmadha%2C+R.&rft.au=Amirthalakshmi%2C+T.+M.&rft.au=Balamurugan%2C+V.&rft.date=2025-02-01&rft.issn=1007-1172&rft.eissn=1995-8188&rft.volume=30&rft.issue=1&rft.spage=107&rft.epage=114&rft_id=info:doi/10.1007%2Fs12204-023-2625-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12204_023_2625_8 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshjtdxxb-e%2Fshjtdxxb-e.jpg |