LOBO Optimization-Tuned Deep-Convolutional Neural Network for Brain Tumor Classification Approach

The categorization of brain tumors is a significant issue for healthcare applications. Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease. Brain tumors possess high changes in terms of size, shape, and amount, and hence the classificat...

Full description

Saved in:
Bibliographic Details
Published inShanghai jiao tong da xue xue bao Vol. 30; no. 1; pp. 107 - 114
Main Authors Nisha, A. Sahaya Anselin, Narmadha, R., Amirthalakshmi, T. M., Balamurugan, V., Vedanarayanan, V.
Format Journal Article
LanguageEnglish
Published Shanghai Shanghai Jiaotong University Press 01.02.2025
Springer Nature B.V
School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India
Subjects
Online AccessGet full text
ISSN1007-1172
1674-8115
1995-8188
DOI10.1007/s12204-023-2625-8

Cover

Abstract The categorization of brain tumors is a significant issue for healthcare applications. Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease. Brain tumors possess high changes in terms of size, shape, and amount, and hence the classification process acts as a more difficult research problem. This paper suggests a deep learning model using the magnetic resonance imaging technique that overcomes the limitations associated with the existing classification methods. The effectiveness of the suggested method depends on the coyote optimization algorithm, also known as the LOBO algorithm, which optimizes the weights of the deep-convolutional neural network classifier. The accuracy, sensitivity, and specificity indices, which are obtained to be 92.40%, 94.15%, and 91.92%, respectively, are used to validate the effectiveness of the suggested method. The result suggests that the suggested strategy is superior for effectively classifying brain tumors.
AbstractList R739.91%TP391; The categorization of brain tumors is a significant issue for healthcare applications.Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease.Brain tumors possess high changes in terms of size,shape,and amount,and hence the classification process acts as a more difficult research problem.This paper suggests a deep learning model using the magnetic resonance imaging technique that overcomes the limitations associated with the existing classification methods.The effectiveness of the suggested method depends on the coyote optimization algorithm,also known as the LOBO algorithm,which optimizes the weights of the deep-convolutional neural network classifier.The accuracy,sensitivity,and specificity indices,which are obtained to be 92.40%,94.15%,and 91.92%,respectively,are used to validate the effectiveness of the suggested method.The result suggests that the suggested strategy is superior for effectively classifying brain tumors.
The categorization of brain tumors is a significant issue for healthcare applications. Perfect and timely identification of brain tumors is important for employing an effective treatment of this disease. Brain tumors possess high changes in terms of size, shape, and amount, and hence the classification process acts as a more difficult research problem. This paper suggests a deep learning model using the magnetic resonance imaging technique that overcomes the limitations associated with the existing classification methods. The effectiveness of the suggested method depends on the coyote optimization algorithm, also known as the LOBO algorithm, which optimizes the weights of the deep-convolutional neural network classifier. The accuracy, sensitivity, and specificity indices, which are obtained to be 92.40%, 94.15%, and 91.92%, respectively, are used to validate the effectiveness of the suggested method. The result suggests that the suggested strategy is superior for effectively classifying brain tumors.
Author Nisha, A. Sahaya Anselin
Amirthalakshmi, T. M.
Vedanarayanan, V.
Narmadha, R.
Balamurugan, V.
AuthorAffiliation School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India
AuthorAffiliation_xml – name: School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India
Author_xml – sequence: 1
  givenname: A. Sahaya Anselin
  surname: Nisha
  fullname: Nisha, A. Sahaya Anselin
  email: anselinnisha.ece@sathyabama.ac.in
  organization: School of Electrical and Electronics, Sathyabama Institute of Science and Technology
– sequence: 2
  givenname: R.
  surname: Narmadha
  fullname: Narmadha, R.
  organization: School of Electrical and Electronics, Sathyabama Institute of Science and Technology
– sequence: 3
  givenname: T. M.
  surname: Amirthalakshmi
  fullname: Amirthalakshmi, T. M.
  organization: Department of Electronics and Communication Engineering, SRM Institute of Science and Technology
– sequence: 4
  givenname: V.
  surname: Balamurugan
  fullname: Balamurugan, V.
  organization: School of Electrical and Electronics, Sathyabama Institute of Science and Technology
– sequence: 5
  givenname: V.
  surname: Vedanarayanan
  fullname: Vedanarayanan, V.
  organization: School of Electrical and Electronics, Sathyabama Institute of Science and Technology
BookMark eNp9kU9v1DAQxS1UJNrCB-AWiSMyjMeO1z62y19pxV6Ws-Ukdpslawc7aQufHu8GqRISPc2T9Xvj0XsX5CzE4Ah5zeAdA1i9zwwRBAXkFCXWVD0j50zrIphSZ0UXiDK2whfkIuc9gADO9Tmxm-31ttqOU3_of9upj4Hu5uC66oNzI13HcBeH-fhsh-qbm9NpTPcx_ah8TNV1sn2odvOh6PVgc-59357WVFfjmKJtb1-S594O2b36Oy_J908fd-svdLP9_HV9taEt6prR1ndSKs-dE6oFL0CvHGLXeO0BfafA1141gltUouFedtgo6bRG13YOeMMvydtl770N3oYbs49zKmdnk2_3U_fw0BiHgDUwYKzQbxa6HPlzdnl6xHmhBEqQ8CTFaqEkCi0LxRaqTTHn5LwZU3-w6ZdhYI7Bm6UdU9oxx3aMKp7VP562n07BTSXS4UknLs5cfgk3Lj3e9H_TH9UPpUM
CitedBy_id crossref_primary_10_1007_s12065_024_00925_8
crossref_primary_10_1007_s11042_024_20398_2
Cites_doi 10.1016/j.compbiomed.2020.103804
10.3390/s21062222
10.1166/jmihi.2018.2285
10.1109/ICSIPR.2013.6497966
10.5815/ijigsp.2013.02.07
10.5120/21205-3885
10.1371/journal.pone.0140381
10.1016/j.compmedimag.2019.05.001
10.1109/ISMS.2011.32
10.1007/978-3-319-30858-6_17
10.1016/j.compbiomed.2019.103345
10.1007/s40747-021-00321-0
10.1007/s10278-013-9600-0
10.1007/s10278-020-00347-9
10.1016/j.jocs.2018.12.003
10.1016/j.procs.2016.07.370
ClassificationCodes R739.91%TP391
ContentType Journal Article
Copyright Shanghai Jiao Tong University 2023
Copyright Springer Nature B.V. 2025
Copyright Shanghai Jiaotong University Press 2025
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Shanghai Jiao Tong University 2023
– notice: Copyright Springer Nature B.V. 2025
– notice: Copyright Shanghai Jiaotong University Press 2025
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
7QL
7QO
7QP
7T5
7TK
7TM
7TO
7U9
C1K
H94
M7N
P64
RC3
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12204-023-2625-8
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Environmental Sciences and Pollution Management
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Immunology Abstracts
Calcium & Calcified Tissue Abstracts
DatabaseTitleList

Materials Research Database
Virology and AIDS Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
Sciences (General)
Computer Science
DocumentTitle_FL LOBO优化的深度卷积神经网络用于脑肿瘤分类
EISSN 1995-8188
EndPage 114
ExternalDocumentID shjtdxxb_e202501011
10_1007_s12204_023_2625_8
GroupedDBID -5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
6NX
8RM
8TC
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFRAH
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEC
CCEZO
CEKLB
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P9P
PF0
PT4
Q--
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TSV
TUC
U1G
U2A
U5M
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
-05
7QL
7QO
7QP
7T5
7TK
7TM
7TO
7U9
C1K
CIEJG
GROUPED_DOAJ
H94
M7N
P64
RC3
4A8
PSX
ID FETCH-LOGICAL-c2951-cfd668f3ee48c0f4097e22dbf9f02fd80f5f8b43a284b3f6d2b86e992ecde03b3
IEDL.DBID U2A
ISSN 1007-1172
1674-8115
IngestDate Thu May 29 03:56:07 EDT 2025
Mon Jun 30 10:34:28 EDT 2025
Fri Jul 25 11:09:36 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
Wed Oct 01 03:06:00 EDT 2025
Fri Feb 21 02:37:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords A
magnetic resonance imaging
脑肿瘤
deep-convolutional neural network classifier
深度学习
brain tumor
TP 391
LOBO optimization
deep learning
磁共振成像
深度卷积神经网络分类器
LOBO优化
R 739.91
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2951-cfd668f3ee48c0f4097e22dbf9f02fd80f5f8b43a284b3f6d2b86e992ecde03b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3154862496
PQPubID 2043647
PageCount 8
ParticipantIDs wanfang_journals_shjtdxxb_e202501011
proquest_journals_3202426060
proquest_journals_3154862496
crossref_primary_10_1007_s12204_023_2625_8
crossref_citationtrail_10_1007_s12204_023_2625_8
springer_journals_10_1007_s12204_023_2625_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250200
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace Shanghai
PublicationPlace_xml – name: Shanghai
– name: Heidelberg
PublicationTitle Shanghai jiao tong da xue xue bao
PublicationTitleAbbrev J. Shanghai Jiaotong Univ. (Sci.)
PublicationTitle_FL Journal of Shanghai Jiaotong University(Science)
PublicationYear 2025
Publisher Shanghai Jiaotong University Press
Springer Nature B.V
School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India
Publisher_xml – name: Shanghai Jiaotong University Press
– name: Springer Nature B.V
– name: School of Electrical and Electronics,Sathyabama Institute of Science and Technology,Chennai 600119,Tamil Nadu,India%Department of Electronics and Communication Engineering,SRM Institute of Science and Technology,Ramapuram Campus,Chennai 600089,Tamil Nadu,India
References T L Jones (2625_CR7) 2015; 17
N Sumitra (2625_CR19) 2013; 5
M F Othman (2625_CR3) 2011
J Sachdeva (2625_CR5) 2013; 26
S Dawood Salman Al-Shaikhli (2625_CR10) 2015
J Sachdeva (2625_CR16) 2012
S Deepak (2625_CR12) 2019; 111
J Kang (2625_CR13) 2021; 21
Z N K Swati (2625_CR9) 2019; 75
S Hussain (2625_CR25) 2017
M I Sharif (2625_CR14) 2022; 8
M Sajjad (2625_CR1) 2019; 30
V Vijay (2625_CR18) 2016; 92
D Sridhar (2625_CR6) 2013
J Cheng (2625_CR4) 2015; 10
A Kharrat (2625_CR17) 2016
X Z Xie (2625_CR22) 2018; 8
P Sapra (2625_CR23) 2013; 1
P Madhusudhanareddy (2625_CR11) 2013; 3
M Havaei (2625_CR24) 2016
G S Tandel (2625_CR2) 2020; 122
J Pierezan (2625_CR20) 2018
2625_CR21
H Mzoughi (2625_CR15) 2020; 33
S B Gaikwad (2625_CR8) 2015; 120
References_xml – ident: 2625_CR21
– volume: 3
  start-page: 2378
  issue: 4
  year: 2013
  ident: 2625_CR11
  publication-title: International Journal of Engineering Research and Applications
– start-page: 1998
  volume-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2017
  ident: 2625_CR25
– volume: 122
  start-page: 103804
  year: 2020
  ident: 2625_CR2
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2020.103804
– start-page: 1
  volume-title: 2018 IEEE Congress on Evolutionary Computation
  year: 2018
  ident: 2625_CR20
– volume: 21
  start-page: 2222
  issue: 6
  year: 2021
  ident: 2625_CR13
  publication-title: Sensors
  doi: 10.3390/s21062222
– volume: 8
  start-page: 180
  issue: 2
  year: 2018
  ident: 2625_CR22
  publication-title: Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2018.2285
– start-page: 92
  volume-title: 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition
  year: 2013
  ident: 2625_CR6
  doi: 10.1109/ICSIPR.2013.6497966
– volume: 5
  start-page: 45
  issue: 2
  year: 2013
  ident: 2625_CR19
  publication-title: International Journal of Image, Graphics and Signal Processing
  doi: 10.5815/ijigsp.2013.02.07
– start-page: 182
  volume-title: 2011 Developments in E-systems Engineering
  year: 2012
  ident: 2625_CR16
– volume: 120
  start-page: 5
  issue: 3
  year: 2015
  ident: 2625_CR8
  publication-title: International Journal of Computer Applications
  doi: 10.5120/21205-3885
– volume: 10
  start-page: e0140381
  issue: 10
  year: 2015
  ident: 2625_CR4
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0140381
– volume: 17
  start-page: 466
  issue: 3
  year: 2015
  ident: 2625_CR7
  publication-title: Neuro-oncology
– volume: 75
  start-page: 34
  year: 2019
  ident: 2625_CR9
  publication-title: Computerized Medical Imaging and Graphics
  doi: 10.1016/j.compmedimag.2019.05.001
– start-page: 136
  volume-title: 2011 Second International Conference on Intelligent Systems, Modelling and Simulation
  year: 2011
  ident: 2625_CR3
  doi: 10.1109/ISMS.2011.32
– start-page: 195
  volume-title: Brainlesion: Glioma, multiple sclerosis, stroke and traumatic brain injuries
  year: 2016
  ident: 2625_CR24
  doi: 10.1007/978-3-319-30858-6_17
– volume: 111
  start-page: 103345
  year: 2019
  ident: 2625_CR12
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2019.103345
– volume: 1
  start-page: 83
  issue: 9
  year: 2013
  ident: 2625_CR23
  publication-title: International Journal of Science and Modern Engineering
– start-page: 2774
  volume-title: 2014 IEEE International Conference on Image Processing
  year: 2015
  ident: 2625_CR10
– start-page: 446
  volume-title: 2015 15th International Conference on Intelligent Systems Design and Applications
  year: 2016
  ident: 2625_CR17
– volume: 8
  start-page: 3007
  issue: 4
  year: 2022
  ident: 2625_CR14
  publication-title: Complex & Intelligent Systems
  doi: 10.1007/s40747-021-00321-0
– volume: 26
  start-page: 1141
  issue: 6
  year: 2013
  ident: 2625_CR5
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-013-9600-0
– volume: 33
  start-page: 903
  issue: 4
  year: 2020
  ident: 2625_CR15
  publication-title: Journal of Digital Imaging
  doi: 10.1007/s10278-020-00347-9
– volume: 30
  start-page: 174
  year: 2019
  ident: 2625_CR1
  publication-title: Journal of Computational Science
  doi: 10.1016/j.jocs.2018.12.003
– volume: 92
  start-page: 475
  year: 2016
  ident: 2625_CR18
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.07.370
SSID ssj0040339
ssj0001538017
Score 2.327464
Snippet The categorization of brain tumors is a significant issue for healthcare applications. Perfect and timely identification of brain tumors is important for...
R739.91%TP391; The categorization of brain tumors is a significant issue for healthcare applications.Perfect and timely identification of brain tumors is...
SourceID wanfang
proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 107
SubjectTerms Algorithms
Architecture
Artificial neural networks
Brain
Brain tumors
Classification
Computer Science
Deep learning
Effectiveness
Electrical Engineering
Engineering
Imaging techniques
Life Sciences
Machine learning
Magnetic resonance imaging
Materials Science
Neural networks
Neuroimaging
Optimization
Tumors
Title LOBO Optimization-Tuned Deep-Convolutional Neural Network for Brain Tumor Classification Approach
URI https://link.springer.com/article/10.1007/s12204-023-2625-8
https://www.proquest.com/docview/3154862496
https://www.proquest.com/docview/3202426060
https://d.wanfangdata.com.cn/periodical/shjtdxxb-e202501011
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1995-8188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001538017
  issn: 1007-1172
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1995-8188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040339
  issn: 1007-1172
  databaseCode: AFBBN
  dateStart: 20080201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1995-8188
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0040339
  issn: 1007-1172
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1995-8188
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0040339
  issn: 1007-1172
  databaseCode: U2A
  dateStart: 20080201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V9gJI0C4gFsrKhx54yJLXThznmJY-1Bb2siuVUxS_WiGaVuwu6s9n7HWaRaoqcUoUv6TMeOazPf4GYE8VTSMYt7RAb04z5zgtbVPSvHQ4s5h1Ii4Uv32XJ7Ps9CK_SPe45120e3ckGS11f9mN8xAxwQXlCNqpegJbeWDzQiWe8aozvxkTMX1YaEPH6J67o8yHuvjXGfUI8_5QNF7laX3TXq55naNteJHgIqlW8t2BDdcO4Hm1tvs_gJddZgaSJuoAnq3RDA5gJ32fk4-JZfrTK2jOJ_sTMkGLcZ2uYtLpEm0u-ercLT24af8kpcThA4NHfMSQcYI4l-yH1BJkurzG95hYM4QcxW5IlWjKX8Ps6HB6cEJTvgVqOAItaryVUnnhXKYM84EJy3FutS89494q5nOvdCYadGlaeGm5VtKVJXfGOia0eAOb7U3r3gIplCm8NLkpC4SEbKy1GTubG8WbLGuYHwLrfnxtEhl5yInxq-5plIOsapRVHWRVqyF8vm9yu2LieKzybifNOk3KeS3C8kzielM-XMwjXmGSDeFLpwB98SNj7SUd6SvPr34u7N2drh0PIBPt3vjdf3X6Hp6Glqv48F3YXPxeug8IfxZ6BFvV8Y-zw1HcPhhF5f8LTRj81g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BOfCQgAYQgQI-9MBDlhx71-s9poUqQNpcEqk3a22PixDdViRB_fnYjrcbpKoSp12tX5JnPP68nvkGYF9VTSMYd7QKuzktEDmtXVPTssawsphDkQ6Kxydysii-nZanOY572Xm7d1eSyVL3wW6cR48JLigPoJ2qu3Av8ldFwvwFH3fmt2AipQ-LbegobM_dVeZNXfy7GfUI8_pSNIXytL5pz7Z2naOn8DjDRTLeyHcX7mA7gEfjrb__A3jSZWYgeaEO4OEWzeAAdvP3JXmfWaY_PINmOjuYkVmwGOc5FJPO18Hmks-Il_Twov2TlTIMHxk80iO5jJOAc8lBTC1B5uvz8J4Sa0aXo9QNGWea8uewOPoyP5zQnG-BWh6AFrXeSam8QCyUZT4yYSHnzvjaM-6dYr70yhSiCZNuhJeOGyWxrjlah0wY8QJ22osWXwKplK28tKWtqwAJ2cgYO0JXWsWbomiYHwLrJl7bTEYec2L80j2NcpSVDrLSUVZaDeHjdZPLDRPHbZX3OmnqvCiXWsTjmQznTXlzMU94hUk2hE-dAvTFt4y1n3Wkr7z88XPlrq6MRh5BZrB7o1f_1ek7uD-ZH0_19OvJ99fwIPay8RXfg53V7zW-CVBoZd4m1f8LbJ39OQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB7aFEoTSBq3Ic6rOuTQByKytKvVHp2HSds07sGG3MTq1VKSjYntkp9fSdZmHQiBnnZZSSPYGc18QqNvAA5FUVWMUIMLH81xZi3FpalKnJfWryxiLIsbxR-X_HycfbvKr1Kd02mT7d4cSS7uNASWpnp2NDHuqL34RmnInqAMUw_gsXgJr7LAk-ANekz7jSvOCIulxMIY3POhujnWfErE48DUos2HA9J4rad2Vf1rKQIN3sJ6go6ov9D1JrywdQfW-ksnAR3YaKo0oLRoO7C6RDnYgc30fYo-JsbpT--guhgeD9HQe4-bdC0Tj-be_6JTayf45Lb-mwzUTx_YPOIjpo8jj3nRcSgzgUbzG_8ei2yG9KMoBvUTZfl7GA_ORifnONVewJp60IW1M5wLx6zNhCYusGJZSo1ypSPUGUFc7oTKWOXDm2KOG6oEt2VJrTaWMMW2YKW-re02oELownGd67Lw8JD0lNI9a3ItaJVlFXFdIM2PlzoRk4f6GNeypVQOupJeVzLoSooufH4YMlmwcjzXea_RpkwLdCpZ2Kpxv_fkTzfTiF0IJ1340hhA2_zMXIfJRtrO099_Zub-XklLA-D0PrC3819CP8Drn6cDefH18vsuvAlCFmnje7Ayu5vbfY-KZuogWv4_83IBhA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LOBO+Optimization-Tuned+Deep-Convolutional+Neural+Network+for+Brain+Tumor+Classification+Approach&rft.jtitle=Shanghai+jiao+tong+da+xue+xue+bao&rft.au=Nisha%2C+A.+Sahaya+Anselin&rft.au=Narmadha%2C+R.&rft.au=Amirthalakshmi%2C+T.+M.&rft.au=Balamurugan%2C+V.&rft.date=2025-02-01&rft.issn=1007-1172&rft.eissn=1995-8188&rft.volume=30&rft.issue=1&rft.spage=107&rft.epage=114&rft_id=info:doi/10.1007%2Fs12204-023-2625-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12204_023_2625_8
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fshjtdxxb-e%2Fshjtdxxb-e.jpg