Reinforcement learning and digital twin-driven optimization of production scheduling with the digital model playground

The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation...

Full description

Saved in:
Bibliographic Details
Published inDiscover Internet of things Vol. 4; no. 1; pp. 34 - 19
Main Authors Seipolt, Arne, Buschermöhle, Ralf, Haag, Vladislav, Hasselbring, Wilhelm, Höfinghoff, Maximilian, Schumacher, Marcel, Wilbers, Henrik
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.12.2024
Springer Nature B.V
Springer
Subjects
Online AccessGet full text
ISSN2730-7239
2730-7239
DOI10.1007/s43926-024-00087-0

Cover

Abstract The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework. Article Highlights Open-Source Flexibility: As a user-friendly, adaptable framework, DMPG is comparable to commercial simulation tools regarding the simulation speed. It can be used to distribute simulations on high-performance clusters or to generate 2D/3D-Visualization of processes with Unreal. Enhanced Production Scheduling: DMPG streamlines production scheduling using reinforcement learning. The extendable code structure allows the implementation of further simulation algorithms. Ongoing Development: Future enhancements include detailed transport and process mining, broadening its application.
AbstractList The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework.Article HighlightsOpen-Source Flexibility: As a user-friendly, adaptable framework, DMPG is comparable to commercial simulation tools regarding the simulation speed. It can be used to distribute simulations on high-performance clusters or to generate 2D/3D-Visualization of processes with Unreal.Enhanced Production Scheduling: DMPG streamlines production scheduling using reinforcement learning. The extendable code structure allows the implementation of further simulation algorithms.Ongoing Development: Future enhancements include detailed transport and process mining, broadening its application.
The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework.
Abstract The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework.
The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework. Article Highlights Open-Source Flexibility: As a user-friendly, adaptable framework, DMPG is comparable to commercial simulation tools regarding the simulation speed. It can be used to distribute simulations on high-performance clusters or to generate 2D/3D-Visualization of processes with Unreal. Enhanced Production Scheduling: DMPG streamlines production scheduling using reinforcement learning. The extendable code structure allows the implementation of further simulation algorithms. Ongoing Development: Future enhancements include detailed transport and process mining, broadening its application.
ArticleNumber 34
Author Schumacher, Marcel
Buschermöhle, Ralf
Wilbers, Henrik
Haag, Vladislav
Hasselbring, Wilhelm
Seipolt, Arne
Höfinghoff, Maximilian
Author_xml – sequence: 1
  givenname: Arne
  surname: Seipolt
  fullname: Seipolt, Arne
  email: a.seipolt@hs-osnabrueck.de
  organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences, Department of Computer Science, Kiel University
– sequence: 2
  givenname: Ralf
  surname: Buschermöhle
  fullname: Buschermöhle, Ralf
  organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences
– sequence: 3
  givenname: Vladislav
  surname: Haag
  fullname: Haag, Vladislav
  organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences
– sequence: 4
  givenname: Wilhelm
  surname: Hasselbring
  fullname: Hasselbring, Wilhelm
  organization: Department of Computer Science, Kiel University
– sequence: 5
  givenname: Maximilian
  surname: Höfinghoff
  fullname: Höfinghoff, Maximilian
  organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences
– sequence: 6
  givenname: Marcel
  surname: Schumacher
  fullname: Schumacher, Marcel
  organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences
– sequence: 7
  givenname: Henrik
  surname: Wilbers
  fullname: Wilbers, Henrik
  organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences
BookMark eNqNkUtr3TAQhU1JoWmaP9CVoWu3st5eltBHIFAo7VqM9fDVxVdyJTmX218f5TqkXZWupBnO-ZiZ87q5CDHYpnnbo_c9QuJDpmTAvEOYdgghKTr0ornEgqBOYDJc_PV_1VznvK8iLPhAubhs7r9bH1xM2h5sKO1sIQUfphaCaY2ffIG5LUcfOpP8vQ1tXIo_-N9QfKyFa5cUzarPVdY7a9b50X30ZdeWnX1GHKKxc7vMcJpSXIN507x0MGd7_fReNT8_f_px87W7-_bl9ubjXafxwOrMYAhxCIEcKRIjNuAQG6XjrHfEGCk5ERYB59QJKyQ1w8gpZyMWTlpHRnLV3G5cE2GvluQPkE4qglfnRkyTglS8nq1CegRsLLCRM0o1gORMjJJpRxjChFcW2VhrWOB0hHl-BvZIPSahtiRUTUKdk1Cout5trnqpX6vNRe3jmkJdWpGeStHjnpGqwptKp5hzsu7_0E8D5SoOk01_0P9wPQCq6Kuq
Cites_doi 10.1109/COMST.2023.3297395
10.1109/WSC57314.2022.10015503
10.1016/S0167-5060(08)70743-X
10.1016/j.jmsy.2022.10.019
10.1016/j.jmsy.2020.06.012
10.1080/00207543.2022.2104180
10.1109/WSC48552.2020.9384089
10.1007/978-3-319-99849-7
10.5772/1392
10.1038/nature14236
10.1109/ACCESS.2024.3406510
10.1016/j.jii.2021.100287
10.1016/j.cor.2021.105400
10.1109/MS.2021.3130755
10.1016/j.ifacol.2022.09.413
10.1016/j.ifacol.2021.08.046
10.1016/j.ifacol.2018.08.474
10.1007/978-3-662-49851-4
10.1007/s10845-019-01531-7
10.1057/jos.2015.9
10.3390/su15108262
10.1109/ACCESS.2021.3060863
10.1016/j.rcim.2024.102778
ContentType Journal Article
Copyright The Author(s) 2024
Copyright Springer Nature B.V. Dec 2024
Copyright_xml – notice: The Author(s) 2024
– notice: Copyright Springer Nature B.V. Dec 2024
DBID C6C
AAYXX
CITATION
3V.
7WY
7WZ
7XB
87Z
8FK
8FL
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
F~G
K60
K6~
L.-
M0C
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1007/s43926-024-00087-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ABI/INFORM Professional Advanced
ABI/INFORM Global
ProQuest Central Premium
ProQuest One Academic
ProQuest: Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Sustainability
ProQuest Central Korea
ProQuest Central (New)
ABI/INFORM Complete (Alumni Edition)
Business Premium Collection
ABI/INFORM Global
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 2730-7239
EndPage 19
ExternalDocumentID oai_doaj_org_article_0cba2dea5b6544caa8657b85cf350236
10.1007/s43926-024-00087-0
10_1007_s43926_024_00087_0
GrantInformation_xml – fundername: German Federal Ministry for Economic Affairs and Climate Action
  grantid: 01MD22001C; 01MD22001C; 01MD22001C; 01MD22001C
GroupedDBID 0R~
7WY
8FL
AAJSJ
AAKKN
ABEEZ
ABUWG
ACACY
ACULB
ACVER
AFGXO
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BENPR
BEZIV
C24
C6C
CCPQU
DWQXO
EBLON
EBS
FRNLG
GROUPED_DOAJ
M0C
M~E
OK1
PIMPY
PQBIZ
PQBZA
RSV
SOJ
AASML
AAYXX
CITATION
PHGZM
PHGZT
PUEGO
3V.
7XB
8FK
AEUYN
AZQEC
K60
K6~
L.-
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c2950-7ad33f00a8b407b2daf05b8f651f3dd88637e0a664f7e784d9b6465b27f8ef3b3
IEDL.DBID UNPAY
ISSN 2730-7239
IngestDate Fri Oct 03 12:49:32 EDT 2025
Sun Oct 26 03:38:20 EDT 2025
Wed Oct 08 14:30:42 EDT 2025
Wed Oct 01 03:11:44 EDT 2025
Fri Feb 21 02:36:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Production scheduling
Discrete event simulation
Digital twins
Reinforcement learning
Hybrid simulation
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2950-7ad33f00a8b407b2daf05b8f651f3dd88637e0a664f7e784d9b6465b27f8ef3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s43926-024-00087-0.pdf
PQID 3148712153
PQPubID 5642933
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_0cba2dea5b6544caa8657b85cf350236
unpaywall_primary_10_1007_s43926_024_00087_0
proquest_journals_3148712153
crossref_primary_10_1007_s43926_024_00087_0
springer_journals_10_1007_s43926_024_00087_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Discover Internet of things
PublicationTitleAbbrev Discov Internet Things
PublicationYear 2024
Publisher Springer International Publishing
Springer Nature B.V
Springer
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: Springer
References 87_CR35
L Zhang (87_CR15) 2022; 55
H Xu (87_CR19) 2023; 25
R da Righi (87_CR22) 2012
K Xia (87_CR16) 2021; 58
AF İnal (87_CR10) 2023; 15
JK Lenstra (87_CR5) 1977
A Barbie (87_CR2) 2024; 12
G Dagkakis (87_CR24) 2016; 10
V Mnih (87_CR34) 2015; 518
W Kritzinger (87_CR18) 2018; 51
W Van Der Aalst (87_CR37) 2016
87_CR31
87_CR30
87_CR33
87_CR32
E Guzman (87_CR36) 2022; 27
87_CR1
M Panzer (87_CR11) 2022; 65
Z Mueller-Zhang (87_CR17) 2021; 54
87_CR26
87_CR25
87_CR28
MM Rathore (87_CR13) 2021; 9
87_CR27
87_CR3
87_CR4
87_CR29
87_CR9
87_CR7
87_CR8
N Ouahabi (87_CR14) 2024; 89
JP Usuga Cadavid (87_CR23) 2020; 31
N Mazyavkina (87_CR6) 2021
R Eramo (87_CR20) 2022; 39
A Esteso (87_CR12) 2023; 61
87_CR21
References_xml – ident: 87_CR25
– ident: 87_CR27
– volume: 25
  start-page: 2569
  issue: 4
  year: 2023
  ident: 87_CR19
  publication-title: IEEE Commun Surv Tutor
  doi: 10.1109/COMST.2023.3297395
– ident: 87_CR32
  doi: 10.1109/WSC57314.2022.10015503
– start-page: 343
  volume-title: Studies in integer programming, in annals of discrete mathematics
  year: 1977
  ident: 87_CR5
  doi: 10.1016/S0167-5060(08)70743-X
– ident: 87_CR31
– volume: 65
  start-page: 743
  year: 2022
  ident: 87_CR11
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2022.10.019
– volume: 58
  start-page: 210
  year: 2021
  ident: 87_CR16
  publication-title: J Manuf Syst
  doi: 10.1016/j.jmsy.2020.06.012
– volume: 61
  start-page: 5772
  issue: 16
  year: 2023
  ident: 87_CR12
  publication-title: Int J Prod Res
  doi: 10.1080/00207543.2022.2104180
– ident: 87_CR33
– ident: 87_CR9
  doi: 10.1109/WSC48552.2020.9384089
– ident: 87_CR35
– ident: 87_CR8
– ident: 87_CR21
  doi: 10.1007/978-3-319-99849-7
– year: 2012
  ident: 87_CR22
  publication-title: InTech
  doi: 10.5772/1392
– volume: 518
  start-page: 529
  issue: 7540
  year: 2015
  ident: 87_CR34
  publication-title: Nature
  doi: 10.1038/nature14236
– ident: 87_CR4
– volume: 12
  start-page: 75337
  year: 2024
  ident: 87_CR2
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3406510
– volume: 27
  start-page: 100287
  year: 2022
  ident: 87_CR36
  publication-title: J Ind Inf Integr
  doi: 10.1016/j.jii.2021.100287
– year: 2021
  ident: 87_CR6
  publication-title: Comput Oper Res
  doi: 10.1016/j.cor.2021.105400
– ident: 87_CR26
– volume: 39
  start-page: 39
  issue: 2
  year: 2022
  ident: 87_CR20
  publication-title: IEEE Softw
  doi: 10.1109/MS.2021.3130755
– ident: 87_CR28
– ident: 87_CR30
– volume: 55
  start-page: 359
  issue: 10
  year: 2022
  ident: 87_CR15
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.09.413
– volume: 54
  start-page: 408
  issue: 1
  year: 2021
  ident: 87_CR17
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.08.046
– volume: 51
  start-page: 1016
  issue: 11
  year: 2018
  ident: 87_CR18
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.474
– volume-title: Process mining
  year: 2016
  ident: 87_CR37
  doi: 10.1007/978-3-662-49851-4
– ident: 87_CR7
– volume: 31
  start-page: 1531
  issue: 6
  year: 2020
  ident: 87_CR23
  publication-title: J Intell Manuf
  doi: 10.1007/s10845-019-01531-7
– ident: 87_CR3
– volume: 10
  start-page: 193
  issue: 3
  year: 2016
  ident: 87_CR24
  publication-title: J Simul
  doi: 10.1057/jos.2015.9
– volume: 15
  start-page: 8262
  issue: 10
  year: 2023
  ident: 87_CR10
  publication-title: Sustainability
  doi: 10.3390/su15108262
– ident: 87_CR1
– volume: 9
  start-page: 32030
  year: 2021
  ident: 87_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3060863
– ident: 87_CR29
– volume: 89
  year: 2024
  ident: 87_CR14
  publication-title: Robot Comput-Integr Manuf
  doi: 10.1016/j.rcim.2024.102778
SSID ssj0002769467
Score 2.291923
Snippet The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the...
Abstract The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 34
SubjectTerms Algorithms
Artificial intelligence
Computer Science
Cyber-physical systems
Digital technology
Digital twins
Digitizing
Discrete event simulation
Electrical Engineering
Hybrid simulation
Industrial Internet of Things
Information Systems Applications (incl.Internet)
IoT
Job shops
Machine learning
Manufacturing
Optimization
Optimization algorithms
Playgrounds
Production planning
Production scheduling
Python
Reinforcement learning
Simulation
Traveling salesman problem
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRT2IT1xf5OBNi9nm0fSoooigB1HwFiZNIsraXXRV_PdO0m5dL-rBS6FtKE1mMo8k3zeE7KHNC8IryFglLCYoTmQacrxUfacxRFVlQvFfXqnzW3FxJ--mSn3FM2ENPXAzcIesspA7D9IqKUQFoJUsrJZV4DKyn0fry3Q5lUw9pu00FWvHtyiZhJVDz5vH87YiAqlxZrFvnigR9n-LMruN0QUy91qP4OMdBoMp33O2RBbboJEeNT-7TGZ8vUIWpqgEV8nbtU8cqFVa7qNtMYh7CrWj7uE-lgah4_eHOnPP0b7RIZqKpxaDSYeBjhrm13iH-S76nwhTp3GVlmKI2H0iFc6howF8RDhI7dbI7dnpzcl51tZUyKq8lCwrwHEeGANtMZWzuYPApNVByX7gzmmteOEZKCVC4QstXGmVUNLmRdA-cMvXyWw9rP0GoaUDzF8w3MQYSfTBAfpbXnDHAuSld6xH9ifja0YNdYbpSJKTNAxKwyRpGGx9HEXQtYy01-kBKoNplcH8pgw9sj0RoGnn4ovhmPEVkUSD98jBRKhfr3_6pYNO8H_oweZ_9GCLzOdRR9OBmW0yO35-9TsY9oztbtLwT4pU_ak
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLbK9AA9IFYxUJAP3GiEx1s8B4QoalUhMUIVlXqLnmN7VGlIwjCl6r_nPU-StpeKS6Qsyvbst9j-vo-x9-jzko4WClFrjwVK0IUDiZt6FhymqHaeUfzfF_bkTH87N-c7bDFgYWhZ5eATs6MObU1j5B8V5u0lUSGoz93vglSjaHZ1kNCAXlohfMoUYw_YriRmrAnbPTxa_DgdR11kaUlTvkfPZAwdRmRJ63A1Aayxx4k7ESoT-d_JPscJ0z328LLp4PoKVqtbMen4CXvcJ5P8y9b6T9lObJ6xvVsUg8_Z39OYuVHrPAzIe5GIJYcm8HCxJMkQvrm6aIqwJr_HW3Qhv3psJm8T77aMsLSHdTDGJYKvcxq95Zg6jrfIgjq8W8E1wUSa8IKdHR_9_HpS9FoLRS3nRhQlBKWSEOA8lnheBkjCeJesmSUVgnNWlVGAtTqVsXQ6zL3V1nhZJheT8uolmzRtE18xPg-AdQ2moZg76RkEwDisShVEAjmPQUzZh-H_Vt2WUqMayZOzNSq0RpWtUeHVh2SC8Uqiw84H2vWy6ntXJWoPMkQw3hqtawBnTemdqZMyRJE_ZfuDAau-j_6pblrUlB0MRr05fd8rHYyG_48veH3_w9-wR5JaX14is88mm_VlfIuJzsa_61vvP6v8-zw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqOBQOlNJWXUorH3qDqF6_c6SoCFWCQ1UkbtY4thHSNruCpYh_z9jrDQ9VqFwiJXGsJDPjmbH9fUPIVxzzkowaGtZJjwlKkI0FjoduHCyGqLotKP7jE310Kn-eqbNKk5OxME_W779docPkeZuszPhnNAhMz1fRSemyMKsPhvkUbnSuFl9xMf9-9JHvKRT9j-LKYSl0nby-7mdwewOTyQNvc7hJNmqYSPcXcn1LXsV-i7xZlmCg1SK3yPoDPsF35O-vWIhQuzLnR2tFiHMKfaDh4jzXB6Hzm4u-CZd5kKNTHC_-VCAmnSY6W9C_5jNMetEJZaw6zVO1FOPEoYtSPYfOJnCbMSF9eE9OD3_8PjhqamGFpuOtYo2BIERiDKzHfM7zAIkpb5NW4yRCsFYLExloLZOJxsrQei218twkG5Pw4gNZ6ad9_EhoGwCTGIw5MVCSYwiATlcYEVgC3sbARmR3-cvdbMGf4Qam5CIghwJyRUAOW3_PUhlaZu7rcgFVwlVTcqzzwEME5bWSsgOwWhlvVZeEynz4I7KzlKmrBnnlBKZ9JjNpiBHZW8r5_vZzr7Q36MJ_fMH2y3r_RNZ4VtCyP2aHrMwvr-NnjHLm_ktR7zs8LvPW
  priority: 102
  providerName: Springer Nature
Title Reinforcement learning and digital twin-driven optimization of production scheduling with the digital model playground
URI https://link.springer.com/article/10.1007/s43926-024-00087-0
https://www.proquest.com/docview/3148712153
https://link.springer.com/content/pdf/10.1007/s43926-024-00087-0.pdf
https://doaj.org/article/0cba2dea5b6544caa8657b85cf350236
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2730-7239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769467
  issn: 2730-7239
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2730-7239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769467
  issn: 2730-7239
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2730-7239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769467
  issn: 2730-7239
  databaseCode: BENPR
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2730-7239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769467
  issn: 2730-7239
  databaseCode: AAJSJ
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2730-7239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769467
  issn: 2730-7239
  databaseCode: C6C
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Open Access Journals
  customDbUrl:
  eissn: 2730-7239
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002769467
  issn: 2730-7239
  databaseCode: C24
  dateStart: 20211201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61uwfogTdioax84EazzfqV5NgurSokVlXFSuUU2bG9qliy0ZKlKr-esfOgRQiBuFhK7ER-jD0ztr9vAN7gmue4lSqKC67RQTE8ShXFpJiaFE1UmQUU_4e5PFvw95ficgfedViYcNu9O5JsMA2epamsDyvjDnvgG6pR6i_Pco-KxmkSTzB7F4ZSoEU-gOFifn70yceVQwGOEsqyFi_z-4_v6KRA3X_H3uyPSPfg3ras1M21Wq1uaaHTh2C7-jeXTz5PtrWeFN9_oXb83wY-ggetmUqOGrl6DDu2fAJ7t8gLn8K3CxtYV4uwwUja8BNLokpDzNXSByMh9fVVGZmNX1HJGhenLy3qk6wdqRquWf-EHjZqPA-MJ35fmKBR2v8ihOoh1UrdeABKaZ7B4vTk4-wsaqM4RAXNBPa-Moy5OFapRudRU6NcLHTqpJg6ZkyaSpbYWEnJXWKTlJtMSy6FpolLrWOaPYdBuS7tCyCZUegxoYGLVhmfKqNQw7OEmdgpmlkTj-BtN4551ZB15D0tc-jRHHs0Dz2aY-ljP9R9SU-0HV6sN8u8nbd5XGhFjVVCS8F5oVQqRaJTUTgmPPn-CPY7Qcnb2f81Z-hjJp62g43goBvrn9l_qtJBL2B_0YKX_1b8FdynXqLCZZx9GNSbrX2NJlWtxzA8PpmfX4xhd0a5T-VsHLYnxu1c-gHq-x26
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9swGLYYHBiHaZ9aN7b5sJ1GtNRfcQ5oGhuoDKgmBBI3z47tCqlLs1Ko-uf4bXvtOgEuaBcukZpGaZrXfv28tp_nQegj5DzPnNBZXjEDBYplmdQEDlXfSoCooows_qOhGJyyn2f8bAVdt1yYsK2yzYkxUdtJFebIv1DA7UWQQqBfm79ZcI0Kq6uthYZO1gp2O0qMJWLHgVvMoYS72N7_AfH-RMje7sn3QZZcBrKKlDzPCm0p9XmupYHixhCrfc6N9IL3PbVWSkELl2shmC9cIZktjWCCG1J46Tw1FO77CK0xykoo_tZ2doe_jrtZHlKI4GGf2DqRswcIgIR9vywQuqGH53dGxGgccAftdgu0G2j9sm70Yq7H41tj4N5T9CSBV_xt2dqeoRVXP0cbtyQNX6CrYxe1WKs47YiTKcUI69piez4KFiV4Nj-vMzsNeRZPIGX9SVxQPPG4WSrQhk9Qd8M4GOjyOMwWY4Cq3S2igQ9uxnoRaCm1fYlOH-Stv0Kr9aR2rxEurYY6CmAvYDXW11bDuE8LanOvSels3kOf2_ermqWEh-rEmmM0FERDxWgouHonhKC7MshvxxOT6Uil3qzyymhineZGcMYqraXghZG88pQHSf4e2mwDqFJOuFA3LbiHttqg3nx93yNtdYH_j3_w5v4f_4DWBydHh-pwf3jwFj0moSXG7TmbaHU2vXTvAGTNzPvUkjH6_dCd5x9lwTgN
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swGLUYSNs4TPuplbHNh-00IlzbcZwDmsaggrFVCA2Jm2fHdoXUJaWUVf0X91fts-sEuKBduFRKGyVpPvvz-2y_9xD6ADnPcyd0RipuoECxPJOawkfVtxIgqigji__HUByc8m9n-dkK-ttyYcK2yjYnxkRtmyrMkW8zwO1FkEJg2z5tizjeG3yeXGTBQSqstLZ2GjrZLNidKDeWSB5HbjGHcu5y53APYv-R0sH-z68HWXIcyCpa5iQrtGXME6KlgULHUKs9yY30Iu97Zq2UghWOaCG4L1whuS2N4CI3tPDSeWYYXPcBWguLX5Ak1nb3h8cn3YwPLUTws0_MncjfAzRAwx5gHsjd0NvJrdExmgjcQr7dYu06enRVT_RirsfjG-Ph4Cl6koAs_rJsec_Qiqufo_Ub8oYv0J8TF3VZqzgFiZNBxQjr2mJ7Pgp2JXg2P68zOw05FzeQvn4nXihuPJ4s1WjDEdTgMCYG6jwOM8cYYGt3iWjmgydjvQgUldq-RKf38tZfodW6qd1rhEuroaYCCAy4jfe11YABWMEs8ZqWzpIe-tS-XzVZynmoTrg5RkNBNFSMhoKzd0MIujODFHf8opmOVOrZilRGU-t0bkTOeaW1FHlhZF55lgd5_h7abAOoUn64VNetuYe22qBe_3zXI211gf-Pf7Bx983fo4fQidT3w-HRG_SYhoYYd-psotXZ9Mq9Bbw1M-9SQ8bo1333nX_VUDw8
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QF6oDzF0oJ84EazzfoV51goVYVEhRArlVNkx_aq6pKNlmyr9td37DxoEUIgLpGSOJEfY8-MPd83AG9wzfPcSZ2kJTfooFieKE3xUk6tQhNV5hHF_-lEHs_4x1NxugGHPRYmRrv3R5ItpiGwNFXNfm39_gB8QzVKQ_AsD6honCbpBF_fg00p0CIfwebs5PPBt5BXDgU4ySjLO7zM7z--o5Midf8de3M4It2C--uq1leXerG4pYWOtsH19W-DT84n68ZMyutfqB3_t4GP4GFnppKDVq4ew4arnsDWLfLCp3DxxUXW1TJuMJIu_cSc6MoSezYPyUhIc3lWJXYVVlSyxMXpe4f6JEtP6pZrNtyhh40aLwDjSdgXJmiUDr-IqXpIvdBXAYBS2WcwO_rw9f1x0mVxSEqaC-x9bRnzaaqVQefRUKt9KozyUkw9s1YpyTKXaim5z1ymuM2N5FIYmnnlPDPsOYyqZeVeAMmtRo8JDVy0yvhUW40anmXMpl7T3Nl0DG_7cSzqlqyjGGiZY48W2KNF7NECS78LQz2UDETb8cFyNS-6eVukpdHUOi2MFJyXWispMqNE6ZkI5Ptj2O0Fpehm_4-CoY-ZBdoONoa9fqx_vv5TlfYGAfuLFrz8t-I78IAGiYrBOLswalZr9wpNqsa87mbMDSYfGYQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning+and+digital+twin-driven+optimization+of+production+scheduling+with+the+digital+model+playground&rft.jtitle=Discover+Internet+of+things&rft.au=Seipolt%2C+Arne&rft.au=Buscherm%C3%B6hle%2C+Ralf&rft.au=Haag%2C+Vladislav&rft.au=Hasselbring%2C+Wilhelm&rft.date=2024-12-01&rft.issn=2730-7239&rft.eissn=2730-7239&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs43926-024-00087-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43926_024_00087_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7239&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7239&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7239&client=summon