Reinforcement learning and digital twin-driven optimization of production scheduling with the digital model playground
The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation...
        Saved in:
      
    
          | Published in | Discover Internet of things Vol. 4; no. 1; pp. 34 - 19 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Cham
          Springer International Publishing
    
        01.12.2024
     Springer Nature B.V Springer  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2730-7239 2730-7239  | 
| DOI | 10.1007/s43926-024-00087-0 | 
Cover
| Abstract | The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework.
Article Highlights
Open-Source Flexibility: As a user-friendly, adaptable framework, DMPG is comparable to commercial simulation tools regarding the simulation speed. It can be used to distribute simulations on high-performance clusters or to generate 2D/3D-Visualization of processes with Unreal.
Enhanced Production Scheduling: DMPG streamlines production scheduling using reinforcement learning. The extendable code structure allows the implementation of further simulation algorithms.
Ongoing Development: Future enhancements include detailed transport and process mining, broadening its application. | 
    
|---|---|
| AbstractList | The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework.Article HighlightsOpen-Source Flexibility: As a user-friendly, adaptable framework, DMPG is comparable to commercial simulation tools regarding the simulation speed. It can be used to distribute simulations on high-performance clusters or to generate 2D/3D-Visualization of processes with Unreal.Enhanced Production Scheduling: DMPG streamlines production scheduling using reinforcement learning. The extendable code structure allows the implementation of further simulation algorithms.Ongoing Development: Future enhancements include detailed transport and process mining, broadening its application. The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework. Abstract The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework. The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the rise. A promising avenue of research is the optimization of digital twins through Reinforcement Learning (RL). This necessitates a simulation environment that can be integrated with RL. One is introduced in this paper as the Digital Model Playground (DMPG). The paper outlines the implementation of the DMPG, followed by demonstrating its application in optimizing production scheduling through RL within a sample process. Although there is potential for further development, the DMPG already enables the modeling and optimization of production processes using RL and is comparable to commercial discrete event simulation software regarding the simulation-speed. Furthermore, it is highly flexible and adaptable, as shown by two projects, which distribute the DMPG to a high-performance cluster or generate 2D/3D-Visualization of the simulation model with Unreal. This establishes the DMPG as a valuable tool for advancing the digital transformation of manufacturing systems, affirming its potential impact on the future of production optimization. Currently, planned extensions include the integration of more optimization algorithms and Process Mining techniques, to further enhance the usability of the framework. Article Highlights Open-Source Flexibility: As a user-friendly, adaptable framework, DMPG is comparable to commercial simulation tools regarding the simulation speed. It can be used to distribute simulations on high-performance clusters or to generate 2D/3D-Visualization of processes with Unreal. Enhanced Production Scheduling: DMPG streamlines production scheduling using reinforcement learning. The extendable code structure allows the implementation of further simulation algorithms. Ongoing Development: Future enhancements include detailed transport and process mining, broadening its application.  | 
    
| ArticleNumber | 34 | 
    
| Author | Schumacher, Marcel Buschermöhle, Ralf Wilbers, Henrik Haag, Vladislav Hasselbring, Wilhelm Seipolt, Arne Höfinghoff, Maximilian  | 
    
| Author_xml | – sequence: 1 givenname: Arne surname: Seipolt fullname: Seipolt, Arne email: a.seipolt@hs-osnabrueck.de organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences, Department of Computer Science, Kiel University – sequence: 2 givenname: Ralf surname: Buschermöhle fullname: Buschermöhle, Ralf organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences – sequence: 3 givenname: Vladislav surname: Haag fullname: Haag, Vladislav organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences – sequence: 4 givenname: Wilhelm surname: Hasselbring fullname: Hasselbring, Wilhelm organization: Department of Computer Science, Kiel University – sequence: 5 givenname: Maximilian surname: Höfinghoff fullname: Höfinghoff, Maximilian organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences – sequence: 6 givenname: Marcel surname: Schumacher fullname: Schumacher, Marcel organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences – sequence: 7 givenname: Henrik surname: Wilbers fullname: Wilbers, Henrik organization: Faculty of Management, Culture and Technology, Osnabrück University of Applied Sciences  | 
    
| BookMark | eNqNkUtr3TAQhU1JoWmaP9CVoWu3st5eltBHIFAo7VqM9fDVxVdyJTmX218f5TqkXZWupBnO-ZiZ87q5CDHYpnnbo_c9QuJDpmTAvEOYdgghKTr0ornEgqBOYDJc_PV_1VznvK8iLPhAubhs7r9bH1xM2h5sKO1sIQUfphaCaY2ffIG5LUcfOpP8vQ1tXIo_-N9QfKyFa5cUzarPVdY7a9b50X30ZdeWnX1GHKKxc7vMcJpSXIN507x0MGd7_fReNT8_f_px87W7-_bl9ubjXafxwOrMYAhxCIEcKRIjNuAQG6XjrHfEGCk5ERYB59QJKyQ1w8gpZyMWTlpHRnLV3G5cE2GvluQPkE4qglfnRkyTglS8nq1CegRsLLCRM0o1gORMjJJpRxjChFcW2VhrWOB0hHl-BvZIPSahtiRUTUKdk1Cout5trnqpX6vNRe3jmkJdWpGeStHjnpGqwptKp5hzsu7_0E8D5SoOk01_0P9wPQCq6Kuq | 
    
| Cites_doi | 10.1109/COMST.2023.3297395 10.1109/WSC57314.2022.10015503 10.1016/S0167-5060(08)70743-X 10.1016/j.jmsy.2022.10.019 10.1016/j.jmsy.2020.06.012 10.1080/00207543.2022.2104180 10.1109/WSC48552.2020.9384089 10.1007/978-3-319-99849-7 10.5772/1392 10.1038/nature14236 10.1109/ACCESS.2024.3406510 10.1016/j.jii.2021.100287 10.1016/j.cor.2021.105400 10.1109/MS.2021.3130755 10.1016/j.ifacol.2022.09.413 10.1016/j.ifacol.2021.08.046 10.1016/j.ifacol.2018.08.474 10.1007/978-3-662-49851-4 10.1007/s10845-019-01531-7 10.1057/jos.2015.9 10.3390/su15108262 10.1109/ACCESS.2021.3060863 10.1016/j.rcim.2024.102778  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2024 Copyright Springer Nature B.V. Dec 2024  | 
    
| Copyright_xml | – notice: The Author(s) 2024 – notice: Copyright Springer Nature B.V. Dec 2024  | 
    
| DBID | C6C AAYXX CITATION 3V. 7WY 7WZ 7XB 87Z 8FK 8FL ABUWG AEUYN AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG F~G K60 K6~ L.- M0C PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.1007/s43926-024-00087-0 | 
    
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ABI/INFORM Professional Advanced ABI/INFORM Global ProQuest Central Premium ProQuest One Academic ProQuest: Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Sustainability ProQuest Central Korea ProQuest Central (New) ABI/INFORM Complete (Alumni Edition) Business Premium Collection ABI/INFORM Global ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Computer Science  | 
    
| EISSN | 2730-7239 | 
    
| EndPage | 19 | 
    
| ExternalDocumentID | oai_doaj_org_article_0cba2dea5b6544caa8657b85cf350236 10.1007/s43926-024-00087-0 10_1007_s43926_024_00087_0  | 
    
| GrantInformation_xml | – fundername: German Federal Ministry for Economic Affairs and Climate Action grantid: 01MD22001C; 01MD22001C; 01MD22001C; 01MD22001C  | 
    
| GroupedDBID | 0R~ 7WY 8FL AAJSJ AAKKN ABEEZ ABUWG ACACY ACULB ACVER AFGXO AFKRA ALMA_UNASSIGNED_HOLDINGS ARCSS BENPR BEZIV C24 C6C CCPQU DWQXO EBLON EBS FRNLG GROUPED_DOAJ M0C M~E OK1 PIMPY PQBIZ PQBZA RSV SOJ AASML AAYXX CITATION PHGZM PHGZT PUEGO 3V. 7XB 8FK AEUYN AZQEC K60 K6~ L.- PKEHL PQEST PQQKQ PQUKI PRINS Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c2950-7ad33f00a8b407b2daf05b8f651f3dd88637e0a664f7e784d9b6465b27f8ef3b3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 2730-7239 | 
    
| IngestDate | Fri Oct 03 12:49:32 EDT 2025 Sun Oct 26 03:38:20 EDT 2025 Wed Oct 08 14:30:42 EDT 2025 Wed Oct 01 03:11:44 EDT 2025 Fri Feb 21 02:36:29 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Production scheduling Discrete event simulation Digital twins Reinforcement learning Hybrid simulation  | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c2950-7ad33f00a8b407b2daf05b8f651f3dd88637e0a664f7e784d9b6465b27f8ef3b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://link.springer.com/content/pdf/10.1007/s43926-024-00087-0.pdf | 
    
| PQID | 3148712153 | 
    
| PQPubID | 5642933 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0cba2dea5b6544caa8657b85cf350236 unpaywall_primary_10_1007_s43926_024_00087_0 proquest_journals_3148712153 crossref_primary_10_1007_s43926_024_00087_0 springer_journals_10_1007_s43926_024_00087_0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-01 | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Cham | 
    
| PublicationPlace_xml | – name: Cham | 
    
| PublicationTitle | Discover Internet of things | 
    
| PublicationTitleAbbrev | Discov Internet Things | 
    
| PublicationYear | 2024 | 
    
| Publisher | Springer International Publishing Springer Nature B.V Springer  | 
    
| Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: Springer  | 
    
| References | 87_CR35 L Zhang (87_CR15) 2022; 55 H Xu (87_CR19) 2023; 25 R da Righi (87_CR22) 2012 K Xia (87_CR16) 2021; 58 AF İnal (87_CR10) 2023; 15 JK Lenstra (87_CR5) 1977 A Barbie (87_CR2) 2024; 12 G Dagkakis (87_CR24) 2016; 10 V Mnih (87_CR34) 2015; 518 W Kritzinger (87_CR18) 2018; 51 W Van Der Aalst (87_CR37) 2016 87_CR31 87_CR30 87_CR33 87_CR32 E Guzman (87_CR36) 2022; 27 87_CR1 M Panzer (87_CR11) 2022; 65 Z Mueller-Zhang (87_CR17) 2021; 54 87_CR26 87_CR25 87_CR28 MM Rathore (87_CR13) 2021; 9 87_CR27 87_CR3 87_CR4 87_CR29 87_CR9 87_CR7 87_CR8 N Ouahabi (87_CR14) 2024; 89 JP Usuga Cadavid (87_CR23) 2020; 31 N Mazyavkina (87_CR6) 2021 R Eramo (87_CR20) 2022; 39 A Esteso (87_CR12) 2023; 61 87_CR21  | 
    
| References_xml | – ident: 87_CR25 – ident: 87_CR27 – volume: 25 start-page: 2569 issue: 4 year: 2023 ident: 87_CR19 publication-title: IEEE Commun Surv Tutor doi: 10.1109/COMST.2023.3297395 – ident: 87_CR32 doi: 10.1109/WSC57314.2022.10015503 – start-page: 343 volume-title: Studies in integer programming, in annals of discrete mathematics year: 1977 ident: 87_CR5 doi: 10.1016/S0167-5060(08)70743-X – ident: 87_CR31 – volume: 65 start-page: 743 year: 2022 ident: 87_CR11 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2022.10.019 – volume: 58 start-page: 210 year: 2021 ident: 87_CR16 publication-title: J Manuf Syst doi: 10.1016/j.jmsy.2020.06.012 – volume: 61 start-page: 5772 issue: 16 year: 2023 ident: 87_CR12 publication-title: Int J Prod Res doi: 10.1080/00207543.2022.2104180 – ident: 87_CR33 – ident: 87_CR9 doi: 10.1109/WSC48552.2020.9384089 – ident: 87_CR35 – ident: 87_CR8 – ident: 87_CR21 doi: 10.1007/978-3-319-99849-7 – year: 2012 ident: 87_CR22 publication-title: InTech doi: 10.5772/1392 – volume: 518 start-page: 529 issue: 7540 year: 2015 ident: 87_CR34 publication-title: Nature doi: 10.1038/nature14236 – ident: 87_CR4 – volume: 12 start-page: 75337 year: 2024 ident: 87_CR2 publication-title: IEEE Access doi: 10.1109/ACCESS.2024.3406510 – volume: 27 start-page: 100287 year: 2022 ident: 87_CR36 publication-title: J Ind Inf Integr doi: 10.1016/j.jii.2021.100287 – year: 2021 ident: 87_CR6 publication-title: Comput Oper Res doi: 10.1016/j.cor.2021.105400 – ident: 87_CR26 – volume: 39 start-page: 39 issue: 2 year: 2022 ident: 87_CR20 publication-title: IEEE Softw doi: 10.1109/MS.2021.3130755 – ident: 87_CR28 – ident: 87_CR30 – volume: 55 start-page: 359 issue: 10 year: 2022 ident: 87_CR15 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2022.09.413 – volume: 54 start-page: 408 issue: 1 year: 2021 ident: 87_CR17 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.08.046 – volume: 51 start-page: 1016 issue: 11 year: 2018 ident: 87_CR18 publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.474 – volume-title: Process mining year: 2016 ident: 87_CR37 doi: 10.1007/978-3-662-49851-4 – ident: 87_CR7 – volume: 31 start-page: 1531 issue: 6 year: 2020 ident: 87_CR23 publication-title: J Intell Manuf doi: 10.1007/s10845-019-01531-7 – ident: 87_CR3 – volume: 10 start-page: 193 issue: 3 year: 2016 ident: 87_CR24 publication-title: J Simul doi: 10.1057/jos.2015.9 – volume: 15 start-page: 8262 issue: 10 year: 2023 ident: 87_CR10 publication-title: Sustainability doi: 10.3390/su15108262 – ident: 87_CR1 – volume: 9 start-page: 32030 year: 2021 ident: 87_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3060863 – ident: 87_CR29 – volume: 89 year: 2024 ident: 87_CR14 publication-title: Robot Comput-Integr Manuf doi: 10.1016/j.rcim.2024.102778  | 
    
| SSID | ssj0002769467 | 
    
| Score | 2.291923 | 
    
| Snippet | The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is on the... Abstract The significance of digital technologies in the context of digitizing production processes, such as Artificial Intelligence (AI) and Digital Twins, is...  | 
    
| SourceID | doaj unpaywall proquest crossref springer  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 34 | 
    
| SubjectTerms | Algorithms Artificial intelligence Computer Science Cyber-physical systems Digital technology Digital twins Digitizing Discrete event simulation Electrical Engineering Hybrid simulation Industrial Internet of Things Information Systems Applications (incl.Internet) IoT Job shops Machine learning Manufacturing Optimization Optimization algorithms Playgrounds Production planning Production scheduling Python Reinforcement learning Simulation Traveling salesman problem  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iRT2IT1xf5OBNi9nm0fSoooigB1HwFiZNIsraXXRV_PdO0m5dL-rBS6FtKE1mMo8k3zeE7KHNC8IryFglLCYoTmQacrxUfacxRFVlQvFfXqnzW3FxJ--mSn3FM2ENPXAzcIesspA7D9IqKUQFoJUsrJZV4DKyn0fry3Q5lUw9pu00FWvHtyiZhJVDz5vH87YiAqlxZrFvnigR9n-LMruN0QUy91qP4OMdBoMp33O2RBbboJEeNT-7TGZ8vUIWpqgEV8nbtU8cqFVa7qNtMYh7CrWj7uE-lgah4_eHOnPP0b7RIZqKpxaDSYeBjhrm13iH-S76nwhTp3GVlmKI2H0iFc6howF8RDhI7dbI7dnpzcl51tZUyKq8lCwrwHEeGANtMZWzuYPApNVByX7gzmmteOEZKCVC4QstXGmVUNLmRdA-cMvXyWw9rP0GoaUDzF8w3MQYSfTBAfpbXnDHAuSld6xH9ifja0YNdYbpSJKTNAxKwyRpGGx9HEXQtYy01-kBKoNplcH8pgw9sj0RoGnn4ovhmPEVkUSD98jBRKhfr3_6pYNO8H_oweZ_9GCLzOdRR9OBmW0yO35-9TsY9oztbtLwT4pU_ak priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Jb9QwFLbK9AA9IFYxUJAP3GiEx1s8B4QoalUhMUIVlXqLnmN7VGlIwjCl6r_nPU-StpeKS6Qsyvbst9j-vo-x9-jzko4WClFrjwVK0IUDiZt6FhymqHaeUfzfF_bkTH87N-c7bDFgYWhZ5eATs6MObU1j5B8V5u0lUSGoz93vglSjaHZ1kNCAXlohfMoUYw_YriRmrAnbPTxa_DgdR11kaUlTvkfPZAwdRmRJ63A1Aayxx4k7ESoT-d_JPscJ0z328LLp4PoKVqtbMen4CXvcJ5P8y9b6T9lObJ6xvVsUg8_Z39OYuVHrPAzIe5GIJYcm8HCxJMkQvrm6aIqwJr_HW3Qhv3psJm8T77aMsLSHdTDGJYKvcxq95Zg6jrfIgjq8W8E1wUSa8IKdHR_9_HpS9FoLRS3nRhQlBKWSEOA8lnheBkjCeJesmSUVgnNWlVGAtTqVsXQ6zL3V1nhZJheT8uolmzRtE18xPg-AdQ2moZg76RkEwDisShVEAjmPQUzZh-H_Vt2WUqMayZOzNSq0RpWtUeHVh2SC8Uqiw84H2vWy6ntXJWoPMkQw3hqtawBnTemdqZMyRJE_ZfuDAau-j_6pblrUlB0MRr05fd8rHYyG_48veH3_w9-wR5JaX14is88mm_VlfIuJzsa_61vvP6v8-zw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELYqOBQOlNJWXUorH3qDqF6_c6SoCFWCQ1UkbtY4thHSNruCpYh_z9jrDQ9VqFwiJXGsJDPjmbH9fUPIVxzzkowaGtZJjwlKkI0FjoduHCyGqLotKP7jE310Kn-eqbNKk5OxME_W779docPkeZuszPhnNAhMz1fRSemyMKsPhvkUbnSuFl9xMf9-9JHvKRT9j-LKYSl0nby-7mdwewOTyQNvc7hJNmqYSPcXcn1LXsV-i7xZlmCg1SK3yPoDPsF35O-vWIhQuzLnR2tFiHMKfaDh4jzXB6Hzm4u-CZd5kKNTHC_-VCAmnSY6W9C_5jNMetEJZaw6zVO1FOPEoYtSPYfOJnCbMSF9eE9OD3_8PjhqamGFpuOtYo2BIERiDKzHfM7zAIkpb5NW4yRCsFYLExloLZOJxsrQei218twkG5Pw4gNZ6ad9_EhoGwCTGIw5MVCSYwiATlcYEVgC3sbARmR3-cvdbMGf4Qam5CIghwJyRUAOW3_PUhlaZu7rcgFVwlVTcqzzwEME5bWSsgOwWhlvVZeEynz4I7KzlKmrBnnlBKZ9JjNpiBHZW8r5_vZzr7Q36MJ_fMH2y3r_RNZ4VtCyP2aHrMwvr-NnjHLm_ktR7zs8LvPW priority: 102 providerName: Springer Nature  | 
    
| Title | Reinforcement learning and digital twin-driven optimization of production scheduling with the digital model playground | 
    
| URI | https://link.springer.com/article/10.1007/s43926-024-00087-0 https://www.proquest.com/docview/3148712153 https://link.springer.com/content/pdf/10.1007/s43926-024-00087-0.pdf https://doaj.org/article/0cba2dea5b6544caa8657b85cf350236  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 4 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2730-7239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769467 issn: 2730-7239 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2730-7239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769467 issn: 2730-7239 databaseCode: M~E dateStart: 20210101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2730-7239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769467 issn: 2730-7239 databaseCode: BENPR dateStart: 20211201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2730-7239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769467 issn: 2730-7239 databaseCode: AAJSJ dateStart: 20211201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2730-7239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769467 issn: 2730-7239 databaseCode: C6C dateStart: 20211201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Open Access Journals customDbUrl: eissn: 2730-7239 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002769467 issn: 2730-7239 databaseCode: C24 dateStart: 20211201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB61uwfogTdioax84EazzfqV5NgurSokVlXFSuUU2bG9qliy0ZKlKr-esfOgRQiBuFhK7ER-jD0ztr9vAN7gmue4lSqKC67RQTE8ShXFpJiaFE1UmQUU_4e5PFvw95ficgfedViYcNu9O5JsMA2epamsDyvjDnvgG6pR6i_Pco-KxmkSTzB7F4ZSoEU-gOFifn70yceVQwGOEsqyFi_z-4_v6KRA3X_H3uyPSPfg3ras1M21Wq1uaaHTh2C7-jeXTz5PtrWeFN9_oXb83wY-ggetmUqOGrl6DDu2fAJ7t8gLn8K3CxtYV4uwwUja8BNLokpDzNXSByMh9fVVGZmNX1HJGhenLy3qk6wdqRquWf-EHjZqPA-MJ35fmKBR2v8ihOoh1UrdeABKaZ7B4vTk4-wsaqM4RAXNBPa-Moy5OFapRudRU6NcLHTqpJg6ZkyaSpbYWEnJXWKTlJtMSy6FpolLrWOaPYdBuS7tCyCZUegxoYGLVhmfKqNQw7OEmdgpmlkTj-BtN4551ZB15D0tc-jRHHs0Dz2aY-ljP9R9SU-0HV6sN8u8nbd5XGhFjVVCS8F5oVQqRaJTUTgmPPn-CPY7Qcnb2f81Z-hjJp62g43goBvrn9l_qtJBL2B_0YKX_1b8FdynXqLCZZx9GNSbrX2NJlWtxzA8PpmfX4xhd0a5T-VsHLYnxu1c-gHq-x26 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9swGLYYHBiHaZ9aN7b5sJ1GtNRfcQ5oGhuoDKgmBBI3z47tCqlLs1Ko-uf4bXvtOgEuaBcukZpGaZrXfv28tp_nQegj5DzPnNBZXjEDBYplmdQEDlXfSoCooows_qOhGJyyn2f8bAVdt1yYsK2yzYkxUdtJFebIv1DA7UWQQqBfm79ZcI0Kq6uthYZO1gp2O0qMJWLHgVvMoYS72N7_AfH-RMje7sn3QZZcBrKKlDzPCm0p9XmupYHixhCrfc6N9IL3PbVWSkELl2shmC9cIZktjWCCG1J46Tw1FO77CK0xykoo_tZ2doe_jrtZHlKI4GGf2DqRswcIgIR9vywQuqGH53dGxGgccAftdgu0G2j9sm70Yq7H41tj4N5T9CSBV_xt2dqeoRVXP0cbtyQNX6CrYxe1WKs47YiTKcUI69piez4KFiV4Nj-vMzsNeRZPIGX9SVxQPPG4WSrQhk9Qd8M4GOjyOMwWY4Cq3S2igQ9uxnoRaCm1fYlOH-Stv0Kr9aR2rxEurYY6CmAvYDXW11bDuE8LanOvSels3kOf2_ermqWEh-rEmmM0FERDxWgouHonhKC7MshvxxOT6Uil3qzyymhineZGcMYqraXghZG88pQHSf4e2mwDqFJOuFA3LbiHttqg3nx93yNtdYH_j3_w5v4f_4DWBydHh-pwf3jwFj0moSXG7TmbaHU2vXTvAGTNzPvUkjH6_dCd5x9lwTgN | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swGLUYSNs4TPuplbHNh-00IlzbcZwDmsaggrFVCA2Jm2fHdoXUJaWUVf0X91fts-sEuKBduFRKGyVpPvvz-2y_9xD6ADnPcyd0RipuoECxPJOawkfVtxIgqigji__HUByc8m9n-dkK-ttyYcK2yjYnxkRtmyrMkW8zwO1FkEJg2z5tizjeG3yeXGTBQSqstLZ2GjrZLNidKDeWSB5HbjGHcu5y53APYv-R0sH-z68HWXIcyCpa5iQrtGXME6KlgULHUKs9yY30Iu97Zq2UghWOaCG4L1whuS2N4CI3tPDSeWYYXPcBWguLX5Ak1nb3h8cn3YwPLUTws0_MncjfAzRAwx5gHsjd0NvJrdExmgjcQr7dYu06enRVT_RirsfjG-Ph4Cl6koAs_rJsec_Qiqufo_Ub8oYv0J8TF3VZqzgFiZNBxQjr2mJ7Pgp2JXg2P68zOw05FzeQvn4nXihuPJ4s1WjDEdTgMCYG6jwOM8cYYGt3iWjmgydjvQgUldq-RKf38tZfodW6qd1rhEuroaYCCAy4jfe11YABWMEs8ZqWzpIe-tS-XzVZynmoTrg5RkNBNFSMhoKzd0MIujODFHf8opmOVOrZilRGU-t0bkTOeaW1FHlhZF55lgd5_h7abAOoUn64VNetuYe22qBe_3zXI211gf-Pf7Bx983fo4fQidT3w-HRG_SYhoYYd-psotXZ9Mq9Bbw1M-9SQ8bo1333nX_VUDw8 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB6V7QF6oDzF0oJ84EazzfoV51goVYVEhRArlVNkx_aq6pKNlmyr9td37DxoEUIgLpGSOJEfY8-MPd83AG9wzfPcSZ2kJTfooFieKE3xUk6tQhNV5hHF_-lEHs_4x1NxugGHPRYmRrv3R5ItpiGwNFXNfm39_gB8QzVKQ_AsD6honCbpBF_fg00p0CIfwebs5PPBt5BXDgU4ySjLO7zM7z--o5Midf8de3M4It2C--uq1leXerG4pYWOtsH19W-DT84n68ZMyutfqB3_t4GP4GFnppKDVq4ew4arnsDWLfLCp3DxxUXW1TJuMJIu_cSc6MoSezYPyUhIc3lWJXYVVlSyxMXpe4f6JEtP6pZrNtyhh40aLwDjSdgXJmiUDr-IqXpIvdBXAYBS2WcwO_rw9f1x0mVxSEqaC-x9bRnzaaqVQefRUKt9KozyUkw9s1YpyTKXaim5z1ymuM2N5FIYmnnlPDPsOYyqZeVeAMmtRo8JDVy0yvhUW40anmXMpl7T3Nl0DG_7cSzqlqyjGGiZY48W2KNF7NECS78LQz2UDETb8cFyNS-6eVukpdHUOi2MFJyXWispMqNE6ZkI5Ptj2O0Fpehm_4-CoY-ZBdoONoa9fqx_vv5TlfYGAfuLFrz8t-I78IAGiYrBOLswalZr9wpNqsa87mbMDSYfGYQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement+learning+and+digital+twin-driven+optimization+of+production+scheduling+with+the+digital+model+playground&rft.jtitle=Discover+Internet+of+things&rft.au=Seipolt%2C+Arne&rft.au=Buscherm%C3%B6hle%2C+Ralf&rft.au=Haag%2C+Vladislav&rft.au=Hasselbring%2C+Wilhelm&rft.date=2024-12-01&rft.issn=2730-7239&rft.eissn=2730-7239&rft.volume=4&rft.issue=1&rft_id=info:doi/10.1007%2Fs43926-024-00087-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s43926_024_00087_0 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-7239&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-7239&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-7239&client=summon |