AMM: An Adaptive Online Map Matching Algorithm

Online map matching is essential for some location-based services, such as car navigation. However, due to GPS measurement errors and/or the lack of sufficient information, the performance of most existing online algorithms will degrade in the increasingly complex traffic environment. In this paper,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 24; no. 5; pp. 1 - 13
Main Authors Hu, Hanwen, Qian, Shiyou, Ouyang, Jingchao, Cao, Jian, Han, Han, Wang, Jie, Chen, Yirong
Format Journal Article
LanguageEnglish
Published New York IEEE 01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2023.3237519

Cover

Abstract Online map matching is essential for some location-based services, such as car navigation. However, due to GPS measurement errors and/or the lack of sufficient information, the performance of most existing online algorithms will degrade in the increasingly complex traffic environment. In this paper, we propose an adaptive online map matching algorithm called AMM. The basic idea is that AMM should be able to calibrate GPS observation data for various measurement errors and under complex urban conditions. First, we establish a collaborative evaluation model between GPS points and candidate points to effectively filter low-quality GPS measurement points, dynamically set the weights of different features and comprehensively select the best candidate points. Second, we propose a retrospective correction mechanism to correct the previous matching results when more information is available, which will help improve the accuracy of future GPS points. Furthermore, we define parameter self-tuning rules for AMM to enhance its portability by avoiding time-consuming parameter tuning steps. We conduct extensive experiments to evaluate the performance of AMM on real vehicle trajectory datasets. The experiment results show that AMM outperforms its counterparts by up to 32% in terms of accuracy and its performance in different traffic conditions is more stable.
AbstractList Online map matching is essential for some location-based services, such as car navigation. However, due to GPS measurement errors and/or the lack of sufficient information, the performance of most existing online algorithms will degrade in the increasingly complex traffic environment. In this paper, we propose an adaptive online map matching algorithm called AMM. The basic idea is that AMM should be able to calibrate GPS observation data for various measurement errors and under complex urban conditions. First, we establish a collaborative evaluation model between GPS points and candidate points to effectively filter low-quality GPS measurement points, dynamically set the weights of different features and comprehensively select the best candidate points. Second, we propose a retrospective correction mechanism to correct the previous matching results when more information is available, which will help improve the accuracy of future GPS points. Furthermore, we define parameter self-tuning rules for AMM to enhance its portability by avoiding time-consuming parameter tuning steps. We conduct extensive experiments to evaluate the performance of AMM on real vehicle trajectory datasets. The experiment results show that AMM outperforms its counterparts by up to 32% in terms of accuracy and its performance in different traffic conditions is more stable.
Author Qian, Shiyou
Chen, Yirong
Ouyang, Jingchao
Cao, Jian
Hu, Hanwen
Han, Han
Wang, Jie
Author_xml – sequence: 1
  givenname: Hanwen
  orcidid: 0000-0001-6439-5169
  surname: Hu
  fullname: Hu, Hanwen
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Shiyou
  orcidid: 0000-0001-7775-1740
  surname: Qian
  fullname: Qian, Shiyou
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Jingchao
  surname: Ouyang
  fullname: Ouyang, Jingchao
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Jian
  orcidid: 0000-0002-0036-9436
  surname: Cao
  fullname: Cao, Jian
  organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 5
  givenname: Han
  surname: Han
  fullname: Han, Han
  organization: Big Data Department, Xiangdao Chuxing, Shanghai, China
– sequence: 6
  givenname: Jie
  orcidid: 0000-0003-1857-5569
  surname: Wang
  fullname: Wang, Jie
  organization: Department of Civil and Environmental Engineering, Stanford University, Palo Alto, CA, USA
– sequence: 7
  givenname: Yirong
  orcidid: 0000-0001-8325-3596
  surname: Chen
  fullname: Chen, Yirong
  organization: Department of Civil and Environmental Engineering, Stanford University, Palo Alto, CA, USA
BookMark eNp9kD1rwzAQhkVJoUnbH1DoYOhsV5-W1c2EfgQSMjSdhSTLiYIju7JS6L-vTTKUDh2OO4577oVnBia-9RaAOwQzhKB43Cw27xmGmGQEE86QuABTxFiRQojyyThjmgrI4BWY9f1-2FKG0BRk5Wr1lJQ-KSvVRfdlk7VvnLfJSnVDRbNzfpuUzbYNLu4ON-CyVk1vb8_9Gny8PG_mb-ly_bqYl8vUYEFjWlec2JpaQy2vhSGEw6pSObFMc14QrQphCkGUVkZxWmkrck0KrRlFlmONyDV4OP3tQvt5tH2U-_YY_BApcYEQxzwX-XCFTlcmtH0fbC274A4qfEsE5ahFjlrkqEWetQwM_8MYF1V0rY9BueZf8v5EOmvtrySIKSWQ_AAodXBl
CODEN ITISFG
CitedBy_id crossref_primary_10_3390_ijgi12080330
Cites_doi 10.1145/1653771.1653820
10.1016/j.trc.2015.02.017
10.1007/978-3-030-39469-1_10
10.1016/j.trc.2007.05.002
10.1016/j.trc.2020.102651
10.1109/MITS.2020.2994110
10.1007/s10586-018-1910-z
10.1109/TITS.2020.3031080
10.1890/04-0895
10.1109/ICDE.2012.42
10.1109/ITSC.2012.6338627
10.1145/1653771.1653818
10.1145/3397536.3422218
10.1109/MDM.2010.14
10.1016/j.inffus.2017.07.002
10.1890/1540-9295(2004)002[0475:WITWAM]2.0.CO;2
10.1080/13658816.2017.1400548
10.1016/j.ins.2017.12.031
10.1016/j.trc.2018.12.009
10.1109/MITS.2018.2806630
10.1109/5.736347
10.1007/s13369-019-04247-1
10.1109/RTCSA.2011.8
10.3141/2645-08
10.1016/j.physa.2019.122318
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2023.3237519
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 13
ExternalDocumentID 10_1109_TITS_2023_3237519
10024430
Genre orig-research
GrantInformation_xml – fundername: Program of Technology Innovation of the Science and Technology Commission of Shanghai Municipality
  grantid: 21511104700
– fundername: Shanghai Informatization Development Special Project
  grantid: 202001030
– fundername: Artificial Intelligence Technology Support Project of the Science and Technology Commission of Shanghai Municipality
  grantid: 22DZ1100103
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
ZY4
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-fd73ef4ec4e7f9c3370dda63e5b7783ba89c893abaca74dbe96b38bb541e72b13
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Mon Jun 30 04:29:37 EDT 2025
Thu Apr 24 22:52:55 EDT 2025
Wed Oct 01 05:03:16 EDT 2025
Wed Aug 27 02:25:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-fd73ef4ec4e7f9c3370dda63e5b7783ba89c893abaca74dbe96b38bb541e72b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7775-1740
0000-0002-0036-9436
0000-0001-6439-5169
0000-0001-8325-3596
0000-0003-1857-5569
PQID 2811727696
PQPubID 75735
PageCount 13
ParticipantIDs crossref_primary_10_1109_TITS_2023_3237519
ieee_primary_10024430
proquest_journals_2811727696
crossref_citationtrail_10_1109_TITS_2023_3237519
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
karich (ref29) 2021
ref10
ref2
ref1
ref17
ref16
ref18
du (ref27) 2010
cheng (ref4) 2019; 11447
ref24
ref23
ref26
ref25
ref20
ref22
ref21
liao (ref5) 2006
sharath (ref11) 2019; 98
zhu (ref19) 2017; 2645
(ref30) 2017
ref28
ref8
ref7
ref9
ref3
ref6
References_xml – ident: ref15
  doi: 10.1145/1653771.1653820
– ident: ref22
  doi: 10.1016/j.trc.2015.02.017
– ident: ref6
  doi: 10.1007/978-3-030-39469-1_10
– ident: ref17
  doi: 10.1016/j.trc.2007.05.002
– ident: ref12
  doi: 10.1016/j.trc.2020.102651
– year: 2021
  ident: ref29
  publication-title: GraphHopper
– ident: ref9
  doi: 10.1109/MITS.2020.2994110
– ident: ref18
  doi: 10.1007/s10586-018-1910-z
– ident: ref13
  doi: 10.1109/TITS.2020.3031080
– ident: ref24
  doi: 10.1890/04-0895
– start-page: 787
  year: 2006
  ident: ref5
  article-title: Location-based activity recognition
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref20
  doi: 10.1109/ICDE.2012.42
– ident: ref8
  doi: 10.1109/ITSC.2012.6338627
– ident: ref7
  doi: 10.1145/1653771.1653818
– ident: ref28
  doi: 10.1145/3397536.3422218
– ident: ref16
  doi: 10.1109/MDM.2010.14
– ident: ref3
  doi: 10.1016/j.inffus.2017.07.002
– ident: ref25
  doi: 10.1890/1540-9295(2004)002[0475:WITWAM]2.0.CO;2
– ident: ref14
  doi: 10.1080/13658816.2017.1400548
– ident: ref21
  doi: 10.1016/j.ins.2017.12.031
– volume: 98
  start-page: 409
  year: 2019
  ident: ref11
  article-title: A dynamic two-dimensional (D2D) weight-based map-matching algorithm
  publication-title: Transp Res C Emerg Technol
  doi: 10.1016/j.trc.2018.12.009
– ident: ref1
  doi: 10.1109/MITS.2018.2806630
– ident: ref2
  doi: 10.1109/5.736347
– year: 2017
  ident: ref30
  publication-title: OpenStreetMap contributors
– ident: ref10
  doi: 10.1007/s13369-019-04247-1
– ident: ref26
  doi: 10.1109/RTCSA.2011.8
– year: 2010
  ident: ref27
  publication-title: Method of Feasible Directions
– volume: 2645
  start-page: 67
  year: 2017
  ident: ref19
  article-title: Trajectory segmentation map-matching approach for large-scale, high-resolution GPS data
  publication-title: Transp Res Rec J Transp Res Board
  doi: 10.3141/2645-08
– ident: ref23
  doi: 10.1016/j.physa.2019.122318
– volume: 11447
  start-page: 764
  year: 2019
  ident: ref4
  article-title: STL: Online detection of taxi trajectory anomaly based on spatial-temporal laws
  publication-title: Database Systems for Advanced Applications
SSID ssj0014511
Score 2.3998256
Snippet Online map matching is essential for some location-based services, such as car navigation. However, due to GPS measurement errors and/or the lack of sufficient...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms adaptive
Algorithms
Collaboration
Current measurement
Errors
Global Positioning System
Global positioning systems
GPS
Hidden Markov models
Location based services
Map matching
Matching
Measurement errors
Parameters
Performance evaluation
Roads
Satellite navigation systems
Self tuning
Traffic
Trajectory
Title AMM: An Adaptive Online Map Matching Algorithm
URI https://ieeexplore.ieee.org/document/10024430
https://www.proquest.com/docview/2811727696
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwHGIwUA-ckNq1Tdo03CoEGkjdhU3arUoaFxCjm0Z34ddTp-00gUAcKuUQR6ntxk5tfybkSgS6Mqu5Z0c5SJuBB7ZEXfZpZazDXIbCw2rkZBQOJ-xxGkybYnVTCwMAJvkMHByaWL6eZyv8VTZAuFDGaHVD3-ZRWBdrrUMGCLRlwFF9Zgs3aEOYnisG44fxk4N9wh3qUx4gqs6GETJdVX4cxca-3O-TUbuzOq3kzVmVysk-v4E2_nvrB2Sv8TStuFaNQ7IFxRHZ3cAfPCZOnCQ3VlxYsZYLPPesGnnUSuSiekqTZ2nFs-f58rV8ee-Syf3d-HZoNw0U7MwXrLRzzSnkDDIGPBcZpdzVWoYUAsV5RJWMRFb5K1LJTHKmFYhQ0UipgHnAfeXRE9Ip5gWcEquiYqBdGeVcVa-RRz4CyYMImBboI_aI23I0zRp0cWxyMUvNLcMVKQohRSGkjRB65HpNsqihNf6a3EWmbkys-dkj_VZuafP1faQ-Vs_6PBTh2S9k52QHV68zF_ukUy5XcFF5F6W6NFr1BdIWx-g
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHIADb8RgQA-ckFraJmkabhUCjUd3YZN2q5LGBcTYptFd-PXUaYcmEIhDpRxiJbXd2Kntz4ScSW4qs1oEblyAchkE4CrU5ZBWxjoqVCQDrEZOu1Gnz-4GfNAUq9taGACwyWfg4dDG8s04n-GvsguEC2WMVjf0Fc4Y43W51lfQAKG2LDxqyFzp83kQM_DlRe-29-hhp3CPhlRwxNVZMEO2r8qPw9hamJtN0p3vrU4sefVmpfbyj2-wjf_e_BbZaHxNJ6mVY5sswWiHrC8gEO4SL0nTSycZOYlREzz5nBp71EnVpHpKm2npJMOn8fSlfH7bI_2b695Vx21aKLh5KFnpFkZQKBjkDEQhc0qFb4yKKHAtREy1imVeeSxKq1wJZjTISNNYa84CEKEO6D5ZHo1HcECcioqB8VVcCF29RhGHCCUPkjMj0UtsEX_O0Sxv8MWxzcUws_cMX2YohAyFkDVCaJHzL5JJDa7x1-Q9ZOrCxJqfLdKeyy1rvr_3LMT62VBEMjr8heyUrHZ66UP2cNu9PyJruFKdx9gmy-V0BseVr1HqE6thn3qGyzU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMM%3A+An+Adaptive+Online+Map+Matching+Algorithm&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Hu%2C+Hanwen&rft.au=Qian%2C+Shiyou&rft.au=Ouyang%2C+Jingchao&rft.au=Cao%2C+Jian&rft.date=2023-05-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=5&rft.spage=5039&rft.epage=5051&rft_id=info:doi/10.1109%2FTITS.2023.3237519&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2023_3237519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon