AMM: An Adaptive Online Map Matching Algorithm
Online map matching is essential for some location-based services, such as car navigation. However, due to GPS measurement errors and/or the lack of sufficient information, the performance of most existing online algorithms will degrade in the increasingly complex traffic environment. In this paper,...
Saved in:
| Published in | IEEE transactions on intelligent transportation systems Vol. 24; no. 5; pp. 1 - 13 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.05.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1524-9050 1558-0016 |
| DOI | 10.1109/TITS.2023.3237519 |
Cover
| Abstract | Online map matching is essential for some location-based services, such as car navigation. However, due to GPS measurement errors and/or the lack of sufficient information, the performance of most existing online algorithms will degrade in the increasingly complex traffic environment. In this paper, we propose an adaptive online map matching algorithm called AMM. The basic idea is that AMM should be able to calibrate GPS observation data for various measurement errors and under complex urban conditions. First, we establish a collaborative evaluation model between GPS points and candidate points to effectively filter low-quality GPS measurement points, dynamically set the weights of different features and comprehensively select the best candidate points. Second, we propose a retrospective correction mechanism to correct the previous matching results when more information is available, which will help improve the accuracy of future GPS points. Furthermore, we define parameter self-tuning rules for AMM to enhance its portability by avoiding time-consuming parameter tuning steps. We conduct extensive experiments to evaluate the performance of AMM on real vehicle trajectory datasets. The experiment results show that AMM outperforms its counterparts by up to 32% in terms of accuracy and its performance in different traffic conditions is more stable. |
|---|---|
| AbstractList | Online map matching is essential for some location-based services, such as car navigation. However, due to GPS measurement errors and/or the lack of sufficient information, the performance of most existing online algorithms will degrade in the increasingly complex traffic environment. In this paper, we propose an adaptive online map matching algorithm called AMM. The basic idea is that AMM should be able to calibrate GPS observation data for various measurement errors and under complex urban conditions. First, we establish a collaborative evaluation model between GPS points and candidate points to effectively filter low-quality GPS measurement points, dynamically set the weights of different features and comprehensively select the best candidate points. Second, we propose a retrospective correction mechanism to correct the previous matching results when more information is available, which will help improve the accuracy of future GPS points. Furthermore, we define parameter self-tuning rules for AMM to enhance its portability by avoiding time-consuming parameter tuning steps. We conduct extensive experiments to evaluate the performance of AMM on real vehicle trajectory datasets. The experiment results show that AMM outperforms its counterparts by up to 32% in terms of accuracy and its performance in different traffic conditions is more stable. |
| Author | Qian, Shiyou Chen, Yirong Ouyang, Jingchao Cao, Jian Hu, Hanwen Han, Han Wang, Jie |
| Author_xml | – sequence: 1 givenname: Hanwen orcidid: 0000-0001-6439-5169 surname: Hu fullname: Hu, Hanwen organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Shiyou orcidid: 0000-0001-7775-1740 surname: Qian fullname: Qian, Shiyou organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Jingchao surname: Ouyang fullname: Ouyang, Jingchao organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Jian orcidid: 0000-0002-0036-9436 surname: Cao fullname: Cao, Jian organization: Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 5 givenname: Han surname: Han fullname: Han, Han organization: Big Data Department, Xiangdao Chuxing, Shanghai, China – sequence: 6 givenname: Jie orcidid: 0000-0003-1857-5569 surname: Wang fullname: Wang, Jie organization: Department of Civil and Environmental Engineering, Stanford University, Palo Alto, CA, USA – sequence: 7 givenname: Yirong orcidid: 0000-0001-8325-3596 surname: Chen fullname: Chen, Yirong organization: Department of Civil and Environmental Engineering, Stanford University, Palo Alto, CA, USA |
| BookMark | eNp9kD1rwzAQhkVJoUnbH1DoYOhsV5-W1c2EfgQSMjSdhSTLiYIju7JS6L-vTTKUDh2OO4577oVnBia-9RaAOwQzhKB43Cw27xmGmGQEE86QuABTxFiRQojyyThjmgrI4BWY9f1-2FKG0BRk5Wr1lJQ-KSvVRfdlk7VvnLfJSnVDRbNzfpuUzbYNLu4ON-CyVk1vb8_9Gny8PG_mb-ly_bqYl8vUYEFjWlec2JpaQy2vhSGEw6pSObFMc14QrQphCkGUVkZxWmkrck0KrRlFlmONyDV4OP3tQvt5tH2U-_YY_BApcYEQxzwX-XCFTlcmtH0fbC274A4qfEsE5ahFjlrkqEWetQwM_8MYF1V0rY9BueZf8v5EOmvtrySIKSWQ_AAodXBl |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_3390_ijgi12080330 |
| Cites_doi | 10.1145/1653771.1653820 10.1016/j.trc.2015.02.017 10.1007/978-3-030-39469-1_10 10.1016/j.trc.2007.05.002 10.1016/j.trc.2020.102651 10.1109/MITS.2020.2994110 10.1007/s10586-018-1910-z 10.1109/TITS.2020.3031080 10.1890/04-0895 10.1109/ICDE.2012.42 10.1109/ITSC.2012.6338627 10.1145/1653771.1653818 10.1145/3397536.3422218 10.1109/MDM.2010.14 10.1016/j.inffus.2017.07.002 10.1890/1540-9295(2004)002[0475:WITWAM]2.0.CO;2 10.1080/13658816.2017.1400548 10.1016/j.ins.2017.12.031 10.1016/j.trc.2018.12.009 10.1109/MITS.2018.2806630 10.1109/5.736347 10.1007/s13369-019-04247-1 10.1109/RTCSA.2011.8 10.3141/2645-08 10.1016/j.physa.2019.122318 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1109/TITS.2023.3237519 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 13 |
| ExternalDocumentID | 10_1109_TITS_2023_3237519 10024430 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Program of Technology Innovation of the Science and Technology Commission of Shanghai Municipality grantid: 21511104700 – fundername: Shanghai Informatization Development Special Project grantid: 202001030 – fundername: Artificial Intelligence Technology Support Project of the Science and Technology Commission of Shanghai Municipality grantid: 22DZ1100103 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 ZY4 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-fd73ef4ec4e7f9c3370dda63e5b7783ba89c893abaca74dbe96b38bb541e72b13 |
| IEDL.DBID | RIE |
| ISSN | 1524-9050 |
| IngestDate | Mon Jun 30 04:29:37 EDT 2025 Thu Apr 24 22:52:55 EDT 2025 Wed Oct 01 05:03:16 EDT 2025 Wed Aug 27 02:25:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-fd73ef4ec4e7f9c3370dda63e5b7783ba89c893abaca74dbe96b38bb541e72b13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7775-1740 0000-0002-0036-9436 0000-0001-6439-5169 0000-0001-8325-3596 0000-0003-1857-5569 |
| PQID | 2811727696 |
| PQPubID | 75735 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1109_TITS_2023_3237519 ieee_primary_10024430 proquest_journals_2811727696 crossref_citationtrail_10_1109_TITS_2023_3237519 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-05-01 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 karich (ref29) 2021 ref10 ref2 ref1 ref17 ref16 ref18 du (ref27) 2010 cheng (ref4) 2019; 11447 ref24 ref23 ref26 ref25 ref20 ref22 ref21 liao (ref5) 2006 sharath (ref11) 2019; 98 zhu (ref19) 2017; 2645 (ref30) 2017 ref28 ref8 ref7 ref9 ref3 ref6 |
| References_xml | – ident: ref15 doi: 10.1145/1653771.1653820 – ident: ref22 doi: 10.1016/j.trc.2015.02.017 – ident: ref6 doi: 10.1007/978-3-030-39469-1_10 – ident: ref17 doi: 10.1016/j.trc.2007.05.002 – ident: ref12 doi: 10.1016/j.trc.2020.102651 – year: 2021 ident: ref29 publication-title: GraphHopper – ident: ref9 doi: 10.1109/MITS.2020.2994110 – ident: ref18 doi: 10.1007/s10586-018-1910-z – ident: ref13 doi: 10.1109/TITS.2020.3031080 – ident: ref24 doi: 10.1890/04-0895 – start-page: 787 year: 2006 ident: ref5 article-title: Location-based activity recognition publication-title: Proc Adv Neural Inf Process Syst – ident: ref20 doi: 10.1109/ICDE.2012.42 – ident: ref8 doi: 10.1109/ITSC.2012.6338627 – ident: ref7 doi: 10.1145/1653771.1653818 – ident: ref28 doi: 10.1145/3397536.3422218 – ident: ref16 doi: 10.1109/MDM.2010.14 – ident: ref3 doi: 10.1016/j.inffus.2017.07.002 – ident: ref25 doi: 10.1890/1540-9295(2004)002[0475:WITWAM]2.0.CO;2 – ident: ref14 doi: 10.1080/13658816.2017.1400548 – ident: ref21 doi: 10.1016/j.ins.2017.12.031 – volume: 98 start-page: 409 year: 2019 ident: ref11 article-title: A dynamic two-dimensional (D2D) weight-based map-matching algorithm publication-title: Transp Res C Emerg Technol doi: 10.1016/j.trc.2018.12.009 – ident: ref1 doi: 10.1109/MITS.2018.2806630 – ident: ref2 doi: 10.1109/5.736347 – year: 2017 ident: ref30 publication-title: OpenStreetMap contributors – ident: ref10 doi: 10.1007/s13369-019-04247-1 – ident: ref26 doi: 10.1109/RTCSA.2011.8 – year: 2010 ident: ref27 publication-title: Method of Feasible Directions – volume: 2645 start-page: 67 year: 2017 ident: ref19 article-title: Trajectory segmentation map-matching approach for large-scale, high-resolution GPS data publication-title: Transp Res Rec J Transp Res Board doi: 10.3141/2645-08 – ident: ref23 doi: 10.1016/j.physa.2019.122318 – volume: 11447 start-page: 764 year: 2019 ident: ref4 article-title: STL: Online detection of taxi trajectory anomaly based on spatial-temporal laws publication-title: Database Systems for Advanced Applications |
| SSID | ssj0014511 |
| Score | 2.3998256 |
| Snippet | Online map matching is essential for some location-based services, such as car navigation. However, due to GPS measurement errors and/or the lack of sufficient... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | adaptive Algorithms Collaboration Current measurement Errors Global Positioning System Global positioning systems GPS Hidden Markov models Location based services Map matching Matching Measurement errors Parameters Performance evaluation Roads Satellite navigation systems Self tuning Traffic Trajectory |
| Title | AMM: An Adaptive Online Map Matching Algorithm |
| URI | https://ieeexplore.ieee.org/document/10024430 https://www.proquest.com/docview/2811727696 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gJzjwHGIwUA-ckNq1Tdo03CoEGkjdhU3arUoaFxCjm0Z34ddTp-00gUAcKuUQR6ntxk5tfybkSgS6Mqu5Z0c5SJuBB7ZEXfZpZazDXIbCw2rkZBQOJ-xxGkybYnVTCwMAJvkMHByaWL6eZyv8VTZAuFDGaHVD3-ZRWBdrrUMGCLRlwFF9Zgs3aEOYnisG44fxk4N9wh3qUx4gqs6GETJdVX4cxca-3O-TUbuzOq3kzVmVysk-v4E2_nvrB2Sv8TStuFaNQ7IFxRHZ3cAfPCZOnCQ3VlxYsZYLPPesGnnUSuSiekqTZ2nFs-f58rV8ee-Syf3d-HZoNw0U7MwXrLRzzSnkDDIGPBcZpdzVWoYUAsV5RJWMRFb5K1LJTHKmFYhQ0UipgHnAfeXRE9Ip5gWcEquiYqBdGeVcVa-RRz4CyYMImBboI_aI23I0zRp0cWxyMUvNLcMVKQohRSGkjRB65HpNsqihNf6a3EWmbkys-dkj_VZuafP1faQ-Vs_6PBTh2S9k52QHV68zF_ukUy5XcFF5F6W6NFr1BdIWx-g |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4QHIADb8RgQA-ckFraJmkabhUCjUd3YZN2q5LGBcTYptFd-PXUaYcmEIhDpRxiJbXd2Kntz4ScSW4qs1oEblyAchkE4CrU5ZBWxjoqVCQDrEZOu1Gnz-4GfNAUq9taGACwyWfg4dDG8s04n-GvsguEC2WMVjf0Fc4Y43W51lfQAKG2LDxqyFzp83kQM_DlRe-29-hhp3CPhlRwxNVZMEO2r8qPw9hamJtN0p3vrU4sefVmpfbyj2-wjf_e_BbZaHxNJ6mVY5sswWiHrC8gEO4SL0nTSycZOYlREzz5nBp71EnVpHpKm2npJMOn8fSlfH7bI_2b695Vx21aKLh5KFnpFkZQKBjkDEQhc0qFb4yKKHAtREy1imVeeSxKq1wJZjTISNNYa84CEKEO6D5ZHo1HcECcioqB8VVcCF29RhGHCCUPkjMj0UtsEX_O0Sxv8MWxzcUws_cMX2YohAyFkDVCaJHzL5JJDa7x1-Q9ZOrCxJqfLdKeyy1rvr_3LMT62VBEMjr8heyUrHZ66UP2cNu9PyJruFKdx9gmy-V0BseVr1HqE6thn3qGyzU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AMM%3A+An+Adaptive+Online+Map+Matching+Algorithm&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Hu%2C+Hanwen&rft.au=Qian%2C+Shiyou&rft.au=Ouyang%2C+Jingchao&rft.au=Cao%2C+Jian&rft.date=2023-05-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=5&rft.spage=5039&rft.epage=5051&rft_id=info:doi/10.1109%2FTITS.2023.3237519&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2023_3237519 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |