Numeric mapping of geological stratum topology for shield tunnel

The geological condition above tunnel face is essential to excavation and support. In order to solve the shortcoming of ground borehole method that cannot obtain continuous information while destroying soil stability, this paper presents a numeric algorithm to continuously recover the topology of ea...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; p. 1
Main Authors Zhang, Jinyu, Zhang, Yijie, Shen, Mengru, Zhang, Dingli
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2023.3325444

Cover

Abstract The geological condition above tunnel face is essential to excavation and support. In order to solve the shortcoming of ground borehole method that cannot obtain continuous information while destroying soil stability, this paper presents a numeric algorithm to continuously recover the topology of each soil stratum. Specifically, firstly, a Silo-Wedge tunnel face model and its topology& mechanics parameter algorithms were proposed based on Terzaghi theory and Mohr stress circle. Through considering the friction effect of cutter-head and designing suitable parabolic arch element contour, the calculated shape and lateral stress ratio closely fits model tests. Secondly, a inter-stratum load transferring algorithm was designed based on differential element force equilibrium model. Through involving arch effect, shearing resistance and friction force, the result become more practical. Thirdly, a bottom-to-top two virtual stratum model was proposed to recursively calculate the thickness change of soil stratum corresponding to sensed pressure deviation. Through designing the load contribution weight of stratum, complex polynomial solving problem is avoided. Finally, a back propagation (BP) neural network was improved based on proposed model characteristics, calculation error and learning time are reduced. Finally, effectiveness was tested.
AbstractList The geological condition above tunnel face is essential to excavation and support. In order to solve the shortcoming of ground borehole method that cannot obtain continuous information while destroying soil stability, this paper presents a numeric algorithm to continuously recover the topology of each soil stratum. Specifically, firstly, a Silo-Wedge tunnel face model and its topology& mechanics parameter algorithms were proposed based on Terzaghi theory and Mohr stress circle. Through considering the friction effect of cutter-head and designing suitable parabolic arch element contour, the calculated shape and lateral stress ratio closely fits model tests. Secondly, a inter-stratum load transferring algorithm was designed based on differential element force equilibrium model. Through involving arch effect, shearing resistance and friction force, the result become more practical. Thirdly, a bottom-to-top two virtual stratum model was proposed to recursively calculate the thickness change of soil stratum corresponding to sensed pressure deviation. Through designing the load contribution weight of stratum, complex polynomial solving problem is avoided. Finally, a back propagation (BP) neural network was improved based on proposed model characteristics, calculation error and learning time are reduced. Finally, effectiveness was tested.
The geological condition above tunnel face is essential to excavation and support. In order to solve the shortcoming of ground borehole method that cannot obtain continuous information while destroying soil stability, this article presents a numeric algorithm to continuously recover the topology of each soil stratum. Specifically, first, a Silo-Wedge tunnel face model and its topology and mechanics parameter algorithms were proposed based on Terzaghi theory and Mohr stress circle. Through considering the friction effect of cutter-head and designing suitable parabolic arch element contour, the calculated shape and lateral stress ratio closely fits model tests. Second, an interstratum load transferring algorithm was designed based on differential element force equilibrium model. Through involving arch effect, shearing resistance, and friction force, the result becomes more practical. Third, a bottom-to-top two virtual stratum model was proposed to recursively calculate the thickness change of soil stratum corresponding to sensed pressure deviation. Through designing the load contribution weight of stratum, complex polynomial solving problem is avoided. Finally, a back propagation (BP) neural network (NN) was improved based on proposed model characteristics, calculation error, and learning time are reduced. Finally, effectiveness was tested.
Author Zhang, Yijie
Zhang, Dingli
Zhang, Jinyu
Shen, Mengru
Author_xml – sequence: 1
  givenname: Jinyu
  orcidid: 0000-0003-3102-7700
  surname: Zhang
  fullname: Zhang, Jinyu
  organization: School of Computer and Information Technology, Beijing Jiaotong University, Beijing, CA, China
– sequence: 2
  givenname: Yijie
  surname: Zhang
  fullname: Zhang, Yijie
  organization: College of Preventive Medic, Army Medical University, Chongqing, CA, China
– sequence: 3
  givenname: Mengru
  orcidid: 0000-0002-9683-117X
  surname: Shen
  fullname: Shen, Mengru
  organization: School of Traffic and Transportation, Beijing Jiaotong, Beijing, CA, China
– sequence: 4
  givenname: Dingli
  surname: Zhang
  fullname: Zhang, Dingli
  organization: School of Civil Engineering, Beijing Jiaotong, Beijing, CA, China
BookMark eNp9kE1LwzAYx4NMcJt-AMFDwXNnXpvkpgydwlDQeQ5Zm8yMtqlJeti3t2U7iAdPDzz8f8_LbwYmrW8NANcILhCC8m6zev9YYIjJghDMKKVnYIoYEzksKJ2AKUSyyLGQ-ALMYtxDiChDfAruX_vGBFdmje461-4yb7Od8bXfuVLXWUxBp77Jku_G3iGzPmTxy5m6ylLftqa-BOdW19FcneocfD49bpbP-fpt9bJ8WOclljTlVnJSbYfLsCihZBVlHNnSbklRSawhM9hKWxBJaCWglKIiWwk5sZoywSmmZA5uj3O74L97E5Pa-z60w0qFhaCCF4zLIcWPqTL4GIOxqnRJJ-fb4RFXKwTVqEuNutSoS510DST6Q3bBNToc_mVujowzxvzK4-EaRMkP9bh3HA
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TITS_2023_3339301
Cites_doi 10.1016/j.tust.2022.104830
10.1109/TKDE.2018.2861006
10.1109/TGRS.2022.3158660
10.1007/978-3-642-19630-0_46
10.1109/tkde.2020.3001195
10.1109/tkde.2020.3023976
10.1016/j.sandf.2017.03.004
10.1007/s11440-014-0304-5
10.1061/(ASCE)GM.1943-5622.0002404
10.1007/s13369-020-04385-x
10.1016/j.compgeo.2010.11.003
10.1007/s11440-018-0753-3
10.1007/s11440-022-01461-4
10.1007/s12205-021-1254-8
10.1007/s12205-019-0780-0
10.1007/s11709-021-0718-8
10.1201/NOE0415391245.ch34
10.1109/TGRS.2020.2995995
10.1016/j.tust.2022.104405
10.1109/TGRS.2020.3046454
10.1061/(ASCE)GM.1943-5622.0001135
10.1007/s11440-010-0110-7
10.1061/(ASCE)0733-9410(1994)120:7(1148)
10.1016/j.ress.2022.108984
10.1061/(ASCE)GT.1943-5606.0000517
10.1007/s40948-020-00204-7
10.1016/j.tust.2018.06.031
10.1061/40803(187)50
10.1007/s12205-021-0921-0
10.1016/j.compgeo.2018.02.015
10.1016/j.autcon.2023.104813
10.1007/s12665-012-2021-4
10.3390/buildings12040444
10.1007/s10064-020-01878-9
10.1016/j.tust.2023.105104
10.1680/jgeot.18.P.019
10.2112/JCOASTRES-D-20-00094.1
10.1007/s13369-020-05231-w
10.1007/s11440-021-01426-z
10.1016/j.asoc.2023.110206
10.1061/(ASCE)0733-9410(1985)111:3(302)
10.1016/j.compgeo.2014.01.005
10.1007/s11440-022-01590-w
10.1016/j.compgeo.2019.103174
10.1680/geot.2003.53.7.643
10.1016/j.tust.2012.08.001
10.1016/j.tust.2018.01.015
10.1016/j.compgeo.2019.103170
10.1016/j.jrmge.2022.03.002
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3325444
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aerospace Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library (LUT)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3325444
10287614
Genre orig-research
GrantInformation_xml – fundername: National key R & D project
  grantid: 2017YFC0805403
– fundername: National Natural Science Foundation of China
  grantid: 61071077
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-f973db25428c095d4571fcfb36d92a05e2f9f63934d80998d3b9073fa45874243
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 08:28:38 EDT 2025
Wed Oct 01 02:57:57 EDT 2025
Thu Apr 24 23:05:36 EDT 2025
Wed Aug 27 02:37:45 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-f973db25428c095d4571fcfb36d92a05e2f9f63934d80998d3b9073fa45874243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3102-7700
0000-0002-9683-117X
PQID 2884876579
PQPubID 85465
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TGRS_2023_3325444
ieee_primary_10287614
crossref_primary_10_1109_TGRS_2023_3325444
proquest_journals_2884876579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
Kwonkibeom (ref23) 2022; 24
ref17
ref16
ref19
Gong (ref54) 2018
ref18
Huang (ref26) 2020; 23
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Liu (ref32) 2022; 28
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref2
ref1
ref39
ref38
Tang (ref29) 2013; 35
ref24
ref25
ref20
ref22
ref21
ref28
ref27
References_xml – ident: ref9
  doi: 10.1016/j.tust.2022.104830
– volume: 35
  start-page: 1830
  issue: 10
  year: 2013
  ident: ref29
  article-title: Centrifugal model tests on face stability of shield tunnels in dense sand
  publication-title: Chin. J. Geotech. Eng.
– ident: ref21
  doi: 10.1109/TKDE.2018.2861006
– ident: ref4
  doi: 10.1109/TGRS.2022.3158660
– ident: ref50
  doi: 10.1007/978-3-642-19630-0_46
– ident: ref20
  doi: 10.1109/tkde.2020.3001195
– ident: ref53
  doi: 10.1109/tkde.2020.3023976
– ident: ref49
  doi: 10.1016/j.sandf.2017.03.004
– ident: ref35
  doi: 10.1007/s11440-014-0304-5
– ident: ref39
  doi: 10.1061/(ASCE)GM.1943-5622.0002404
– ident: ref16
  doi: 10.1007/s13369-020-04385-x
– ident: ref51
  doi: 10.1016/j.compgeo.2010.11.003
– ident: ref37
  doi: 10.1007/s11440-018-0753-3
– ident: ref15
  doi: 10.1007/s11440-022-01461-4
– ident: ref25
  doi: 10.1007/s12205-021-1254-8
– ident: ref28
  doi: 10.1007/s12205-019-0780-0
– volume-title: An earth pressure balance model shield testing machine capable of monitoring cutter head pressure
  year: 2018
  ident: ref54
– ident: ref2
  doi: 10.1007/s11709-021-0718-8
– ident: ref47
  doi: 10.1201/NOE0415391245.ch34
– ident: ref6
  doi: 10.1109/TGRS.2020.2995995
– volume: 23
  start-page: 1
  issue: 1
  year: 2020
  ident: ref26
  article-title: Qian seismic stability analysis of tunnel face in purely cohesive soil by a pseudo-dynamic approach
  publication-title: Geomech. Eng.
– ident: ref13
  doi: 10.1016/j.tust.2022.104405
– ident: ref5
  doi: 10.1109/TGRS.2020.3046454
– ident: ref42
  doi: 10.1061/(ASCE)GM.1943-5622.0001135
– ident: ref27
  doi: 10.1007/s11440-010-0110-7
– ident: ref46
  doi: 10.1061/(ASCE)0733-9410(1994)120:7(1148)
– ident: ref10
  doi: 10.1016/j.ress.2022.108984
– ident: ref45
  doi: 10.1061/(ASCE)GT.1943-5606.0000517
– ident: ref38
  doi: 10.1007/s40948-020-00204-7
– ident: ref30
  doi: 10.1016/j.tust.2018.06.031
– ident: ref48
  doi: 10.1061/40803(187)50
– ident: ref1
  doi: 10.1007/s12205-021-0921-0
– ident: ref34
  doi: 10.1016/j.compgeo.2018.02.015
– ident: ref7
  doi: 10.1016/j.autcon.2023.104813
– ident: ref33
  doi: 10.1007/s12665-012-2021-4
– volume: 24
  start-page: 217
  issue: 2
  year: 2022
  ident: ref23
  article-title: A study on EPB shield TBM face pressure prediction using machine learning algorithms
  publication-title: J. Korean Tunnelling Underground Space Assoc.
– volume: 28
  start-page: 265
  issue: 3
  year: 2022
  ident: ref32
  article-title: Experimental and numerical study on the stability of slurry shield tunneling in circular-gravel layer with different cover-span ratios
  publication-title: Geomech. Eng.
– ident: ref22
  doi: 10.3390/buildings12040444
– ident: ref3
  doi: 10.1007/s10064-020-01878-9
– ident: ref12
  doi: 10.1016/j.tust.2023.105104
– ident: ref31
  doi: 10.1680/jgeot.18.P.019
– ident: ref24
  doi: 10.2112/JCOASTRES-D-20-00094.1
– ident: ref17
  doi: 10.1007/s13369-020-05231-w
– ident: ref36
  doi: 10.1007/s11440-021-01426-z
– ident: ref11
  doi: 10.1016/j.asoc.2023.110206
– ident: ref18
  doi: 10.1061/(ASCE)0733-9410(1985)111:3(302)
– ident: ref44
  doi: 10.1016/j.compgeo.2014.01.005
– ident: ref14
  doi: 10.1007/s11440-022-01590-w
– ident: ref41
  doi: 10.1016/j.compgeo.2019.103174
– ident: ref19
  doi: 10.1680/geot.2003.53.7.643
– ident: ref43
  doi: 10.1016/j.tust.2012.08.001
– ident: ref52
  doi: 10.1016/j.tust.2018.01.015
– ident: ref40
  doi: 10.1016/j.compgeo.2019.103170
– ident: ref8
  doi: 10.1016/j.jrmge.2022.03.002
SSID ssj0014517
Score 2.4133453
Snippet The geological condition above tunnel face is essential to excavation and support. In order to solve the shortcoming of ground borehole method that cannot...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Arches
back propagation algorithm
Back propagation networks
Boreholes
Dredging
Earth
Excavation
Faces
Friction
Friction resistance
Geological mapping
geological recognition
Geology
Lateral stress
Mathematical models
Mechanics
Model testing
neural network
Neural networks
Polynomials
Shape
Shear strength
Slope stability
Soil
Soil stability
Soils
Stress
Stress ratio
Terzaghi's theory
Topology
tunnel face
Tunneling shields
Tunnels
Title Numeric mapping of geological stratum topology for shield tunnel
URI https://ieeexplore.ieee.org/document/10287614
https://www.proquest.com/docview/2884876579
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library (LUT)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8QwEB50QdCDb3F1lRw8Ca1tHm1yU0RdPOxBV9hbSfNQUHfFbQ_6603S7uIDxVsOSQkzaeabzMw3AEci10rQREYyZXlEMykiKZmICGdK5qzE1ga2z0HWv6PXIzZqi9VDLYwxJiSfmdgPQyxfT1Ttn8pOvDF0bjddhMWcZ02x1jxkQFna1kZnkfMicBvCTBNxMry6uY19n_CYEE_JRb8YodBV5cdVHOzL5RoMZjtr0koe47oqY_X-jbTx31tfh9UWaaKz5mhswIIZb8LKJ_7BTVi6Cn1939woZIKq6RacDuoQxEHP0lM33KOJRfdmdkWiQLNbP6Oqaa7whhzoRdMHnweHqtonzWzD3eXF8LwftW0WIoUFrSIrcqJLJxfMlQNcmrI8tcqWJNMCy4QZbIV1QIZQzR2e5JqUzqMmVlLGnWNNyQ50xpOx2QXk0JjSKuGl9UhFSZk5VSe54imREmPdhWQm90K1HOS-FcZTEXyRRBReVYVXVdGqqgvH8yUvDQHHX5O3veg_TWyk3oXeTLtF-49OC8y589Yylou9X5btw7L_evPi0oNO9VqbA4dBqvIwnL0P-K_Vtw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T-QwEB5xIHRQ8EYsj8MF1UkJiR-J3YEQsBywBbdIdJHjx550sIvYpIBfj-1kEQ-B6FzYijXjeL7xzHwDsCdyrQRNZCRTlkc0kyKSkomIcKZkzkpsbWD77GXda_rnht20xeqhFsYYE5LPTOyHIZavR6r2T2X73hg6t5v-gBlGKWVNudZL0ICytK2OziLnR-A2iJkmYr9_evU39p3CY0I8KRd9Y4ZCX5UPl3GwMCeL0JvsrUks-R_XVRmrp3e0jd_e_BIstFgTHTaHYxmmzHAF5l8xEK7A7Gno7PvoRiEXVI1X4aBXhzAOupOevGGARhYNzOSSRIFot75DVdNe4RE52IvG_3wmHKpqnzazBtcnx_2jbtQ2WogUFrSKrMiJLp1cMFcOcmnK8tQqW5JMCywTZrAV1kEZQjV3iJJrUjqfmlhJGXeuNSXrMD0cDc0GIIfHlFYJL63HKkrKzCk7yRVPiZQY6w4kE7kXqmUh980wbovgjSSi8KoqvKqKVlUd-P2y5L6h4Phq8poX_auJjdQ7sD3RbtH-peMCc-78tYzlYvOTZbvws9u_vCguznrnWzDnv9S8v2zDdPVQmx2HSKryVziHz1Y-2QQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numeric+mapping+of+geological+stratum+topology+for+shield+tunnel&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Zhang%2C+Jinyu&rft.au=Zhang%2C+Yijie&rft.au=Shen%2C+Mengru&rft.au=Zhang%2C+Dingli&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0196-2892&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3325444&rft.externalDocID=10287614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon