Design of text sentiment analysis tool using feature extraction based on fusing machine learning algorithms
Text Sentiment Analysis is a system where text feeling polarity is positive or negative or neutral from a series of texts or documents or public opinions on a particular product or general subject. Using machine learning and natural language processing techniques, the current work aims to gain insig...
        Saved in:
      
    
          | Published in | Journal of intelligent & fuzzy systems Vol. 40; no. 4; pp. 6375 - 6383 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        London, England
          SAGE Publications
    
        01.01.2021
     Sage Publications Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1064-1246 1875-8967  | 
| DOI | 10.3233/JIFS-189478 | 
Cover
| Abstract | Text Sentiment Analysis is a system where text feeling polarity is positive or negative or neutral from a series of texts or documents or public opinions on a particular product or general subject. Using machine learning and natural language processing techniques, the current work aims to gain insight into sentiment mining on tweets. Text classification is accomplished using Machine Learning Algorithm-based fusion technique. This research suggested a system for grading feelings based on a lexicon. Bag-of-words (BOW) or lexicon-based methodology is currently the main standard way of modeling text for machine learning in sentiment analysis approaches. Marketers can use sentiment analysis to analyze their business and services, public opinion, or to evaluate customer satisfaction. Organizations can even use this analysis to gather significant feedback on issues related to newly released products. The main objective of this is to resolve the data overload problem. | 
    
|---|---|
| AbstractList | Text Sentiment Analysis is a system where text feeling polarity is positive or negative or neutral from a series of texts or documents or public opinions on a particular product or general subject. Using machine learning and natural language processing techniques, the current work aims to gain insight into sentiment mining on tweets. Text classification is accomplished using Machine Learning Algorithm-based fusion technique. This research suggested a system for grading feelings based on a lexicon. Bag-of-words (BOW) or lexicon-based methodology is currently the main standard way of modeling text for machine learning in sentiment analysis approaches. Marketers can use sentiment analysis to analyze their business and services, public opinion, or to evaluate customer satisfaction. Organizations can even use this analysis to gather significant feedback on issues related to newly released products. The main objective of this is to resolve the data overload problem. | 
    
| Author | Sivasangari, A. Ajitha, P. Poonguzhali, S. Immanuel Rajkumar, R.  | 
    
| Author_xml | – sequence: 1 givenname: P. surname: Ajitha fullname: Ajitha, P. email: ajitha.it@sathyabama.ac.in organization: , Chennai – sequence: 2 givenname: A. surname: Sivasangari fullname: Sivasangari, A. organization: , Chennai – sequence: 3 givenname: R. surname: Immanuel Rajkumar fullname: Immanuel Rajkumar, R. organization: , Chennai – sequence: 4 givenname: S. surname: Poonguzhali fullname: Poonguzhali, S. organization: , Chennai  | 
    
| BookMark | eNp1kFtLAzEQhYMoWC9P_oGAL4Ks5ra72Uep1gsFH9TnZbo7aVO3SU1SsP_eLSsIoi8zw_CdYc45IvvOOyTkjLMrKaS8fnqcvGRcV6rUe2TEdZlnuirK_X5mhcq4UMUhOYpxyRgvc8FG5P0Wo5076g1N-JloRJfsqi8UHHTbaCNN3nd0E62bU4OQNgFpTwZokvWOziBiS_vBDMgKmoV1SDuE4HYL6OY-2LRYxRNyYKCLePrdj8nb5O51_JBNn-8fxzfTrBGVSpmReYEz2ZpGAwAyUByENopL1SICNJXiCgosK9Ew0SphpCgAciwYn-mylcfkfLi7Dv5jgzHVS78JvZ1Yi5zzqhRay57iA9UEH2NAUzc2wc5T7812NWf1LtN6l2k9ZNprLn9p1sGuIGz_oS8GOsIcf374C_0CT6qIsA | 
    
| CitedBy_id | crossref_primary_10_1177_09722629231172580 crossref_primary_10_1016_j_procs_2023_12_125 crossref_primary_10_3233_JCM_247135 crossref_primary_10_3390_s22113998 crossref_primary_10_4018_IJISSS_349564 crossref_primary_10_3390_app13169428  | 
    
| Cites_doi | 10.1109/ACCESS.2017.2672677 10.1109/TKDE.2015.2407371 10.1166/jmihi.2016.1756 10.1109/ACCESS.2017.2740982 10.1109/ACCESS.2017.2690342 10.1109/TMM.2016.2575738 10.1016/j.compind.2019.103180 10.1109/ACCESS.2017.2776930 10.1109/ACCESS.2018.2820025  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2021 – IOS Press. All rights reserved Copyright IOS Press BV 2021  | 
    
| Copyright_xml | – notice: 2021 – IOS Press. All rights reserved – notice: Copyright IOS Press BV 2021  | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.3233/JIFS-189478 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1875-8967 | 
    
| EndPage | 6383 | 
    
| ExternalDocumentID | 10_3233_JIFS_189478 10.3233_JIFS-189478  | 
    
| GroupedDBID | .4S .DC 4.4 5GY 8VB AAGLT ABCQX ABDBF ABJNI ABUJY ACGFS ACPQW ACUHS ADMLS ADZMO AEMOZ AENEX AFRHK AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF DU5 EAD EAP EBA EBR EBS EBU EDO EMK EPL EST ESX H13 HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 0R~ AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c294t-f356eb3dfc8aaae0a41a28f4134deeaac9414a6e792c02d42f326aa5e601b87d3 | 
    
| ISSN | 1064-1246 | 
    
| IngestDate | Fri Jul 25 10:04:42 EDT 2025 Thu Apr 24 23:05:07 EDT 2025 Wed Oct 01 06:37:26 EDT 2025 Sun Jul 13 06:01:59 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Sentiment analysis naive bayesian algorithm natural language processing lexicon method  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-f356eb3dfc8aaae0a41a28f4134deeaac9414a6e792c02d42f326aa5e601b87d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2511972883 | 
    
| PQPubID | 2046407 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | proquest_journals_2511972883 crossref_citationtrail_10_3233_JIFS_189478 crossref_primary_10_3233_JIFS_189478 sage_journals_10_3233_JIFS_189478  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-01 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London, England | 
    
| PublicationPlace_xml | – name: London, England – name: London  | 
    
| PublicationTitle | Journal of intelligent & fuzzy systems | 
    
| PublicationYear | 2021 | 
    
| Publisher | SAGE Publications Sage Publications Ltd  | 
    
| Publisher_xml | – name: SAGE Publications – name: Sage Publications Ltd  | 
    
| References | 2017; 5 2019; 8 2020; 115 2018; 6 2016; 6 2015; 27 2016; 18 2009; 1 10.3233/JIFS-189478_ref9 10.3233/JIFS-189478_ref2 Ajitha (10.3233/JIFS-189478_ref14) 2016; 6 10.3233/JIFS-189478_ref1 Kaur (10.3233/JIFS-189478_ref12) 2009; 1 10.3233/JIFS-189478_ref6 Sivasangari (10.3233/JIFS-189478_ref13) 2019; 8 10.3233/JIFS-189478_ref5 10.3233/JIFS-189478_ref4 10.3233/JIFS-189478_ref3 Kandasamy (10.3233/JIFS-189478_ref17) 2020; 115  | 
    
| References_xml | – volume: 6 year: 2018 article-title: Deep Convolution Neural Networks For Twitter Sentiment Analysis publication-title: Preceding In Ieee – volume: 1 start-page: 7 issue: 1 year: 2009 end-page: 13 article-title: An Analysis Of Opinion Mining Research Works Based On Language, Writing Style And Feature Selection Parameters publication-title: International Journal Of Advanced Networking Applications (Ijana) – volume: 6 start-page: 769 issue: 3 year: 2016 end-page: 773 article-title: Semantic Based Fuzzy Inference System(SBFIS) Prediction of Patient Emotion and Prescription using support vector machine” publication-title: the Journal of Medical Imaging and Health Informatics – volume: 6 year: 2018 article-title: Multistrategy Sentiment Analysis Of Consumer Reviews Based On Semantic Fuzziness publication-title: Preceding In IEEE – volume: 5 year: 2017 article-title: Approaches To Cross-Domain Sentiment Analysis: A Systematic Literature Review publication-title: Preceding In Ieee – volume: 5 year: 2017 article-title: Comparison Research On Text Pre-Processing Methods On Twitter Sentiment Analysis – volume: 5 year: 2017 article-title: A Pattern-Based Approach For Multi-Class Sentiment Analysis In Twitter publication-title: Preceding In Ieee – volume: 8 start-page: 1370 issue: 2S year: 2019 end-page: 1372 article-title: Air Pollution Monitoring and Prediction using Multi view Hybrid Model publication-title: International Journal of Engineering and Advanced Technology(IJEAT) – volume: 27 issue: 8 year: 2015 article-title: Dual Sentiment Analysis: Considering Two Sides Of One Review publication-title: Preceding In Ieee Transactions On Knowledge And Data Engineering – volume: 18 issue: 9 year: 2016 article-title: Rating Prediction Based On Social Sentiment From Textual Reviews publication-title: Preceding In Ieee – volume: 115 start-page: 103180 year: 2020 article-title: Sentiment analysis of tweets using refined neutrosophic sets publication-title: Computers in Industry – ident: 10.3233/JIFS-189478_ref3 doi: 10.1109/ACCESS.2017.2672677 – ident: 10.3233/JIFS-189478_ref9 doi: 10.1109/TKDE.2015.2407371 – volume: 6 start-page: 769 issue: 3 year: 2016 ident: 10.3233/JIFS-189478_ref14 article-title: Semantic Based Fuzzy Inference System(SBFIS) Prediction of Patient Emotion and Prescription using support vector machine” publication-title: the Journal of Medical Imaging and Health Informatics doi: 10.1166/jmihi.2016.1756 – ident: 10.3233/JIFS-189478_ref4 doi: 10.1109/ACCESS.2017.2740982 – ident: 10.3233/JIFS-189478_ref5 doi: 10.1109/ACCESS.2017.2690342 – ident: 10.3233/JIFS-189478_ref6 doi: 10.1109/TMM.2016.2575738 – volume: 115 start-page: 103180 year: 2020 ident: 10.3233/JIFS-189478_ref17 article-title: Sentiment analysis of tweets using refined neutrosophic sets publication-title: Computers in Industry doi: 10.1016/j.compind.2019.103180 – ident: 10.3233/JIFS-189478_ref2 doi: 10.1109/ACCESS.2017.2776930 – ident: 10.3233/JIFS-189478_ref1 doi: 10.1109/ACCESS.2018.2820025 – volume: 1 start-page: 7 issue: 1 year: 2009 ident: 10.3233/JIFS-189478_ref12 article-title: An Analysis Of Opinion Mining Research Works Based On Language, Writing Style And Feature Selection Parameters publication-title: International Journal Of Advanced Networking Applications (Ijana) – volume: 8 start-page: 1370 issue: 2S year: 2019 ident: 10.3233/JIFS-189478_ref13 article-title: Air Pollution Monitoring and Prediction using Multi view Hybrid Model publication-title: International Journal of Engineering and Advanced Technology(IJEAT)  | 
    
| SSID | ssj0017520 | 
    
| Score | 2.2550743 | 
    
| Snippet | Text Sentiment Analysis is a system where text feeling polarity is positive or negative or neutral from a series of texts or documents or public opinions on a... | 
    
| SourceID | proquest crossref sage  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 6375 | 
    
| SubjectTerms | Algorithms Customer satisfaction Customer services Data mining Feature extraction Machine learning Natural language processing Sentiment analysis  | 
    
| Title | Design of text sentiment analysis tool using feature extraction based on fusing machine learning algorithms | 
    
| URI | https://journals.sagepub.com/doi/full/10.3233/JIFS-189478 https://www.proquest.com/docview/2511972883  | 
    
| Volume | 40 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1875-8967 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: AMVHM dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE9RGMhI2wtVIHHcNHms2Kpu2gaiLdpbdEnsrtuaji5Bon8TfyTn2PnoqBDwEkWO5Si-X85n393vCNlzgn6QxLawYlSRFg9YZPlJ4lle4EvgLuCKUbB9nnmjKT8-7523Wj8bUUt5Fr2P11vzSv5HqtiGclVZsv8g2WpQbMB7lC9eUcJ4_SsZHxThF4WbH3VsV-URzU3QuKEayRTFZl6cB0hRcHh2sefKFAhXS1ii3AVSd1kUkZWiLCUx68L1bLmaZxeG0vx3I3ZeMXpmBYhkvl7_MPTQlbU-uMQhYCOZbDz_DreQzkAnulcw-gKXV1XQd_dosYA0F1UQyOflMp3l6wvQOd3j5pEFc-4cWTSjkXS4Xx3BpHQwWkkWmh2GIVu34bbK8gNduaNU3JrnyQCUN7Sw5-pqLHeXB5ep4-vh8dFwbDl-wHXxoE0S7rNP4XB6chJODs8n--7w5pulKpQpT_6-e6AhdI_sMFxD7DbZGZx-HZ1WXqt-j2n2C_MBOh9UvfVD452bFlC9rWlEEhbGzeQReWgESgcaYo9JS6RPyIMGV-VTcqXBRpeSKrDRCmy0BBtVYKMFkqgBG63BRguwUbzRYKMGbLQEG63B9oxMh4eTjyPLVOqwYhbwzJJuzxORm8jYBwBhA3eA-RINJJ4IARAH3OHgiX7AYpslnEncNQD0hGc7kd9P3OeknS5T8YJQlDRLIsfzezFwcAX0fU9yNJttO7GljDvkXTl7YWxo7FU1lesQt7NqqkM11aGe6g7ZqzrfaPaW7d12SzGE5ve-DVnhYVfFuDvkrRJN_WjLEC__PMQrcr_-EXZJO1vl4jVas1n0xoDoFw8cpvM | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+text+sentiment+analysis+tool+using+feature+extraction+based+on+fusing+machine+learning+algorithms&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Ajitha%2C+P&rft.au=Sivasangari%2C+A&rft.au=Rajkumar%2C+R+Immanuel&rft.au=Poonguzhali%2C+S&rft.date=2021-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=40&rft.issue=4&rft.spage=6375&rft_id=info:doi/10.3233%2FJIFS-189478&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |