Design of text sentiment analysis tool using feature extraction based on fusing machine learning algorithms

Text Sentiment Analysis is a system where text feeling polarity is positive or negative or neutral from a series of texts or documents or public opinions on a particular product or general subject. Using machine learning and natural language processing techniques, the current work aims to gain insig...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 40; no. 4; pp. 6375 - 6383
Main Authors Ajitha, P., Sivasangari, A., Immanuel Rajkumar, R., Poonguzhali, S.
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.01.2021
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-189478

Cover

Abstract Text Sentiment Analysis is a system where text feeling polarity is positive or negative or neutral from a series of texts or documents or public opinions on a particular product or general subject. Using machine learning and natural language processing techniques, the current work aims to gain insight into sentiment mining on tweets. Text classification is accomplished using Machine Learning Algorithm-based fusion technique. This research suggested a system for grading feelings based on a lexicon. Bag-of-words (BOW) or lexicon-based methodology is currently the main standard way of modeling text for machine learning in sentiment analysis approaches. Marketers can use sentiment analysis to analyze their business and services, public opinion, or to evaluate customer satisfaction. Organizations can even use this analysis to gather significant feedback on issues related to newly released products. The main objective of this is to resolve the data overload problem.
AbstractList Text Sentiment Analysis is a system where text feeling polarity is positive or negative or neutral from a series of texts or documents or public opinions on a particular product or general subject. Using machine learning and natural language processing techniques, the current work aims to gain insight into sentiment mining on tweets. Text classification is accomplished using Machine Learning Algorithm-based fusion technique. This research suggested a system for grading feelings based on a lexicon. Bag-of-words (BOW) or lexicon-based methodology is currently the main standard way of modeling text for machine learning in sentiment analysis approaches. Marketers can use sentiment analysis to analyze their business and services, public opinion, or to evaluate customer satisfaction. Organizations can even use this analysis to gather significant feedback on issues related to newly released products. The main objective of this is to resolve the data overload problem.
Author Sivasangari, A.
Ajitha, P.
Poonguzhali, S.
Immanuel Rajkumar, R.
Author_xml – sequence: 1
  givenname: P.
  surname: Ajitha
  fullname: Ajitha, P.
  email: ajitha.it@sathyabama.ac.in
  organization: , Chennai
– sequence: 2
  givenname: A.
  surname: Sivasangari
  fullname: Sivasangari, A.
  organization: , Chennai
– sequence: 3
  givenname: R.
  surname: Immanuel Rajkumar
  fullname: Immanuel Rajkumar, R.
  organization: , Chennai
– sequence: 4
  givenname: S.
  surname: Poonguzhali
  fullname: Poonguzhali, S.
  organization: , Chennai
BookMark eNp1kFtLAzEQhYMoWC9P_oGAL4Ks5ra72Uep1gsFH9TnZbo7aVO3SU1SsP_eLSsIoi8zw_CdYc45IvvOOyTkjLMrKaS8fnqcvGRcV6rUe2TEdZlnuirK_X5mhcq4UMUhOYpxyRgvc8FG5P0Wo5076g1N-JloRJfsqi8UHHTbaCNN3nd0E62bU4OQNgFpTwZokvWOziBiS_vBDMgKmoV1SDuE4HYL6OY-2LRYxRNyYKCLePrdj8nb5O51_JBNn-8fxzfTrBGVSpmReYEz2ZpGAwAyUByENopL1SICNJXiCgosK9Ew0SphpCgAciwYn-mylcfkfLi7Dv5jgzHVS78JvZ1Yi5zzqhRay57iA9UEH2NAUzc2wc5T7812NWf1LtN6l2k9ZNprLn9p1sGuIGz_oS8GOsIcf374C_0CT6qIsA
CitedBy_id crossref_primary_10_1177_09722629231172580
crossref_primary_10_1016_j_procs_2023_12_125
crossref_primary_10_3233_JCM_247135
crossref_primary_10_3390_s22113998
crossref_primary_10_4018_IJISSS_349564
crossref_primary_10_3390_app13169428
Cites_doi 10.1109/ACCESS.2017.2672677
10.1109/TKDE.2015.2407371
10.1166/jmihi.2016.1756
10.1109/ACCESS.2017.2740982
10.1109/ACCESS.2017.2690342
10.1109/TMM.2016.2575738
10.1016/j.compind.2019.103180
10.1109/ACCESS.2017.2776930
10.1109/ACCESS.2018.2820025
ContentType Journal Article
Copyright 2021 – IOS Press. All rights reserved
Copyright IOS Press BV 2021
Copyright_xml – notice: 2021 – IOS Press. All rights reserved
– notice: Copyright IOS Press BV 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-189478
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
EndPage 6383
ExternalDocumentID 10_3233_JIFS_189478
10.3233_JIFS-189478
GroupedDBID .4S
.DC
4.4
5GY
8VB
AAGLT
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
H13
HZ~
I-F
IOS
K1G
L7B
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
0R~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-f356eb3dfc8aaae0a41a28f4134deeaac9414a6e792c02d42f326aa5e601b87d3
ISSN 1064-1246
IngestDate Fri Jul 25 10:04:42 EDT 2025
Thu Apr 24 23:05:07 EDT 2025
Wed Oct 01 06:37:26 EDT 2025
Sun Jul 13 06:01:59 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Sentiment analysis
naive bayesian algorithm
natural language processing
lexicon method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-f356eb3dfc8aaae0a41a28f4134deeaac9414a6e792c02d42f326aa5e601b87d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2511972883
PQPubID 2046407
PageCount 9
ParticipantIDs proquest_journals_2511972883
crossref_citationtrail_10_3233_JIFS_189478
crossref_primary_10_3233_JIFS_189478
sage_journals_10_3233_JIFS_189478
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2021
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References 2017; 5
2019; 8
2020; 115
2018; 6
2016; 6
2015; 27
2016; 18
2009; 1
10.3233/JIFS-189478_ref9
10.3233/JIFS-189478_ref2
Ajitha (10.3233/JIFS-189478_ref14) 2016; 6
10.3233/JIFS-189478_ref1
Kaur (10.3233/JIFS-189478_ref12) 2009; 1
10.3233/JIFS-189478_ref6
Sivasangari (10.3233/JIFS-189478_ref13) 2019; 8
10.3233/JIFS-189478_ref5
10.3233/JIFS-189478_ref4
10.3233/JIFS-189478_ref3
Kandasamy (10.3233/JIFS-189478_ref17) 2020; 115
References_xml – volume: 6
  year: 2018
  article-title: Deep Convolution Neural Networks For Twitter Sentiment Analysis
  publication-title: Preceding In Ieee
– volume: 1
  start-page: 7
  issue: 1
  year: 2009
  end-page: 13
  article-title: An Analysis Of Opinion Mining Research Works Based On Language, Writing Style And Feature Selection Parameters
  publication-title: International Journal Of Advanced Networking Applications (Ijana)
– volume: 6
  start-page: 769
  issue: 3
  year: 2016
  end-page: 773
  article-title: Semantic Based Fuzzy Inference System(SBFIS) Prediction of Patient Emotion and Prescription using support vector machine”
  publication-title: the Journal of Medical Imaging and Health Informatics
– volume: 6
  year: 2018
  article-title: Multistrategy Sentiment Analysis Of Consumer Reviews Based On Semantic Fuzziness
  publication-title: Preceding In IEEE
– volume: 5
  year: 2017
  article-title: Approaches To Cross-Domain Sentiment Analysis: A Systematic Literature Review
  publication-title: Preceding In Ieee
– volume: 5
  year: 2017
  article-title: Comparison Research On Text Pre-Processing Methods On Twitter Sentiment Analysis
– volume: 5
  year: 2017
  article-title: A Pattern-Based Approach For Multi-Class Sentiment Analysis In Twitter
  publication-title: Preceding In Ieee
– volume: 8
  start-page: 1370
  issue: 2S
  year: 2019
  end-page: 1372
  article-title: Air Pollution Monitoring and Prediction using Multi view Hybrid Model
  publication-title: International Journal of Engineering and Advanced Technology(IJEAT)
– volume: 27
  issue: 8
  year: 2015
  article-title: Dual Sentiment Analysis: Considering Two Sides Of One Review
  publication-title: Preceding In Ieee Transactions On Knowledge And Data Engineering
– volume: 18
  issue: 9
  year: 2016
  article-title: Rating Prediction Based On Social Sentiment From Textual Reviews
  publication-title: Preceding In Ieee
– volume: 115
  start-page: 103180
  year: 2020
  article-title: Sentiment analysis of tweets using refined neutrosophic sets
  publication-title: Computers in Industry
– ident: 10.3233/JIFS-189478_ref3
  doi: 10.1109/ACCESS.2017.2672677
– ident: 10.3233/JIFS-189478_ref9
  doi: 10.1109/TKDE.2015.2407371
– volume: 6
  start-page: 769
  issue: 3
  year: 2016
  ident: 10.3233/JIFS-189478_ref14
  article-title: Semantic Based Fuzzy Inference System(SBFIS) Prediction of Patient Emotion and Prescription using support vector machine”
  publication-title: the Journal of Medical Imaging and Health Informatics
  doi: 10.1166/jmihi.2016.1756
– ident: 10.3233/JIFS-189478_ref4
  doi: 10.1109/ACCESS.2017.2740982
– ident: 10.3233/JIFS-189478_ref5
  doi: 10.1109/ACCESS.2017.2690342
– ident: 10.3233/JIFS-189478_ref6
  doi: 10.1109/TMM.2016.2575738
– volume: 115
  start-page: 103180
  year: 2020
  ident: 10.3233/JIFS-189478_ref17
  article-title: Sentiment analysis of tweets using refined neutrosophic sets
  publication-title: Computers in Industry
  doi: 10.1016/j.compind.2019.103180
– ident: 10.3233/JIFS-189478_ref2
  doi: 10.1109/ACCESS.2017.2776930
– ident: 10.3233/JIFS-189478_ref1
  doi: 10.1109/ACCESS.2018.2820025
– volume: 1
  start-page: 7
  issue: 1
  year: 2009
  ident: 10.3233/JIFS-189478_ref12
  article-title: An Analysis Of Opinion Mining Research Works Based On Language, Writing Style And Feature Selection Parameters
  publication-title: International Journal Of Advanced Networking Applications (Ijana)
– volume: 8
  start-page: 1370
  issue: 2S
  year: 2019
  ident: 10.3233/JIFS-189478_ref13
  article-title: Air Pollution Monitoring and Prediction using Multi view Hybrid Model
  publication-title: International Journal of Engineering and Advanced Technology(IJEAT)
SSID ssj0017520
Score 2.2550743
Snippet Text Sentiment Analysis is a system where text feeling polarity is positive or negative or neutral from a series of texts or documents or public opinions on a...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6375
SubjectTerms Algorithms
Customer satisfaction
Customer services
Data mining
Feature extraction
Machine learning
Natural language processing
Sentiment analysis
Title Design of text sentiment analysis tool using feature extraction based on fusing machine learning algorithms
URI https://journals.sagepub.com/doi/full/10.3233/JIFS-189478
https://www.proquest.com/docview/2511972883
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: AMVHM
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE9RGMhI2wtVIHHcNHms2Kpu2gaiLdpbdEnsrtuaji5Bon8TfyTn2PnoqBDwEkWO5Si-X85n393vCNlzgn6QxLawYlSRFg9YZPlJ4lle4EvgLuCKUbB9nnmjKT8-7523Wj8bUUt5Fr2P11vzSv5HqtiGclVZsv8g2WpQbMB7lC9eUcJ4_SsZHxThF4WbH3VsV-URzU3QuKEayRTFZl6cB0hRcHh2sefKFAhXS1ii3AVSd1kUkZWiLCUx68L1bLmaZxeG0vx3I3ZeMXpmBYhkvl7_MPTQlbU-uMQhYCOZbDz_DreQzkAnulcw-gKXV1XQd_dosYA0F1UQyOflMp3l6wvQOd3j5pEFc-4cWTSjkXS4Xx3BpHQwWkkWmh2GIVu34bbK8gNduaNU3JrnyQCUN7Sw5-pqLHeXB5ep4-vh8dFwbDl-wHXxoE0S7rNP4XB6chJODs8n--7w5pulKpQpT_6-e6AhdI_sMFxD7DbZGZx-HZ1WXqt-j2n2C_MBOh9UvfVD452bFlC9rWlEEhbGzeQReWgESgcaYo9JS6RPyIMGV-VTcqXBRpeSKrDRCmy0BBtVYKMFkqgBG63BRguwUbzRYKMGbLQEG63B9oxMh4eTjyPLVOqwYhbwzJJuzxORm8jYBwBhA3eA-RINJJ4IARAH3OHgiX7AYpslnEncNQD0hGc7kd9P3OeknS5T8YJQlDRLIsfzezFwcAX0fU9yNJttO7GljDvkXTl7YWxo7FU1lesQt7NqqkM11aGe6g7ZqzrfaPaW7d12SzGE5ve-DVnhYVfFuDvkrRJN_WjLEC__PMQrcr_-EXZJO1vl4jVas1n0xoDoFw8cpvM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+of+text+sentiment+analysis+tool+using+feature+extraction+based+on+fusing+machine+learning+algorithms&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Ajitha%2C+P&rft.au=Sivasangari%2C+A&rft.au=Rajkumar%2C+R+Immanuel&rft.au=Poonguzhali%2C+S&rft.date=2021-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=40&rft.issue=4&rft.spage=6375&rft_id=info:doi/10.3233%2FJIFS-189478&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon