Decoding Artificial Intelligence: A Tutorial on Neural Networks in Behavioral Research

- Simplifying Complex Concepts: This tutorial helps to demystify ANNs by breaking down the backpropagation algorithm into manageable steps. Readers will gain hands-on experience in Python, empowering them to confidently replicate analyses for regression and classification tasks without feeling overw...

Full description

Saved in:
Bibliographic Details
Published inClínica y salud Vol. 36; no. 2; pp. 77 - 95
Main Authors Martínez-García, Javier, Montaño, Juan José, Jiménez, Rafael, Gervilla, Elena, Cajal, Berta, Núñez, Antonio, Leguizamo, Federico, Sesé, Albert
Format Journal Article
LanguageEnglish
Published Colegio Oficial de Psicólogos de Madrid 01.07.2025
Subjects
Online AccessGet full text
ISSN1130-5274
2174-0550
2174-0550
DOI10.5093/clh2025a13

Cover

Abstract - Simplifying Complex Concepts: This tutorial helps to demystify ANNs by breaking down the backpropagation algorithm into manageable steps. Readers will gain hands-on experience in Python, empowering them to confidently replicate analyses for regression and classification tasks without feeling overwhelmed. - Building Confidence in Application: Designed for behavioral scientists, and even for other disciplines, this tutorial bridges theory and practice, alleviating anxiety around complex models. Learn to interpret results clearly and effectively, fostering a supportive environment for innovative applications of ANNs in research and beyond. Background: Artificial Neural Networks (ANNs), particularly multilayer perceptrons (MLPs) with backpropagation, are increasingly used in Behavioral and Health Sciences for data analysis. This paper provides a comprehensive tutorial on implementing backpropagation in MLP models for regression and classification tasks using Python. Method: The tutorial guides readers step-by-step through building a backpropagation MLP using a simulated data matrix (N = 1,000) with psychological variables, demonstrating ANNs’ versatility in predicting continuous variables and classifying (binary and polytomous) patterns. Python scripts and detailed output interpretations are included. Results: MLP models trained with backpropagation show effectiveness in regression (R² = .71) and classification (binary AUC = .93, polytomous AUC range: .81-.93) on test sets. Conclusions: This tutorial aims to demystify ANNs and promote their use in Behavioral and Health Sciences and other fields, bridging the gap between theory and practical implementation.
AbstractList - Simplifying Complex Concepts: This tutorial helps to demystify ANNs by breaking down the backpropagation algorithm into manageable steps. Readers will gain hands-on experience in Python, empowering them to confidently replicate analyses for regression and classification tasks without feeling overwhelmed. - Building Confidence in Application: Designed for behavioral scientists, and even for other disciplines, this tutorial bridges theory and practice, alleviating anxiety around complex models. Learn to interpret results clearly and effectively, fostering a supportive environment for innovative applications of ANNs in research and beyond. Background: Artificial Neural Networks (ANNs), particularly multilayer perceptrons (MLPs) with backpropagation, are increasingly used in Behavioral and Health Sciences for data analysis. This paper provides a comprehensive tutorial on implementing backpropagation in MLP models for regression and classification tasks using Python. Method: The tutorial guides readers step-by-step through building a backpropagation MLP using a simulated data matrix (N = 1,000) with psychological variables, demonstrating ANNs’ versatility in predicting continuous variables and classifying (binary and polytomous) patterns. Python scripts and detailed output interpretations are included. Results: MLP models trained with backpropagation show effectiveness in regression (R² = .71) and classification (binary AUC = .93, polytomous AUC range: .81-.93) on test sets. Conclusions: This tutorial aims to demystify ANNs and promote their use in Behavioral and Health Sciences and other fields, bridging the gap between theory and practical implementation.
Author Martínez-García, Javier
Jiménez, Rafael
Leguizamo, Federico
Núñez, Antonio
Montaño, Juan José
Cajal, Berta
Sesé, Albert
Gervilla, Elena
Author_xml – sequence: 1
  givenname: Javier
  orcidid: 0009-0007-7861-5274
  surname: Martínez-García
  fullname: Martínez-García, Javier
– sequence: 2
  givenname: Juan José
  orcidid: 0000-0002-1116-1964
  surname: Montaño
  fullname: Montaño, Juan José
– sequence: 3
  givenname: Rafael
  orcidid: 0000-0002-1181-3221
  surname: Jiménez
  fullname: Jiménez, Rafael
– sequence: 4
  givenname: Elena
  orcidid: 0000-0003-3194-5499
  surname: Gervilla
  fullname: Gervilla, Elena
– sequence: 5
  givenname: Berta
  orcidid: 0000-0001-6103-0156
  surname: Cajal
  fullname: Cajal, Berta
– sequence: 6
  givenname: Antonio
  orcidid: 0000-0002-6643-5408
  surname: Núñez
  fullname: Núñez, Antonio
– sequence: 7
  givenname: Federico
  orcidid: 0000-0003-1603-0629
  surname: Leguizamo
  fullname: Leguizamo, Federico
– sequence: 8
  givenname: Albert
  orcidid: 0000-0003-3771-1749
  surname: Sesé
  fullname: Sesé, Albert
BookMark eNp9kEtPwzAQhC0EEqX0wi_IGRRYv-KaW3lXqoqECtfIdtetIcTISan670kpghunXc2OPu3MEdmvY42EnFA4l6D5hauWDJg0lO-RHqNK5CAl7JMepRxyyZQ4JIOmCRZYoRVwWvTIyw26OA_1IhulNvjggqmycd1iVYUF1g4vs1E2W7UxbQ-xzqa4St02xXYd01uThTq7wqX5DHErP2GDJrnlMTnwpmpw8DP75Pnudnb9kE8e78fXo0numBZtjpYpzg0I0EpppYeCeVNI3f2qGBaeSSpVQbUXGhSgtxQtDJny2nILBnmfjHfceTSv5UcK7yZtymhC-S3EtChNl8tVWIKaKyO0YiBRKO6GlnNLKTJGufBCdqyzHWtVf5jN2lTVL5BCuW24_Gu4c5_u3C7Fpkno_zN_AR6JfCY
Cites_doi 10.1037/met0000560
10.1177/0734282920951727
10.1007/s12559-020-09806-5
10.1371/journal.pone.0249423
10.1080/23273798.2023.2198245
10.1371/journal.pone.0274698
10.1162/neco_a_01349
10.3389/fpsyg.2021.705715
10.1016/j.tourman.2023.104855
10.3390/ai1020008
10.1038/s41562-022-01394-8
10.1111/1460-6984.12731
10.1162/neco.1997.9.8.1735
10.1109/TAFFC.2022.3221683
10.1155/2021/6591035
10.1016/j.tourman.2021.104487
10.7551/mitpress/5236.001.0001
10.1037/met0000513
10.1016/0893-6080(89)90020-8
10.1162/neco.2006.18.7.1527
10.1016/j.beth.2019.01.002
10.3389/fpsyg.2021.759485
10.1016/j.infbeh.2023.101827
10.1371/journal.pone.0229354
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.5093/clh2025a13
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 2174-0550
EndPage 95
ExternalDocumentID oai_doaj_org_article_07d7a497205e473c8b33b11e22134f45
10.5093/clh2025a13
10_5093_clh2025a13
GroupedDBID 0R~
4.4
457
53G
635
8FI
8FJ
AAEDT
AAFWJ
AAIKJ
AAYXX
ABDBF
ABIVO
ABUWG
ABXHO
ACUHS
ADBBV
ADEZE
AFKRA
AFPKN
AGHFR
AKRWK
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
AZQEC
B14
BAWUL
BCNDV
BENPR
CCPQU
CITATION
DIK
DWQXO
EFA
ESX
FAEIB
FDB
FYUFA
GNUQQ
GROUPED_DOAJ
HEY
IXB
KQ8
M2M
MK0
O9-
OK1
PHGZM
PHGZT
PIMPY
PSYQQ
PUEGO
RNS
RSK
SCD
TUS
UKHRP
~8M
~OR
AAEDW
AALRI
AAXUO
AAYWO
ABMAC
ACVFH
ADCNI
ADTOC
ADVLN
AEUPX
AEXQZ
AFPUW
AIGII
AITUG
AKBMS
AKYEP
AMRAJ
EBS
EJD
HZ~
IPNFZ
RDY
RIG
SSZ
UNPAY
ID FETCH-LOGICAL-c294t-eb2733a040977979842fa65952772e6f25157619f49070efb1eb0827f9b3b0ae3
IEDL.DBID UNPAY
ISSN 1130-5274
2174-0550
IngestDate Tue Oct 14 19:07:13 EDT 2025
Tue Aug 19 23:20:29 EDT 2025
Wed Oct 01 05:53:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-eb2733a040977979842fa65952772e6f25157619f49070efb1eb0827f9b3b0ae3
ORCID 0000-0003-1603-0629
0009-0007-7861-5274
0000-0001-6103-0156
0000-0002-1181-3221
0000-0003-3194-5499
0000-0002-6643-5408
0000-0002-1116-1964
0000-0003-3771-1749
OpenAccessLink https://proxy.k.utb.cz/login?url=https://journals.copmadrid.org/clysa/archivos/1130-5274-clh-clh2025a13.pdf
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_07d7a497205e473c8b33b11e22134f45
unpaywall_primary_10_5093_clh2025a13
crossref_primary_10_5093_clh2025a13
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationTitle Clínica y salud
PublicationYear 2025
Publisher Colegio Oficial de Psicólogos de Madrid
Publisher_xml – name: Colegio Oficial de Psicólogos de Madrid
References Hassani (key20250703095914477_B05) 2020; 1
LeCun (key20250703095914477_B14) 1998
Wei (key20250703095914477_B27) 2021; 1
Barnes (key20250703095914477_B02) 2022; 90
Roads (key20250703095914477_B20) 2021; 33
Kolmogorov (key20250703095914477_B13) 1957; 114
Hochreiter (key20250703095914477_B09) 1997; 9
Song (key20250703095914477_B23) 2021; 12
Rumelhart (key20250703095914477_B21) 1986
Arana (key20250703095914477_B01) 2024; 39
Ramírez (key20250703095914477_B19) 2021; 11
Li (key20250703095914477_B15) 2024; 101
Piloto (key20250703095914477_B17) 2022; 6
Henninger (key20250703095914477_B06) 2023
Faltyn (key20250703095914477_B03) 2023; 71
Ho (key20250703095914477_B08) 2021; 16
Hornik (key20250703095914477_B11) 1989; 2
Jabłoska (key20250703095914477_B12) 2020; 15
Qamar (key20250703095914477_B18) 2021; 13
Hinton (key20250703095914477_B07) 2006; 18
Wang (key20250703095914477_B25) 2021; 39
Goodfellow (key20250703095914477_B04) 2014
Wawer (key20250703095914477_B26) 2022; 57
Hollon (key20250703095914477_B10) 2019; 50
Vezzoli (key20250703095914477_B24) 2023; 28
McKee (key20250703095914477_B16) 2022; 17
Schoene (key20250703095914477_B22) 2023; 14
References_xml – year: 2023
  ident: key20250703095914477_B06
  article-title: Interpretable machine learning for psychological research: Opportunities and pitfalls
  publication-title: Psychological Methods
  doi: 10.1037/met0000560
– volume: 39
  start-page: 227
  issue: 2
  year: 2021
  ident: key20250703095914477_B25
  article-title: Utilizing deep learning and oversampling methods to identify children’s emotional and behavioral risk
  publication-title: Journal of Psychoeducational Assessment
  doi: 10.1177/0734282920951727
– volume: 13
  start-page: 673
  issue: 3
  year: 2021
  ident: key20250703095914477_B18
  article-title: Relationship identification between conversational agents using emotion analysis
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-020-09806-5
– volume: 16
  issue: 4
  year: 2021
  ident: key20250703095914477_B08
  article-title: Predicting student satisfaction of emergency remote learning in higher education during COVID-19 using machine learning techniques
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0249423
– volume: 39
  start-page: 972
  issue: 8
  year: 2024
  ident: key20250703095914477_B01
  article-title: Deep learning models to study sentence comprehension in the human brain
  publication-title: Language, Cognition and Neuroscience
  doi: 10.1080/23273798.2023.2198245
– volume: 17
  start-page: e0274698
  issue: 10
  year: 2022
  ident: key20250703095914477_B16
  article-title: College student Fear of Missing Out (FoMO) and maladaptive behavior: Traditional statistical modeling and predictive analysis using machine learning
  publication-title: PLOS One
  doi: 10.1371/journal.pone.0274698
– volume: 33
  start-page: 376
  issue: 2
  year: 2021
  ident: key20250703095914477_B20
  article-title: Predicting the ease of human category learning using radial basis functions networks
  publication-title: Neural Computation
  doi: 10.1162/neco_a_01349
– volume: 11
  start-page: 705715
  issue: 12
  year: 2021
  ident: key20250703095914477_B19
  article-title: Segmentation of older adults in the acceptance of social networking sites using machine learning
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2021.705715
– volume: 101
  year: 2024
  ident: key20250703095914477_B15
  article-title: Impacts of user-generated images in online reviews on customer engagement: A panel data analysis
  publication-title: Tourism Management
  doi: 10.1016/j.tourman.2023.104855
– volume: 1
  start-page: 143
  issue: 2
  year: 2020
  ident: key20250703095914477_B05
  article-title: Artificial Intelligence (AI) or Intelligence Augmentation (IA): What Is the future?
  publication-title: AI
  doi: 10.3390/ai1020008
– volume: 6
  start-page: 1257
  issue: 9
  year: 2022
  ident: key20250703095914477_B17
  article-title: Intuitive physics learning in a deep-learning model inspired by developmental psychology
  publication-title: Nature Human Behaviour
  doi: 10.1038/s41562-022-01394-8
– volume: 57
  start-page: 948
  issue: 5
  year: 2022
  ident: key20250703095914477_B26
  article-title: Detecting autism from picture book narratives using deep neural utterance embeddings
  publication-title: International Journal of Language & Communication Disorders
  doi: 10.1111/1460-6984.12731
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: key20250703095914477_B09
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 14
  start-page: 1791
  issue: 3
  year: 2023
  ident: key20250703095914477_B22
  article-title: Classifying suicide-related content and emotions on twitter using graph convolutional neural networks
  publication-title: IEEE Transactions on Affective Computing
  doi: 10.1109/TAFFC.2022.3221683
– volume: 1
  year: 2021
  ident: key20250703095914477_B27
  article-title: A hierarchical view pooling network for multichannel surface electromyography-based gesture recognition
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2021/6591035
– volume: 90
  year: 2022
  ident: key20250703095914477_B02
  article-title: In living color? Understanding the importance of color complexity in listing images for accommodation sharing
  publication-title: Tourism Management
  doi: 10.1016/j.tourman.2021.104487
– start-page: 318
  volume-title: Parallel distributed processing
  year: 1986
  ident: key20250703095914477_B21
  doi: 10.7551/mitpress/5236.001.0001
– volume: 28
  start-page: 580
  issue: 3
  year: 2023
  ident: key20250703095914477_B24
  article-title: An introductory guide for conducting psychological research with big data
  publication-title: Psychological Methods
  doi: 10.1037/met0000513
– start-page: 2672
  volume-title: Generative adversarial nets
  year: 2014
  ident: key20250703095914477_B04
– start-page: 2278
  volume-title: Proceedings of the IEEE
  year: 1998
  ident: key20250703095914477_B14
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: key20250703095914477_B11
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(89)90020-8
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: key20250703095914477_B07
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computing
  doi: 10.1162/neco.2006.18.7.1527
– volume: 50
  start-page: 257
  issue: 2
  year: 2019
  ident: key20250703095914477_B10
  article-title: Recent developments in the treatment of depression
  publication-title: Behavioral Therapy
  doi: 10.1016/j.beth.2019.01.002
– volume: 114
  start-page: 953
  year: 1957
  ident: key20250703095914477_B13
  article-title: On the representation of continuous functions of several variables by means of superpositions of continuous functions of one variable
  publication-title: Doklady Akademii Nauk SSSR
– volume: 12
  year: 2021
  ident: key20250703095914477_B23
  article-title: Facial expression emotion recognition model integrating philosophy and machine learning theory
  publication-title: Frontiers in Psychology
  doi: 10.3389/fpsyg.2021.759485
– volume: 71
  year: 2023
  ident: key20250703095914477_B03
  article-title: Coding infant engagement in the face-to-face still-face paradigm using deep neural networks
  publication-title: Infant Behavior and Development
  doi: 10.1016/j.infbeh.2023.101827
– volume: 15
  start-page: 0229354
  issue: 2
  year: 2020
  ident: key20250703095914477_B12
  article-title: Artificial neural networks for predicting social comparison effects among female Instagram users
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0229354
SSID ssib026970316
ssj0061017
Score 2.307721
Snippet - Simplifying Complex Concepts: This tutorial helps to demystify ANNs by breaking down the backpropagation algorithm into manageable steps. Readers will gain...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Index Database
StartPage 77
SubjectTerms artificial intelligence
artificial neural networks
backpropagation algorithm
behavioral and health sciences
multilayer perceptron
python
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDeFEPoqg4fxFw17I0SZvG26aOKbjTJruVpE1QGN3QDfG_971mm_WiF28lDU15L_S9b3n5PELa4FMRx76InE_KSEKGHVmlXMSs0tYUTnKGZ4efhulgLB8nyaTR6gtrwgIeOBiuw1SpjNSKs8RJJYrMCmHj2HFEkXlZ00tZphtiCnYSTzVy2dP1NznFjVe3WREMpJeSAVQKwVJ0iukLh8BvYvEjNNUE_z2ys6zm5vPDTKeNsNM_IPurfJF2w3seki1XHZHnOxCNGHTq8cCAoA8NuOYN7dIR0gnwxqyiiOCAq2Go-X6nrxXtbc7n03X13TEZ9-9Ht4No1SAhKriWiwhUsRLCMGRWKa10Jrk3CAjkkDO71EPukuBvCi9BAjPnbewshHzltRWWGSdOyHY1q9wpoSLNPGfOCedT6UB1SGWSsiwLLhIjTNIi12vb5PPAwchBP6AF828LtkgPzbaZgezqegA8mq88mv_l0RZpb4z-y1pn_7HWOdnFx4X62wuyvXhbukvIMhb2qt5QX3NFyb8
  priority: 102
  providerName: Directory of Open Access Journals
Title Decoding Artificial Intelligence: A Tutorial on Neural Networks in Behavioral Research
URI https://journals.copmadrid.org/clysa/archivos/1130-5274-clh-clh2025a13.pdf
https://doaj.org/article/07d7a497205e473c8b33b11e22134f45
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2174-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061017
  issn: 1130-5274
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2174-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061017
  issn: 1130-5274
  databaseCode: KQ8
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2174-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061017
  issn: 1130-5274
  databaseCode: DOA
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 2174-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061017
  issn: 1130-5274
  databaseCode: IXB
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 2174-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061017
  issn: 1130-5274
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 2174-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061017
  issn: 1130-5274
  databaseCode: AKRWK
  dateStart: 20130301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2174-0550
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0061017
  issn: 1130-5274
  databaseCode: BENPR
  dateStart: 20220101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLZYe2AcGBObxk9ZWq9undiOG24tDBWkVTu0qJwiO7G1iSytaMvE_nreS9LS7YA4cEgUOVac-Dl53-c8f4-QFthUBIFPmfMqYxIQNrNaO8atjq1JnQw5rh3-PowGY3k9UZM6_gnXwtQ9iP09-20ww3j5Oz_NH-emU86tP0znnQC-vEChtGRp_hM3oPDKBEALM_-ONCMFuLxBmuPhj95tmV2lro6Z5gCCMw64vNIqBX8pOs8X-Mc7lSL-O2R7WczM4x-T5xue5_IDuVvdcxVwctdeLmw7_fufnOPbPNQe2a0BKu1VI-oj2XLFPrm5AJaKXq4sr0Qn6NWGmucZ7dERyiHgiWlBUfMDjoZVkPmc_ipofy0IQFfhfp_I-PLb6HzA6owMLA1juWBAw7UQhqNIlo513JWhN6hIGAJId5EHsKRwXsRL4NzceRs4CxhD-9gKy40Tn0mjmBbuC6Ei6vqQOyecj6QDmiO1UVmWpaFQRhh1QL6uLJHMKuGNBAgL2it57psD0kcjrWugWHZZAP2b1O9ewnWmjYx1yJWTWqRdK4QNAheimp2X0FRrbeIX2jp8XbUj8h6PqpDeY9JY3C_dCQCXhT0tCT_sryb903p0PgEh0O0u
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagDMDAQ4B4yxKspk5sxw1beQmQqBgogimyE1uglrSiLQh-PXdJWh4DYmCIZDlWnNw58fc55-8I2QefiiDwKXNeZUwCwmZWa8e41bE1qZMhx73DV63ovC0v79RdFf-Ee2EqC6K9-08GM4wXv_PT7tvA1Iu19ZfeoB7AlxcolJYs7T7gARRemQBoYeanyUykAJfXyEy7dd28L7KrVM0x0xxAcMYBl5dapTBfivrnBb7NToWI_zyZHeV98_Zqut0vM8_ZIumM77kMOOkcjIb2IH3_Ief4Pw-1RBYqgEqb5YhaJlMuXyG3J8BScZYr6kvRCXrxRc3zkDbpDcoh4IleTlHzA0qtMsh8QB9zejQRBKDjcL9V0j47vTk-Z1VGBpaGsRwyoOFaCMNRJEvHOm7I0BtUJAwBpLvIA1hSuC7iJXBu7rwNnAWMoX1sheXGiTVSy3u5WydURA0fcueE85F0QHOkNirLsjQUygijNsje2BNJvxTeSICwoL-ST9tskCN00qQFimUXFWDfpHr3Eq4zbWSsQ66c1CJtWCFsELgQ1ey8hK72Jy7-pa_NvzXbInNYKkN6t0lt-DxyOwBchna3GpEfFHHrNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Artificial+Intelligence%3A+A+Tutorial+on+Neural+Networks+in+Behavioral+Research&rft.jtitle=Cli%CC%81nica+y+salud&rft.au=Javier+Mart%C3%ADnez-Garc%C3%ADa&rft.au=Juan+Jos%C3%A9+Monta%C3%B1o&rft.au=Rafael+Jim%C3%A9nez&rft.au=Elena+Gervilla&rft.date=2025-07-01&rft.pub=Colegio+Oficial+de+Psic%C3%B3logos+de+Madrid&rft.issn=1130-5274&rft.eissn=2174-0550&rft.volume=36&rft.issue=2&rft.spage=77&rft.epage=95&rft_id=info:doi/10.5093%2Fclh2025a13&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07d7a497205e473c8b33b11e22134f45
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1130-5274&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1130-5274&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1130-5274&client=summon