Decoding Artificial Intelligence: A Tutorial on Neural Networks in Behavioral Research
- Simplifying Complex Concepts: This tutorial helps to demystify ANNs by breaking down the backpropagation algorithm into manageable steps. Readers will gain hands-on experience in Python, empowering them to confidently replicate analyses for regression and classification tasks without feeling overw...
        Saved in:
      
    
          | Published in | Clínica y salud Vol. 36; no. 2; pp. 77 - 95 | 
|---|---|
| Main Authors | , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Colegio Oficial de Psicólogos de Madrid
    
        01.07.2025
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1130-5274 2174-0550 2174-0550  | 
| DOI | 10.5093/clh2025a13 | 
Cover
| Abstract | - Simplifying Complex Concepts: This tutorial helps to demystify ANNs by breaking down the backpropagation algorithm into manageable steps. Readers will gain hands-on experience in Python, empowering them to confidently replicate analyses for regression and classification tasks without feeling overwhelmed. - Building Confidence in Application: Designed for behavioral scientists, and even for other disciplines, this tutorial bridges theory and practice, alleviating anxiety around complex models. Learn to interpret results clearly and effectively, fostering a supportive environment for innovative applications of ANNs in research and beyond. Background: Artificial Neural Networks (ANNs), particularly multilayer perceptrons (MLPs) with backpropagation, are increasingly used in Behavioral and Health Sciences for data analysis. This paper provides a comprehensive tutorial on implementing backpropagation in MLP models for regression and classification tasks using Python. Method: The tutorial guides readers step-by-step through building a backpropagation MLP using a simulated data matrix (N = 1,000) with psychological variables, demonstrating ANNs’ versatility in predicting continuous variables and classifying (binary and polytomous) patterns. Python scripts and detailed output interpretations are included. Results: MLP models trained with backpropagation show effectiveness in regression (R² = .71) and classification (binary AUC = .93, polytomous AUC range: .81-.93) on test sets. Conclusions: This tutorial aims to demystify ANNs and promote their use in Behavioral and Health Sciences and other fields, bridging the gap between theory and practical implementation. | 
    
|---|---|
| AbstractList | - Simplifying Complex Concepts: This tutorial helps to demystify ANNs by breaking down the backpropagation algorithm into manageable steps. Readers will gain hands-on experience in Python, empowering them to confidently replicate analyses for regression and classification tasks without feeling overwhelmed. - Building Confidence in Application: Designed for behavioral scientists, and even for other disciplines, this tutorial bridges theory and practice, alleviating anxiety around complex models. Learn to interpret results clearly and effectively, fostering a supportive environment for innovative applications of ANNs in research and beyond. Background: Artificial Neural Networks (ANNs), particularly multilayer perceptrons (MLPs) with backpropagation, are increasingly used in Behavioral and Health Sciences for data analysis. This paper provides a comprehensive tutorial on implementing backpropagation in MLP models for regression and classification tasks using Python. Method: The tutorial guides readers step-by-step through building a backpropagation MLP using a simulated data matrix (N = 1,000) with psychological variables, demonstrating ANNs’ versatility in predicting continuous variables and classifying (binary and polytomous) patterns. Python scripts and detailed output interpretations are included. Results: MLP models trained with backpropagation show effectiveness in regression (R² = .71) and classification (binary AUC = .93, polytomous AUC range: .81-.93) on test sets. Conclusions: This tutorial aims to demystify ANNs and promote their use in Behavioral and Health Sciences and other fields, bridging the gap between theory and practical implementation. | 
    
| Author | Martínez-García, Javier Jiménez, Rafael Leguizamo, Federico Núñez, Antonio Montaño, Juan José Cajal, Berta Sesé, Albert Gervilla, Elena  | 
    
| Author_xml | – sequence: 1 givenname: Javier orcidid: 0009-0007-7861-5274 surname: Martínez-García fullname: Martínez-García, Javier – sequence: 2 givenname: Juan José orcidid: 0000-0002-1116-1964 surname: Montaño fullname: Montaño, Juan José – sequence: 3 givenname: Rafael orcidid: 0000-0002-1181-3221 surname: Jiménez fullname: Jiménez, Rafael – sequence: 4 givenname: Elena orcidid: 0000-0003-3194-5499 surname: Gervilla fullname: Gervilla, Elena – sequence: 5 givenname: Berta orcidid: 0000-0001-6103-0156 surname: Cajal fullname: Cajal, Berta – sequence: 6 givenname: Antonio orcidid: 0000-0002-6643-5408 surname: Núñez fullname: Núñez, Antonio – sequence: 7 givenname: Federico orcidid: 0000-0003-1603-0629 surname: Leguizamo fullname: Leguizamo, Federico – sequence: 8 givenname: Albert orcidid: 0000-0003-3771-1749 surname: Sesé fullname: Sesé, Albert  | 
    
| BookMark | eNp9kEtPwzAQhC0EEqX0wi_IGRRYv-KaW3lXqoqECtfIdtetIcTISan670kpghunXc2OPu3MEdmvY42EnFA4l6D5hauWDJg0lO-RHqNK5CAl7JMepRxyyZQ4JIOmCRZYoRVwWvTIyw26OA_1IhulNvjggqmycd1iVYUF1g4vs1E2W7UxbQ-xzqa4St02xXYd01uThTq7wqX5DHErP2GDJrnlMTnwpmpw8DP75Pnudnb9kE8e78fXo0numBZtjpYpzg0I0EpppYeCeVNI3f2qGBaeSSpVQbUXGhSgtxQtDJny2nILBnmfjHfceTSv5UcK7yZtymhC-S3EtChNl8tVWIKaKyO0YiBRKO6GlnNLKTJGufBCdqyzHWtVf5jN2lTVL5BCuW24_Gu4c5_u3C7Fpkno_zN_AR6JfCY | 
    
| Cites_doi | 10.1037/met0000560 10.1177/0734282920951727 10.1007/s12559-020-09806-5 10.1371/journal.pone.0249423 10.1080/23273798.2023.2198245 10.1371/journal.pone.0274698 10.1162/neco_a_01349 10.3389/fpsyg.2021.705715 10.1016/j.tourman.2023.104855 10.3390/ai1020008 10.1038/s41562-022-01394-8 10.1111/1460-6984.12731 10.1162/neco.1997.9.8.1735 10.1109/TAFFC.2022.3221683 10.1155/2021/6591035 10.1016/j.tourman.2021.104487 10.7551/mitpress/5236.001.0001 10.1037/met0000513 10.1016/0893-6080(89)90020-8 10.1162/neco.2006.18.7.1527 10.1016/j.beth.2019.01.002 10.3389/fpsyg.2021.759485 10.1016/j.infbeh.2023.101827 10.1371/journal.pone.0229354  | 
    
| ContentType | Journal Article | 
    
| DBID | AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.5093/clh2025a13 | 
    
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2174-0550 | 
    
| EndPage | 95 | 
    
| ExternalDocumentID | oai_doaj_org_article_07d7a497205e473c8b33b11e22134f45 10.5093/clh2025a13 10_5093_clh2025a13  | 
    
| GroupedDBID | 0R~ 4.4 457 53G 635 8FI 8FJ AAEDT AAFWJ AAIKJ AAYXX ABDBF ABIVO ABUWG ABXHO ACUHS ADBBV ADEZE AFKRA AFPKN AGHFR AKRWK ALMA_UNASSIGNED_HOLDINGS APOWU AZFZN AZQEC B14 BAWUL BCNDV BENPR CCPQU CITATION DIK DWQXO EFA ESX FAEIB FDB FYUFA GNUQQ GROUPED_DOAJ HEY IXB KQ8 M2M MK0 O9- OK1 PHGZM PHGZT PIMPY PSYQQ PUEGO RNS RSK SCD TUS UKHRP ~8M ~OR AAEDW AALRI AAXUO AAYWO ABMAC ACVFH ADCNI ADTOC ADVLN AEUPX AEXQZ AFPUW AIGII AITUG AKBMS AKYEP AMRAJ EBS EJD HZ~ IPNFZ RDY RIG SSZ UNPAY  | 
    
| ID | FETCH-LOGICAL-c294t-eb2733a040977979842fa65952772e6f25157619f49070efb1eb0827f9b3b0ae3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1130-5274 2174-0550  | 
    
| IngestDate | Tue Oct 14 19:07:13 EDT 2025 Tue Aug 19 23:20:29 EDT 2025 Wed Oct 01 05:53:16 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Language | English | 
    
| License | cc-by-nc-nd | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-eb2733a040977979842fa65952772e6f25157619f49070efb1eb0827f9b3b0ae3 | 
    
| ORCID | 0000-0003-1603-0629 0009-0007-7861-5274 0000-0001-6103-0156 0000-0002-1181-3221 0000-0003-3194-5499 0000-0002-6643-5408 0000-0002-1116-1964 0000-0003-3771-1749  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://journals.copmadrid.org/clysa/archivos/1130-5274-clh-clh2025a13.pdf | 
    
| PageCount | 19 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_07d7a497205e473c8b33b11e22134f45 unpaywall_primary_10_5093_clh2025a13 crossref_primary_10_5093_clh2025a13  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-07-01 | 
    
| PublicationDateYYYYMMDD | 2025-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Clínica y salud | 
    
| PublicationYear | 2025 | 
    
| Publisher | Colegio Oficial de Psicólogos de Madrid | 
    
| Publisher_xml | – name: Colegio Oficial de Psicólogos de Madrid | 
    
| References | Hassani (key20250703095914477_B05) 2020; 1 LeCun (key20250703095914477_B14) 1998 Wei (key20250703095914477_B27) 2021; 1 Barnes (key20250703095914477_B02) 2022; 90 Roads (key20250703095914477_B20) 2021; 33 Kolmogorov (key20250703095914477_B13) 1957; 114 Hochreiter (key20250703095914477_B09) 1997; 9 Song (key20250703095914477_B23) 2021; 12 Rumelhart (key20250703095914477_B21) 1986 Arana (key20250703095914477_B01) 2024; 39 Ramírez (key20250703095914477_B19) 2021; 11 Li (key20250703095914477_B15) 2024; 101 Piloto (key20250703095914477_B17) 2022; 6 Henninger (key20250703095914477_B06) 2023 Faltyn (key20250703095914477_B03) 2023; 71 Ho (key20250703095914477_B08) 2021; 16 Hornik (key20250703095914477_B11) 1989; 2 Jabłoska (key20250703095914477_B12) 2020; 15 Qamar (key20250703095914477_B18) 2021; 13 Hinton (key20250703095914477_B07) 2006; 18 Wang (key20250703095914477_B25) 2021; 39 Goodfellow (key20250703095914477_B04) 2014 Wawer (key20250703095914477_B26) 2022; 57 Hollon (key20250703095914477_B10) 2019; 50 Vezzoli (key20250703095914477_B24) 2023; 28 McKee (key20250703095914477_B16) 2022; 17 Schoene (key20250703095914477_B22) 2023; 14  | 
    
| References_xml | – year: 2023 ident: key20250703095914477_B06 article-title: Interpretable machine learning for psychological research: Opportunities and pitfalls publication-title: Psychological Methods doi: 10.1037/met0000560 – volume: 39 start-page: 227 issue: 2 year: 2021 ident: key20250703095914477_B25 article-title: Utilizing deep learning and oversampling methods to identify children’s emotional and behavioral risk publication-title: Journal of Psychoeducational Assessment doi: 10.1177/0734282920951727 – volume: 13 start-page: 673 issue: 3 year: 2021 ident: key20250703095914477_B18 article-title: Relationship identification between conversational agents using emotion analysis publication-title: Cognitive Computation doi: 10.1007/s12559-020-09806-5 – volume: 16 issue: 4 year: 2021 ident: key20250703095914477_B08 article-title: Predicting student satisfaction of emergency remote learning in higher education during COVID-19 using machine learning techniques publication-title: PLOS One doi: 10.1371/journal.pone.0249423 – volume: 39 start-page: 972 issue: 8 year: 2024 ident: key20250703095914477_B01 article-title: Deep learning models to study sentence comprehension in the human brain publication-title: Language, Cognition and Neuroscience doi: 10.1080/23273798.2023.2198245 – volume: 17 start-page: e0274698 issue: 10 year: 2022 ident: key20250703095914477_B16 article-title: College student Fear of Missing Out (FoMO) and maladaptive behavior: Traditional statistical modeling and predictive analysis using machine learning publication-title: PLOS One doi: 10.1371/journal.pone.0274698 – volume: 33 start-page: 376 issue: 2 year: 2021 ident: key20250703095914477_B20 article-title: Predicting the ease of human category learning using radial basis functions networks publication-title: Neural Computation doi: 10.1162/neco_a_01349 – volume: 11 start-page: 705715 issue: 12 year: 2021 ident: key20250703095914477_B19 article-title: Segmentation of older adults in the acceptance of social networking sites using machine learning publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2021.705715 – volume: 101 year: 2024 ident: key20250703095914477_B15 article-title: Impacts of user-generated images in online reviews on customer engagement: A panel data analysis publication-title: Tourism Management doi: 10.1016/j.tourman.2023.104855 – volume: 1 start-page: 143 issue: 2 year: 2020 ident: key20250703095914477_B05 article-title: Artificial Intelligence (AI) or Intelligence Augmentation (IA): What Is the future? publication-title: AI doi: 10.3390/ai1020008 – volume: 6 start-page: 1257 issue: 9 year: 2022 ident: key20250703095914477_B17 article-title: Intuitive physics learning in a deep-learning model inspired by developmental psychology publication-title: Nature Human Behaviour doi: 10.1038/s41562-022-01394-8 – volume: 57 start-page: 948 issue: 5 year: 2022 ident: key20250703095914477_B26 article-title: Detecting autism from picture book narratives using deep neural utterance embeddings publication-title: International Journal of Language & Communication Disorders doi: 10.1111/1460-6984.12731 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: key20250703095914477_B09 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 14 start-page: 1791 issue: 3 year: 2023 ident: key20250703095914477_B22 article-title: Classifying suicide-related content and emotions on twitter using graph convolutional neural networks publication-title: IEEE Transactions on Affective Computing doi: 10.1109/TAFFC.2022.3221683 – volume: 1 year: 2021 ident: key20250703095914477_B27 article-title: A hierarchical view pooling network for multichannel surface electromyography-based gesture recognition publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2021/6591035 – volume: 90 year: 2022 ident: key20250703095914477_B02 article-title: In living color? Understanding the importance of color complexity in listing images for accommodation sharing publication-title: Tourism Management doi: 10.1016/j.tourman.2021.104487 – start-page: 318 volume-title: Parallel distributed processing year: 1986 ident: key20250703095914477_B21 doi: 10.7551/mitpress/5236.001.0001 – volume: 28 start-page: 580 issue: 3 year: 2023 ident: key20250703095914477_B24 article-title: An introductory guide for conducting psychological research with big data publication-title: Psychological Methods doi: 10.1037/met0000513 – start-page: 2672 volume-title: Generative adversarial nets year: 2014 ident: key20250703095914477_B04 – start-page: 2278 volume-title: Proceedings of the IEEE year: 1998 ident: key20250703095914477_B14 – volume: 2 start-page: 359 issue: 5 year: 1989 ident: key20250703095914477_B11 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: key20250703095914477_B07 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Computing doi: 10.1162/neco.2006.18.7.1527 – volume: 50 start-page: 257 issue: 2 year: 2019 ident: key20250703095914477_B10 article-title: Recent developments in the treatment of depression publication-title: Behavioral Therapy doi: 10.1016/j.beth.2019.01.002 – volume: 114 start-page: 953 year: 1957 ident: key20250703095914477_B13 article-title: On the representation of continuous functions of several variables by means of superpositions of continuous functions of one variable publication-title: Doklady Akademii Nauk SSSR – volume: 12 year: 2021 ident: key20250703095914477_B23 article-title: Facial expression emotion recognition model integrating philosophy and machine learning theory publication-title: Frontiers in Psychology doi: 10.3389/fpsyg.2021.759485 – volume: 71 year: 2023 ident: key20250703095914477_B03 article-title: Coding infant engagement in the face-to-face still-face paradigm using deep neural networks publication-title: Infant Behavior and Development doi: 10.1016/j.infbeh.2023.101827 – volume: 15 start-page: 0229354 issue: 2 year: 2020 ident: key20250703095914477_B12 article-title: Artificial neural networks for predicting social comparison effects among female Instagram users publication-title: PLoS ONE doi: 10.1371/journal.pone.0229354  | 
    
| SSID | ssib026970316 ssj0061017  | 
    
| Score | 2.307721 | 
    
| Snippet | - Simplifying Complex Concepts: This tutorial helps to demystify ANNs by breaking down the backpropagation algorithm into manageable steps. Readers will gain... | 
    
| SourceID | doaj unpaywall crossref  | 
    
| SourceType | Open Website Open Access Repository Index Database  | 
    
| StartPage | 77 | 
    
| SubjectTerms | artificial intelligence artificial neural networks backpropagation algorithm behavioral and health sciences multilayer perceptron python  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeDeFEPoqg4fxFw17I0SZvG26aOKbjTJruVpE1QGN3QDfG_971mm_WiF28lDU15L_S9b3n5PELa4FMRx76InE_KSEKGHVmlXMSs0tYUTnKGZ4efhulgLB8nyaTR6gtrwgIeOBiuw1SpjNSKs8RJJYrMCmHj2HFEkXlZ00tZphtiCnYSTzVy2dP1NznFjVe3WREMpJeSAVQKwVJ0iukLh8BvYvEjNNUE_z2ys6zm5vPDTKeNsNM_IPurfJF2w3seki1XHZHnOxCNGHTq8cCAoA8NuOYN7dIR0gnwxqyiiOCAq2Go-X6nrxXtbc7n03X13TEZ9-9Ht4No1SAhKriWiwhUsRLCMGRWKa10Jrk3CAjkkDO71EPukuBvCi9BAjPnbewshHzltRWWGSdOyHY1q9wpoSLNPGfOCedT6UB1SGWSsiwLLhIjTNIi12vb5PPAwchBP6AF828LtkgPzbaZgezqegA8mq88mv_l0RZpb4z-y1pn_7HWOdnFx4X62wuyvXhbukvIMhb2qt5QX3NFyb8 priority: 102 providerName: Directory of Open Access Journals  | 
    
| Title | Decoding Artificial Intelligence: A Tutorial on Neural Networks in Behavioral Research | 
    
| URI | https://journals.copmadrid.org/clysa/archivos/1130-5274-clh-clh2025a13.pdf https://doaj.org/article/07d7a497205e473c8b33b11e22134f45  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 36 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2174-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061017 issn: 1130-5274 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2174-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061017 issn: 1130-5274 databaseCode: KQ8 dateStart: 20130301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2174-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061017 issn: 1130-5274 databaseCode: DOA dateStart: 19900101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 2174-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061017 issn: 1130-5274 databaseCode: IXB dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2174-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061017 issn: 1130-5274 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 2174-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061017 issn: 1130-5274 databaseCode: AKRWK dateStart: 20130301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2174-0550 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061017 issn: 1130-5274 databaseCode: BENPR dateStart: 20220101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLZYe2AcGBObxk9ZWq9undiOG24tDBWkVTu0qJwiO7G1iSytaMvE_nreS9LS7YA4cEgUOVac-Dl53-c8f4-QFthUBIFPmfMqYxIQNrNaO8atjq1JnQw5rh3-PowGY3k9UZM6_gnXwtQ9iP09-20ww3j5Oz_NH-emU86tP0znnQC-vEChtGRp_hM3oPDKBEALM_-ONCMFuLxBmuPhj95tmV2lro6Z5gCCMw64vNIqBX8pOs8X-Mc7lSL-O2R7WczM4x-T5xue5_IDuVvdcxVwctdeLmw7_fufnOPbPNQe2a0BKu1VI-oj2XLFPrm5AJaKXq4sr0Qn6NWGmucZ7dERyiHgiWlBUfMDjoZVkPmc_ipofy0IQFfhfp_I-PLb6HzA6owMLA1juWBAw7UQhqNIlo513JWhN6hIGAJId5EHsKRwXsRL4NzceRs4CxhD-9gKy40Tn0mjmBbuC6Ei6vqQOyecj6QDmiO1UVmWpaFQRhh1QL6uLJHMKuGNBAgL2it57psD0kcjrWugWHZZAP2b1O9ewnWmjYx1yJWTWqRdK4QNAheimp2X0FRrbeIX2jp8XbUj8h6PqpDeY9JY3C_dCQCXhT0tCT_sryb903p0PgEh0O0u | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELagDMDAQ4B4yxKspk5sxw1beQmQqBgogimyE1uglrSiLQh-PXdJWh4DYmCIZDlWnNw58fc55-8I2QefiiDwKXNeZUwCwmZWa8e41bE1qZMhx73DV63ovC0v79RdFf-Ee2EqC6K9-08GM4wXv_PT7tvA1Iu19ZfeoB7AlxcolJYs7T7gARRemQBoYeanyUykAJfXyEy7dd28L7KrVM0x0xxAcMYBl5dapTBfivrnBb7NToWI_zyZHeV98_Zqut0vM8_ZIumM77kMOOkcjIb2IH3_Ief4Pw-1RBYqgEqb5YhaJlMuXyG3J8BScZYr6kvRCXrxRc3zkDbpDcoh4IleTlHzA0qtMsh8QB9zejQRBKDjcL9V0j47vTk-Z1VGBpaGsRwyoOFaCMNRJEvHOm7I0BtUJAwBpLvIA1hSuC7iJXBu7rwNnAWMoX1sheXGiTVSy3u5WydURA0fcueE85F0QHOkNirLsjQUygijNsje2BNJvxTeSICwoL-ST9tskCN00qQFimUXFWDfpHr3Eq4zbWSsQ66c1CJtWCFsELgQ1ey8hK72Jy7-pa_NvzXbInNYKkN6t0lt-DxyOwBchna3GpEfFHHrNQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Decoding+Artificial+Intelligence%3A+A+Tutorial+on+Neural+Networks+in+Behavioral+Research&rft.jtitle=Cli%CC%81nica+y+salud&rft.au=Javier+Mart%C3%ADnez-Garc%C3%ADa&rft.au=Juan+Jos%C3%A9+Monta%C3%B1o&rft.au=Rafael+Jim%C3%A9nez&rft.au=Elena+Gervilla&rft.date=2025-07-01&rft.pub=Colegio+Oficial+de+Psic%C3%B3logos+de+Madrid&rft.issn=1130-5274&rft.eissn=2174-0550&rft.volume=36&rft.issue=2&rft.spage=77&rft.epage=95&rft_id=info:doi/10.5093%2Fclh2025a13&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_07d7a497205e473c8b33b11e22134f45 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1130-5274&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1130-5274&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1130-5274&client=summon |