Data‐driven adaptive nested robust optimization: General modeling framework and efficient computational algorithm for decision making under uncertainty

A novel data‐driven adaptive robust optimization framework that leverages big data in process industries is proposed. A Bayesian nonparametric model—the Dirichlet process mixture model—is adopted and combined with a variational inference algorithm to extract the information embedded within uncertain...

Full description

Saved in:
Bibliographic Details
Published inAIChE journal Vol. 63; no. 9; pp. 3790 - 3817
Main Authors Ning, Chao, You, Fengqi
Format Journal Article
LanguageEnglish
Published New York American Institute of Chemical Engineers 01.09.2017
Subjects
Online AccessGet full text
ISSN0001-1541
1547-5905
DOI10.1002/aic.15717

Cover

Abstract A novel data‐driven adaptive robust optimization framework that leverages big data in process industries is proposed. A Bayesian nonparametric model—the Dirichlet process mixture model—is adopted and combined with a variational inference algorithm to extract the information embedded within uncertainty data. Further a data‐driven approach for defining uncertainty set is proposed. This machine‐learning model is seamlessly integrated with adaptive robust optimization approach through a novel four‐level optimization framework. This framework explicitly accounts for the correlation, asymmetry and multimode of uncertainty data, so it generates less conservative solutions. Additionally, the proposed framework is robust not only to parameter variations, but also to anomalous measurements. Because the resulting multilevel optimization problem cannot be solved directly by any off‐the‐shelf solvers, an efficient column‐and‐constraint generation algorithm is proposed to address the computational challenge. Two industrial applications on batch process scheduling and on process network planning are presented to demonstrate the advantages of the proposed modeling framework and effectiveness of the solution algorithm. © 2017 American Institute of Chemical Engineers AIChE J , 63: 3790–3817, 2017
AbstractList A novel data‐driven adaptive robust optimization framework that leverages big data in process industries is proposed. A Bayesian nonparametric model—the Dirichlet process mixture model—is adopted and combined with a variational inference algorithm to extract the information embedded within uncertainty data. Further a data‐driven approach for defining uncertainty set is proposed. This machine‐learning model is seamlessly integrated with adaptive robust optimization approach through a novel four‐level optimization framework. This framework explicitly accounts for the correlation, asymmetry and multimode of uncertainty data, so it generates less conservative solutions. Additionally, the proposed framework is robust not only to parameter variations, but also to anomalous measurements. Because the resulting multilevel optimization problem cannot be solved directly by any off‐the‐shelf solvers, an efficient column‐and‐constraint generation algorithm is proposed to address the computational challenge. Two industrial applications on batch process scheduling and on process network planning are presented to demonstrate the advantages of the proposed modeling framework and effectiveness of the solution algorithm. © 2017 American Institute of Chemical Engineers AIChE J, 63: 3790–3817, 2017
Author You, Fengqi
Ning, Chao
Author_xml – sequence: 1
  givenname: Chao
  surname: Ning
  fullname: Ning, Chao
  organization: Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York 14853
– sequence: 2
  givenname: Fengqi
  orcidid: 0000-0001-9609-4299
  surname: You
  fullname: You, Fengqi
  organization: Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York 14853
BookMark eNptkD1OxDAQhS20SOwCBTewREURsJOYOHRo-ZWQaKCOJvYEzCb2YjsgqDgCLdfjJBiWCtGMx-P3njzfjEyss0jIDmf7nLH8AIza56Li1RqZclFWmaiZmJApY4xnacA3yCyEh3TLK5lPyccJRPh8e9fePKGloGEZU0cthoiaeteOIVKXhoN5hWicPaLnaNFDTwensTf2jnYeBnx2fkHBaopdZ5RBG6lyw3KMP64kh_7OeRPvB9o5TzUqE9IDHWDxnTFajT5VhT6CsfFli6x30Afc_j03ye3Z6c38Iru6Pr-cH19lKq_LmKEAKWUr27o81AKKUstOIgedl1Agl_xQtIhl0dbQFZhXXNaiUEVZIktkWFVskt1V7tK7xzGt3Ty40acPh4bXuRBcJlJJdbBSKe9C8Ng1yqw2ix5M33DWfPNvEv_mh39y7P1xLL0ZwL_8o_0CqdSNKA
CitedBy_id crossref_primary_10_1021_acs_iecr_7b02894
crossref_primary_10_1021_acssuschemeng_2c00211
crossref_primary_10_1109_TPWRS_2019_2891057
crossref_primary_10_1016_j_adapen_2023_100124
crossref_primary_10_1016_j_ces_2022_117919
crossref_primary_10_1016_j_fbp_2024_11_021
crossref_primary_10_1016_j_energy_2019_05_096
crossref_primary_10_1016_j_asoc_2019_105873
crossref_primary_10_1016_j_rser_2022_112428
crossref_primary_10_1016_j_jclepro_2019_119195
crossref_primary_10_3390_en17122864
crossref_primary_10_1002_cjce_24501
crossref_primary_10_1016_j_omega_2020_102379
crossref_primary_10_1021_acs_iecr_8b02101
crossref_primary_10_1016_j_eswa_2023_122485
crossref_primary_10_1007_s10898_018_0668_4
crossref_primary_10_1016_j_energy_2019_116253
crossref_primary_10_1002_aic_16458
crossref_primary_10_1016_j_apenergy_2021_118148
crossref_primary_10_1016_j_jprocont_2024_103339
crossref_primary_10_1109_TCST_2019_2916753
crossref_primary_10_1109_TTE_2024_3406144
crossref_primary_10_1016_j_adapen_2021_100019
crossref_primary_10_1016_j_jocs_2024_102210
crossref_primary_10_1016_j_rser_2023_113841
crossref_primary_10_1016_j_adapen_2022_100119
crossref_primary_10_1016_j_cor_2024_106628
crossref_primary_10_1016_j_cor_2022_105930
crossref_primary_10_1016_j_coche_2019_11_002
crossref_primary_10_1021_acs_iecr_0c01038
crossref_primary_10_1002_aic_15792
crossref_primary_10_1016_j_compchemeng_2017_12_015
crossref_primary_10_1016_j_compchemeng_2019_106606
crossref_primary_10_1016_j_ejor_2020_11_027
crossref_primary_10_1016_j_eng_2019_01_019
crossref_primary_10_1002_aic_16488
crossref_primary_10_1016_j_cie_2024_110408
crossref_primary_10_1002_aic_16764
crossref_primary_10_1002_aic_16963
crossref_primary_10_1021_acs_iecr_1c03886
crossref_primary_10_1093_jcde_qwad032
crossref_primary_10_1109_TPWRS_2021_3091879
crossref_primary_10_3390_pr7080507
crossref_primary_10_1016_j_seta_2024_104125
crossref_primary_10_1016_j_compchemeng_2019_03_034
crossref_primary_10_1016_j_cie_2024_110697
crossref_primary_10_1109_ACCESS_2024_3378752
crossref_primary_10_1016_j_eswa_2021_114952
crossref_primary_10_1049_iet_gtd_2019_0316
crossref_primary_10_1109_TCST_2021_3094999
crossref_primary_10_1007_s11590_019_01438_5
crossref_primary_10_1007_s41104_020_00073_y
crossref_primary_10_1016_j_apenergy_2019_114199
crossref_primary_10_1016_j_tre_2025_103967
crossref_primary_10_1016_j_compchemeng_2023_108430
crossref_primary_10_1016_j_conengprac_2021_104841
crossref_primary_10_1016_j_compchemeng_2025_109004
crossref_primary_10_1016_j_ces_2021_116971
crossref_primary_10_1016_j_cie_2023_109470
crossref_primary_10_1016_j_compchemeng_2017_12_002
crossref_primary_10_1021_acs_iecr_8b05119
crossref_primary_10_1016_j_coche_2017_08_004
crossref_primary_10_1016_j_compchemeng_2022_107989
crossref_primary_10_1002_aic_16513
crossref_primary_10_1002_cta_3370
crossref_primary_10_1016_j_ifacol_2022_07_469
crossref_primary_10_1016_j_compchemeng_2020_106822
crossref_primary_10_1016_j_ifacol_2018_09_238
crossref_primary_10_1002_aic_17043
crossref_primary_10_1016_j_rser_2022_112790
crossref_primary_10_1016_j_apenergy_2019_113857
crossref_primary_10_1016_j_compchemeng_2017_11_002
crossref_primary_10_1016_j_compchemeng_2023_108390
crossref_primary_10_1016_j_compchemeng_2021_107495
crossref_primary_10_1016_j_compchemeng_2017_09_026
crossref_primary_10_1016_j_compchemeng_2019_03_020
crossref_primary_10_1016_j_compchemeng_2019_106595
crossref_primary_10_1016_j_powtec_2020_09_024
crossref_primary_10_1021_acssuschemeng_1c06612
crossref_primary_10_1016_j_compchemeng_2018_02_007
crossref_primary_10_1016_j_compchemeng_2023_108540
crossref_primary_10_1016_j_apenergy_2022_119190
crossref_primary_10_1016_j_jcou_2022_102032
crossref_primary_10_3390_pr7100744
crossref_primary_10_1016_j_jprocont_2018_12_013
crossref_primary_10_1016_j_apenergy_2024_123802
crossref_primary_10_1016_j_ces_2023_118865
crossref_primary_10_1016_j_cor_2022_106087
crossref_primary_10_1080_10426914_2020_1802042
crossref_primary_10_1002_aic_16500
crossref_primary_10_1016_j_energy_2019_06_086
Cites_doi 10.1214/aos/1176342360
10.1126/science.aaa8415
10.1007/s101070100286
10.1016/j.compchemeng.2014.05.003
10.1214/06-BA104
10.1016/j.compchemeng.2012.06.041
10.1002/aic.12338
10.1016/j.compchemeng.2016.07.002
10.1002/aic.13924
10.1287/opre.1030.0065
10.1016/j.compchemeng.2016.03.002
10.1007/PL00011380
10.1016/j.compchemeng.2012.06.038
10.1021/acssuschemeng.6b00188
10.1109/TPWRS.2014.2320880
10.1016/j.compchemeng.2015.12.018
10.1021/ie970694t
10.1021/ie200150p
10.1287/opre.2015.1422
10.1007/978-1-4614-0237-4
10.7551/mitpress/7503.003.0100
10.1002/aic.14523
10.1109/TSP.2007.900167
10.1021/ie5002394
10.1002/aic.15067
10.1016/j.compchemeng.2013.03.013
10.1002/aic.15370
10.1016/j.sigpro.2011.07.010
10.1007/s10107-003-0396-4
10.1016/j.compchemeng.2015.04.012
10.1515/9781400831050
10.1002/aic.14101
10.1016/j.compchemeng.2013.11.016
10.1016/j.compchemeng.2016.03.003
10.1016/j.orl.2013.05.003
10.1007/978-0-387-30164-8_219
10.1016/0098-1354(89)87046-2
10.1109/TPWRS.2012.2205021
10.1016/j.compchemeng.2017.01.032
10.1016/j.compchemeng.2003.09.017
10.1016/j.compchemeng.2013.09.004
10.1016/j.compchemeng.2015.09.014
10.1002/aic.15255
10.1287/opre.43.2.264
10.1016/j.compchemeng.2003.09.020
10.1016/j.compchemeng.2015.03.015
10.1287/educ.1063.0022
10.1016/j.coche.2015.09.001
10.1016/j.compchemeng.2014.04.012
10.1021/ie400475s
10.1287/opre.21.5.1154
10.1287/mnsc.6.1.73
10.1002/ep.10632
10.1016/j.compchemeng.2014.02.023
10.1002/aic.15183
10.1016/j.compchemeng.2006.02.008
10.1007/s10107-003-0454-y
10.1109/ACC.2015.7171991
10.1007/978-0-387-45528-0
10.1137/080734510
10.1016/j.compchemeng.2015.04.011
10.1287/opre.1070.0428
10.1021/ie201651s
10.1002/aic.11756
10.1002/aic.690450811
10.1007/s10107-014-0750-8
10.1021/ie9504516
10.1287/opre.2015.1456
10.1016/j.dam.2014.01.017
10.1021/ie101401k
ContentType Journal Article
Copyright 2017 American Institute of Chemical Engineers
Copyright_xml – notice: 2017 American Institute of Chemical Engineers
DBID AAYXX
CITATION
7ST
7U5
8FD
C1K
L7M
SOI
DOI 10.1002/aic.15717
DatabaseName CrossRef
Environment Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Solid State and Superconductivity Abstracts
Technology Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Solid State and Superconductivity Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1547-5905
EndPage 3817
ExternalDocumentID 10_1002_aic_15717
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
31~
33P
3EH
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
6P2
6TJ
702
7PT
7XC
8-0
8-1
8-3
8-4
8-5
88I
8FE
8FG
8FH
8G5
8R4
8R5
8UM
8WZ
930
9M8
A03
A6W
AAESR
AAEVG
AAHQN
AAIHA
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAYXX
AAZKR
ABCQN
ABCUV
ABDEX
ABDPE
ABEML
ABIJN
ABJCF
ABJIA
ABJNI
ABPVW
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYN
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFKRA
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BLYAC
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CITATION
CS3
CZ9
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
DWQXO
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GUQSH
H.T
H.X
HBH
HCIFZ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KB.
KC.
KQQ
L6V
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M2O
M2P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PATMY
PDBOC
PHGZM
PHGZT
PQGLB
PQQKQ
PRG
PROAC
PTHSS
PYCSY
Q.N
Q11
Q2X
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
S0X
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
UHS
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XSW
XV2
Y6R
ZE2
ZZTAW
~02
~IA
~KM
~WT
7ST
7U5
8FD
C1K
L7M
SOI
ID FETCH-LOGICAL-c294t-e5a888b8b946d5a34d8f8e1ad24a3e18165bee43b9af3e2718953c344e0905073
ISSN 0001-1541
IngestDate Mon Sep 29 14:40:56 EDT 2025
Thu Oct 09 00:30:43 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c294t-e5a888b8b946d5a34d8f8e1ad24a3e18165bee43b9af3e2718953c344e0905073
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9609-4299
PQID 1925518278
PQPubID 7879
PageCount 28
ParticipantIDs proquest_journals_1925518278
crossref_citationtrail_10_1002_aic_15717
crossref_primary_10_1002_aic_15717
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle AIChE journal
PublicationYear 2017
Publisher American Institute of Chemical Engineers
Publisher_xml – name: American Institute of Chemical Engineers
References e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
Jiang R (e_1_2_9_41_1) 2015; 158
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
Sethuraman J. (e_1_2_9_58_1) 1994; 4
e_1_2_9_21_1
e_1_2_9_46_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_5_1
e_1_2_9_3_1
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – ident: e_1_2_9_57_1
  doi: 10.1214/aos/1176342360
– ident: e_1_2_9_35_1
  doi: 10.1126/science.aaa8415
– ident: e_1_2_9_8_1
  doi: 10.1007/s101070100286
– ident: e_1_2_9_22_1
  doi: 10.1016/j.compchemeng.2014.05.003
– ident: e_1_2_9_44_1
  doi: 10.1214/06-BA104
– ident: e_1_2_9_69_1
  doi: 10.1016/j.compchemeng.2012.06.041
– ident: e_1_2_9_72_1
  doi: 10.1002/aic.12338
– ident: e_1_2_9_23_1
  doi: 10.1016/j.compchemeng.2016.07.002
– volume: 4
  start-page: 639
  issue: 2
  year: 1994
  ident: e_1_2_9_58_1
  article-title: A constructive definition of Dirichlet priors
  publication-title: Stat Sin.
– ident: e_1_2_9_71_1
  doi: 10.1002/aic.13924
– ident: e_1_2_9_42_1
  doi: 10.1287/opre.1030.0065
– ident: e_1_2_9_3_1
  doi: 10.1016/j.compchemeng.2016.03.002
– ident: e_1_2_9_11_1
  doi: 10.1007/PL00011380
– ident: e_1_2_9_34_1
  doi: 10.1016/j.compchemeng.2012.06.038
– ident: e_1_2_9_13_1
  doi: 10.1021/acssuschemeng.6b00188
– ident: e_1_2_9_60_1
  doi: 10.1109/TPWRS.2014.2320880
– ident: e_1_2_9_29_1
  doi: 10.1016/j.compchemeng.2015.12.018
– ident: e_1_2_9_73_1
  doi: 10.1021/ie970694t
– ident: e_1_2_9_26_1
  doi: 10.1021/ie200150p
– ident: e_1_2_9_40_1
  doi: 10.1287/opre.2015.1422
– ident: e_1_2_9_5_1
  doi: 10.1007/978-1-4614-0237-4
– ident: e_1_2_9_74_1
  doi: 10.7551/mitpress/7503.003.0100
– ident: e_1_2_9_31_1
  doi: 10.1002/aic.14523
– ident: e_1_2_9_54_1
  doi: 10.1109/TSP.2007.900167
– ident: e_1_2_9_33_1
  doi: 10.1021/ie5002394
– ident: e_1_2_9_18_1
  doi: 10.1002/aic.15067
– ident: e_1_2_9_68_1
  doi: 10.1016/j.compchemeng.2013.03.013
– ident: e_1_2_9_15_1
  doi: 10.1002/aic.15370
– ident: e_1_2_9_75_1
  doi: 10.1016/j.sigpro.2011.07.010
– ident: e_1_2_9_12_1
  doi: 10.1007/s10107-003-0396-4
– ident: e_1_2_9_38_1
  doi: 10.1016/j.compchemeng.2015.04.012
– ident: e_1_2_9_4_1
  doi: 10.1515/9781400831050
– ident: e_1_2_9_62_1
  doi: 10.1002/aic.14101
– ident: e_1_2_9_48_1
  doi: 10.1016/j.compchemeng.2013.11.016
– ident: e_1_2_9_50_1
  doi: 10.1016/j.compchemeng.2016.03.003
– ident: e_1_2_9_51_1
  doi: 10.1016/j.orl.2013.05.003
– ident: e_1_2_9_55_1
  doi: 10.1007/978-0-387-30164-8_219
– ident: e_1_2_9_70_1
  doi: 10.1016/0098-1354(89)87046-2
– ident: e_1_2_9_16_1
  doi: 10.1109/TPWRS.2012.2205021
– ident: e_1_2_9_49_1
  doi: 10.1016/j.compchemeng.2017.01.032
– ident: e_1_2_9_2_1
  doi: 10.1016/j.compchemeng.2003.09.017
– ident: e_1_2_9_63_1
  doi: 10.1016/j.compchemeng.2013.09.004
– ident: e_1_2_9_65_1
  doi: 10.1016/j.compchemeng.2015.09.014
– volume: 158
  start-page: 291
  issue: 1
  year: 2015
  ident: e_1_2_9_41_1
  article-title: Data‐driven chance constrained stochastic program
  publication-title: Math Program.
– ident: e_1_2_9_20_1
  doi: 10.1002/aic.15255
– ident: e_1_2_9_24_1
  doi: 10.1287/opre.43.2.264
– ident: e_1_2_9_17_1
  doi: 10.1016/j.compchemeng.2003.09.020
– ident: e_1_2_9_46_1
  doi: 10.1016/j.compchemeng.2015.03.015
– ident: e_1_2_9_37_1
  doi: 10.1287/educ.1063.0022
– ident: e_1_2_9_47_1
  doi: 10.1016/j.coche.2015.09.001
– ident: e_1_2_9_36_1
– ident: e_1_2_9_43_1
  doi: 10.1016/j.compchemeng.2014.04.012
– ident: e_1_2_9_67_1
  doi: 10.1021/ie400475s
– ident: e_1_2_9_10_1
  doi: 10.1287/opre.21.5.1154
– ident: e_1_2_9_6_1
  doi: 10.1287/mnsc.6.1.73
– ident: e_1_2_9_14_1
  doi: 10.1002/ep.10632
– ident: e_1_2_9_64_1
  doi: 10.1016/j.compchemeng.2014.02.023
– ident: e_1_2_9_19_1
  doi: 10.1002/aic.15183
– ident: e_1_2_9_66_1
  doi: 10.1016/j.compchemeng.2006.02.008
– ident: e_1_2_9_30_1
  doi: 10.1007/s10107-003-0454-y
– ident: e_1_2_9_39_1
  doi: 10.1109/ACC.2015.7171991
– ident: e_1_2_9_56_1
  doi: 10.1007/978-0-387-45528-0
– ident: e_1_2_9_9_1
  doi: 10.1137/080734510
– ident: e_1_2_9_61_1
  doi: 10.1016/j.compchemeng.2015.04.011
– ident: e_1_2_9_28_1
  doi: 10.1287/opre.1070.0428
– ident: e_1_2_9_25_1
  doi: 10.1021/ie201651s
– ident: e_1_2_9_32_1
  doi: 10.1002/aic.11756
– ident: e_1_2_9_7_1
  doi: 10.1002/aic.690450811
– ident: e_1_2_9_45_1
  doi: 10.1007/s10107-014-0750-8
– ident: e_1_2_9_52_1
  doi: 10.1021/ie9504516
– ident: e_1_2_9_27_1
  doi: 10.1287/opre.2015.1456
– ident: e_1_2_9_59_1
  doi: 10.1016/j.dam.2014.01.017
– ident: e_1_2_9_21_1
  doi: 10.1021/ie101401k
– ident: e_1_2_9_53_1
SSID ssj0012782
Score 2.551479
Snippet A novel data‐driven adaptive robust optimization framework that leverages big data in process industries is proposed. A Bayesian nonparametric model—the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3790
SubjectTerms Adaptive algorithms
Algorithms
Bayesian analysis
Columns (process)
Computational efficiency
Computer applications
Data management
Decision making
Dirichlet problem
Industrial applications
Information processing
Learning algorithms
Machine learning
Multilevel
Nonlinear programming
Optimization
Robustness (mathematics)
Scheduling
Solvers
Uncertainty
Title Data‐driven adaptive nested robust optimization: General modeling framework and efficient computational algorithm for decision making under uncertainty
URI https://www.proquest.com/docview/1925518278
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1547-5905
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0012782
  issn: 0001-1541
  databaseCode: ADMLS
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0001-1541
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1547-5905
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012782
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3NbtNAEMdXoVzggMqXaClohRBCslxie22vuUVNq5SPCkEr9WbtetdtpMZOHefSE4_AlWfgrXgSZr-MLUUIuKwix3LkzG9nxuvZ_yD0MoEsI4EJ7SdZIHxCZOLziKQ-oaEMKeO0JGqj8MeTZHZG3p3H56PRj17V0rrl-8XNxn0l_2NVOAZ2Vbtk_8Gy3UXhAHwG-8IIFobxr2w8ZZD7uWoF0SjH5THBlrocqNIrmV5T8_Wq9Wo4uLB7LtUqgJWbNp1wdDWlq9LSrxOkVpZQdQKFbvvglgzZ1UXdzNvLhS5PFLZBj7fQPa10T90GxsLUGbSDV8aT44PLQ69_X6aqoDZA2ghqHJBOqWV1cT3vr0pApHNlV21vIwCrhiUPnQaC01pcDVxz4EM-Z64hrTcGauJsHPfdtfWHBsus53uj1DQetXFcSQ9ujBFGc5bNi_0gTs05Qx3u2eRL_ml6lH84Pnn_anntqxZl6lW-7ddyC90OIYSoPiHTz51WWRCm1EjT2_twMlbj8E33W8PkZxj7dUJzuo3u2ScRPDFY3UcjWT1Ad3v6lA_RdwXYz6_fDFrYoYUNWtighftovcUWLOzAwh1YGMDCHVh4ABbuwMIAFnZgYQMW1mDhHliP0NnR4enBzLe9PPwizEjry5hRSjnlGUlEzCIiaEllwERIWCQhzUxiLiWJeMbKSIaQMWVxVETgPMZgf4hDj9FWVVfyCcKJWnASBQszcCRlMeZBKWhcikyAV4zidAe9dn9yXlihe9Vv5So3Et1hDvbItT120Ivu1KVRd9l00p6zVG4nySqHByOlZQhG3_3z10_Rnd_zYw9ttc1aPoM8tuXPNT-_AJSHqrc
linkProvider Wiley-Blackwell
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data%E2%80%90driven+adaptive+nested+robust+optimization%3A+General+modeling+framework+and+efficient+computational+algorithm+for+decision+making+under+uncertainty&rft.jtitle=AIChE+journal&rft.au=Chao%2C+Ning&rft.au=You%2C+Fengqi&rft.date=2017-09-01&rft.pub=American+Institute+of+Chemical+Engineers&rft.issn=0001-1541&rft.eissn=1547-5905&rft.volume=63&rft.issue=9&rft.spage=3790&rft.epage=3817&rft_id=info:doi/10.1002%2Faic.15717&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0001-1541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0001-1541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0001-1541&client=summon