Collaborative Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud Network
Kubernetes ( k8s ) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling framework for edge-cloud networks. Besides, the hierarchical distribution of heterogeneous resources makes the modeling and scheduling of k8s -o...
Saved in:
| Published in | IEEE/ACM transactions on networking Vol. 31; no. 6; pp. 1 - 15 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1063-6692 1558-2566 |
| DOI | 10.1109/TNET.2023.3267168 |
Cover
| Abstract | Kubernetes ( k8s ) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling framework for edge-cloud networks. Besides, the hierarchical distribution of heterogeneous resources makes the modeling and scheduling of k8s -oriented edge-cloud network particularly challenging. In this paper, we introduce KaiS , a learning-based scheduling framework for such edge-cloud network to improve the long-term throughput rate of request processing. First, we design a coordinated multi-agent actor-critic algorithm to cater to decentralized request dispatch and dynamic dispatch spaces within the edge cluster. Second, for diverse system scales and structures, we use graph neural networks to embed system state information, and combine the embedding results with multiple policy networks to reduce the orchestration dimensionality by stepwise scheduling. Finally, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration, and present the implementation design of deploying the above algorithms compatible with native k8s components. Experiments using real workload traces show that KaiS can successfully learn appropriate scheduling policies, irrespective of request arrival patterns and system scales. Moreover, KaiS can enhance the average system throughput rate by <inline-formula> <tex-math notation="LaTeX">15.9\%</tex-math> </inline-formula> while reducing scheduling cost by <inline-formula> <tex-math notation="LaTeX">38.4\%</tex-math> </inline-formula> compared to baselines. |
|---|---|
| AbstractList | Kubernetes ( k8s ) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling framework for edge-cloud networks. Besides, the hierarchical distribution of heterogeneous resources makes the modeling and scheduling of k8s -oriented edge-cloud network particularly challenging. In this paper, we introduce KaiS , a learning-based scheduling framework for such edge-cloud network to improve the long-term throughput rate of request processing. First, we design a coordinated multi-agent actor-critic algorithm to cater to decentralized request dispatch and dynamic dispatch spaces within the edge cluster. Second, for diverse system scales and structures, we use graph neural networks to embed system state information, and combine the embedding results with multiple policy networks to reduce the orchestration dimensionality by stepwise scheduling. Finally, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration, and present the implementation design of deploying the above algorithms compatible with native k8s components. Experiments using real workload traces show that KaiS can successfully learn appropriate scheduling policies, irrespective of request arrival patterns and system scales. Moreover, KaiS can enhance the average system throughput rate by <inline-formula> <tex-math notation="LaTeX">15.9\%</tex-math> </inline-formula> while reducing scheduling cost by <inline-formula> <tex-math notation="LaTeX">38.4\%</tex-math> </inline-formula> compared to baselines. Kubernetes (k8s) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling framework for edge-cloud networks. Besides, the hierarchical distribution of heterogeneous resources makes the modeling and scheduling of k8s-oriented edge-cloud network particularly challenging. In this paper, we introduce KaiS, a learning-based scheduling framework for such edge-cloud network to improve the long-term throughput rate of request processing. First, we design a coordinated multiagent actor-critic algorithm to cater to decentralized request dispatch and dynamic dispatch spaces within the edge cluster. Second, for diverse system scales and structures, we use graph neural networks to embed system state information, and combine the embedding results with multiple policy networks to reduce the orchestration dimensionality by stepwise scheduling. Finally, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration, and present the implementation design of deploying the above algorithms compatible with native k8s components. Experiments using real workload traces show that KaiS can successfully learn appropriate scheduling policies, irrespective of request arrival patterns and system scales. Moreover, KaiS can enhance the average system throughput rate by 15.9% while reducing scheduling cost by 38.4% compared to baselines. |
| Author | Leung, Victor C. M. Wang, Xiaofei Han, Yiwen Shen, Shihao Wang, Shiqiang |
| Author_xml | – sequence: 1 givenname: Shihao orcidid: 0000-0003-1012-1028 surname: Shen fullname: Shen, Shihao organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 2 givenname: Yiwen orcidid: 0000-0001-6124-4701 surname: Han fullname: Han, Yiwen organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 3 givenname: Xiaofei orcidid: 0000-0002-7223-1030 surname: Wang fullname: Wang, Xiaofei organization: College of Intelligence and Computing, Tianjin University, Tianjin, China – sequence: 4 givenname: Shiqiang orcidid: 0000-0003-2090-5512 surname: Wang fullname: Wang, Shiqiang organization: IBM T. J. Watson Research Center, Yorktown Heights, NY, USA – sequence: 5 givenname: Victor C. M. orcidid: 0000-0003-3529-2640 surname: Leung fullname: Leung, Victor C. M. organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China |
| BookMark | eNp9kE1LwzAYx4NMcJt-AMFDwXNmXto0OeqYLzg20HkOaftkdtZkpq3itzdjO4gHT3kIv9_z8h-hgfMOEDqnZEIpUVerxWw1YYTxCWcip0IeoSHNMolZJsQg1kRwLIRiJ2jUthtCKCdMDNHT1DeNKXwwXf0JyRxMcLVb4xvTQpU8l69Q9U38SKwPyWNfQHDQQYuXoQbXRWRWrQFPG99XyQK6Lx_eTtGxNU0LZ4d3jF5uZ6vpPZ4v7x6m13NcMpV2GKjhQGQeV2FGKcOAszJjBRSCE2JZqQpbyErK3HLDc0EqRZiVklkllUmBj9Hlvu82-I8e2k5vfB9cHKmZImmqUi5ppPI9VQbftgGsLusuHutdF0zdaEr0LkC9C1DvAtSHAKNJ_5jbUL-b8P2vc7F3agD4xdPIc8l_APv1fbU |
| CODEN | IEANEP |
| CitedBy_id | crossref_primary_10_1016_j_future_2024_107538 crossref_primary_10_1007_s10586_024_04789_6 crossref_primary_10_1007_s10586_024_04733_8 |
| Cites_doi | 10.1145/3381052.3381321 10.1038/nature14236 10.1109/TMC.2019.2952097 10.1145/3362031 10.1109/TNET.2020.2968209 10.1109/ICDCS.2019.00088 10.1109/TITS.2020.2990462 10.1109/TPDS.2019.2950937 10.1145/3342280.3342335 10.1016/j.comcom.2020.04.061 10.1109/TC.2020.2987567 10.1145/2890784 10.1109/ICDCS.2019.00211 10.1145/3431379.3460643 10.1145/2623330.2623732 10.1109/TPDS.2022.3150311 10.1109/TKDE.2020.2981333 10.1145/3300061.3345431 10.1109/TPDS.2020.3023936 10.1109/INFOCOM.2019.8737385 10.1109/INFOCOM.2019.8737368 10.1109/INFOCOM41043.2020.9155455 10.1109/COMST.2020.2970550 10.1145/3341302.3342080 10.1109/tcc.2022.3161900 10.1109/JIOT.2016.2579198 10.1109/tmc.2022.3218724 10.1145/1553374.1553380 10.1109/JIOT.2021.3110412 10.1109/TNET.2015.2487344 10.1038/nature16961 10.1109/INFOCOM41043.2020.9155373 10.1109/INFOCOM.2017.8057116 10.1109/INFOCOM42981.2021.9488701 10.1109/TSMCC.2007.913919 10.1109/INFOCOM.2019.8737449 10.1109/TII.2020.3016037 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNET.2023.3267168 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2566 |
| EndPage | 15 |
| ExternalDocumentID | 10_1109_TNET_2023_3267168 10111038 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Tianjin Xinchuang Haihe Laboratory grantid: 22HHXCJC00002 – fundername: Guangdong Pearl River Talent Plan grantid: 2019JC01X235 – fundername: China Post-Doctoral Science Foundation grantid: 2020M670654 – fundername: Guangdong Pearl River Talent Recruitment Program grantid: 2019ZT08X603 – fundername: China NSFC (Youth) grantid: 62002260 – fundername: Canadian Natural Sciences and Engineering Research Council grantid: RGPIN-2019-06348 – fundername: National Science Foundation of China grantid: 62072332 – fundername: Shenzhen Science and Technology Innovation Commission grantid: R2020A045 |
| GroupedDBID | -DZ -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 85S 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABPPZ ABQJQ ABVLG ACGFS ACGOD ACIWK ACM ADBCU ADL AEBYY AEFXT AEJOY AENSD AETEA AFWIH AFWXC AGQYO AHBIQ AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ATWAV BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 D0L EBS FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IES IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNS TN5 UPT YR2 ZCA 9M8 AAYXX AETIX AGSQL AI. AIBXA ALLEH CITATION EJD HF~ H~9 ICLAB IFJZH MVM ROL UQL VH1 XOL 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-e1a3e0870012a99a2e32c52beb6300f2c9bfb8d887f3a3760d902f882f989a4e3 |
| IEDL.DBID | RIE |
| ISSN | 1063-6692 |
| IngestDate | Sun Jun 29 16:53:52 EDT 2025 Thu Apr 24 23:04:15 EDT 2025 Wed Oct 01 02:32:02 EDT 2025 Wed Aug 27 02:56:30 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-e1a3e0870012a99a2e32c52beb6300f2c9bfb8d887f3a3760d902f882f989a4e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-1012-1028 0000-0002-7223-1030 0000-0001-6124-4701 0000-0003-2090-5512 0000-0003-3529-2640 |
| PQID | 2904494381 |
| PQPubID | 32020 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2904494381 crossref_citationtrail_10_1109_TNET_2023_3267168 crossref_primary_10_1109_TNET_2023_3267168 ieee_primary_10111038 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE/ACM transactions on networking |
| PublicationTitleAbbrev | TNET |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref11 ref10 ref17 ref16 ref19 (ref37) 2020 (ref5) 2020 Lillicrap (ref18) 2015 ref46 ref45 ref48 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref3 ref40 (ref33) 2020 ref35 (ref4) 2020 Greensmith (ref32) 2004; 5 ref34 ref36 ref31 ref30 ref2 ref1 ref39 Xiao (ref47) ref24 ref23 ref26 ref25 (ref29) 2020 ref20 ref21 ref28 Gog (ref38) ref27 Silver (ref22) (ref6) 2020 Sutton (ref14) 2018 |
| References_xml | – volume: 5 start-page: 1 issue: 9 year: 2004 ident: ref32 article-title: Variance reduction techniques for gradient estimates in reinforcement learning publication-title: J. Mach. Learn. Res. – ident: ref35 doi: 10.1145/3381052.3381321 – ident: ref17 doi: 10.1038/nature14236 – ident: ref43 doi: 10.1109/TMC.2019.2952097 – ident: ref16 doi: 10.1145/3362031 – ident: ref28 doi: 10.1109/TNET.2020.2968209 – ident: ref42 doi: 10.1109/ICDCS.2019.00088 – start-page: 387 volume-title: Proc. ICML ident: ref22 article-title: Deterministic policy gradient algorithms – ident: ref41 doi: 10.1109/TITS.2020.2990462 – ident: ref45 doi: 10.1109/TPDS.2019.2950937 – ident: ref48 doi: 10.1145/3342280.3342335 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: ref14 – ident: ref49 doi: 10.1016/j.comcom.2020.04.061 – volume-title: KubeEdge: Kubernetes Native Edge Computing Framework (Project Under CNCF) year: 2020 ident: ref4 – start-page: 1 volume-title: Proc. USENIX OSDI ident: ref47 article-title: Gandiva: Introspective cluster scheduling for deep learning – volume-title: K8s Documentation: Horizontal Pod Autoscaler year: 2020 ident: ref37 – ident: ref46 doi: 10.1109/TC.2020.2987567 – ident: ref3 doi: 10.1145/2890784 – ident: ref44 doi: 10.1109/ICDCS.2019.00211 – ident: ref34 doi: 10.1145/3431379.3460643 – ident: ref39 doi: 10.1145/2623330.2623732 – ident: ref25 doi: 10.1109/TPDS.2022.3150311 – ident: ref21 doi: 10.1109/TKDE.2020.2981333 – ident: ref13 doi: 10.1145/3300061.3345431 – ident: ref27 doi: 10.1109/TPDS.2020.3023936 – ident: ref11 doi: 10.1109/INFOCOM.2019.8737385 – ident: ref10 doi: 10.1109/INFOCOM.2019.8737368 – year: 2015 ident: ref18 article-title: Continuous control with deep reinforcement learning publication-title: arXiv:1509.02971 – ident: ref12 doi: 10.1109/INFOCOM41043.2020.9155455 – ident: ref7 doi: 10.1109/COMST.2020.2970550 – ident: ref15 doi: 10.1145/3341302.3342080 – ident: ref26 doi: 10.1109/tcc.2022.3161900 – ident: ref2 doi: 10.1109/JIOT.2016.2579198 – ident: ref24 doi: 10.1109/tmc.2022.3218724 – volume-title: Lightweight Kubernetes year: 2020 ident: ref33 – ident: ref36 doi: 10.1145/1553374.1553380 – ident: ref23 doi: 10.1109/JIOT.2021.3110412 – ident: ref30 doi: 10.1109/TNET.2015.2487344 – ident: ref31 doi: 10.1038/nature16961 – volume-title: Aliababa-Clusterdata year: 2020 ident: ref29 – ident: ref19 doi: 10.1109/INFOCOM41043.2020.9155373 – ident: ref8 doi: 10.1109/INFOCOM.2017.8057116 – ident: ref1 doi: 10.1109/INFOCOM42981.2021.9488701 – volume-title: OpenYurt: Extending Your Native Kubernetes to Edge year: 2020 ident: ref5 – volume-title: Baetyl: Extend Cloud Computing, Data and Service Seamlessly to Edge Devices year: 2020 ident: ref6 – ident: ref20 doi: 10.1109/TSMCC.2007.913919 – ident: ref9 doi: 10.1109/INFOCOM.2019.8737449 – start-page: 99 volume-title: Proc. USENIX OSDI ident: ref38 article-title: Firmament: Fast, centralized cluster scheduling at scale – ident: ref40 doi: 10.1109/TII.2020.3016037 |
| SSID | ssj0013026 |
| Score | 2.4705229 |
| Snippet | Kubernetes ( k8s ) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling... Kubernetes (k8s) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Cloud computing Clustering algorithms Computational modeling Dynamic scheduling Edge computing Graph neural networks Heuristic algorithms IEEE transactions kubernetes Learning Multiagent systems reinforcement learning Scheduling scheduling algorithms Throughput |
| Title | Collaborative Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud Network |
| URI | https://ieeexplore.ieee.org/document/10111038 https://www.proquest.com/docview/2904494381 |
| Volume | 31 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2566 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013026 issn: 1063-6692 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoKAMTkoPtpEk8QtWqAlEkaKVuUfzqQJWikjDw6zk7KeUhEFsGO7Lu4bvz3X2H0LmhRsQZNRjER-AwiSTOGNVYxYkE-8ypcog3d6NoOAlvpt1p3azuemG01q74TPv20-Xy1UKW9qkMNBw0kwRJAzXiJKqatdYpA-Jmq0GIE-Ao4qxOYVLCL8ej_ti3c8J9cFYgQEi-GCE3VeXHVezsy2AHjVYnq8pKnvyyEL58-wba-O-j76Lt2tP0rirR2EMbOt9HW5_wBw_QQ28tBa_aq7FWZ_gaTJvyHoGfyhaqzzzwbL3bUuhlbt9p8b0FRwZX1eurmca9-aJU3qiqJ2-hyaA_7g1xPWQBS8bDAmuaBZokNv3MMs4zpgMmu0xoYcG4DJNcGJEouItMkNkKGsUJM-CXG57wLNTBIWrmi1wfIU_EJDMRRLw8hiCrawSNJQVZUDyCsI6aNiIrqqeyRiC3gzDmqYtECE8to1LLqLRmVBtdfGx5ruA3_lrcsoT_tLCieRt1VrxNaw19SRknYcgtwNnxL9tO0Kb9e1W70kHNYlnqU_BACnHmJO8dQoPVhw |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOAAH3qhLKeTQUyWntuM8fITVouWVSu0icYvi1x5Y7Vaw4cCvZ-xkCy1q1VsOtmLNwzPjmfkG4LNjTuU1cwTFRxFRZJrUnFli8kKjfZbMBMSbmzIb3orLu_Sua1YPvTDW2lB8ZmP_GXL5ZqYb_1SGGo6aSZNiGVZTIUTatmu9Jg1omK6GQU5CskzyLonJqPw6Kgej2E8Kj9FdwRCh-M0Mhbkq7y7jYGHOt6BcnK0tLLmPm7mK9fMfsI3_ffht2Ox8zei0FY4dWLLTXdh4g0C4B9_7r3LwZKMObXVMztC4megHctT4UvVxhL5tdNUo-zD1L7Xkm4dHRmc1GpixJf3JrDFR2VaU78Pt-WDUH5JuzALRXIo5saxOLC18AprXUtbcJlynXFnl4bgc11I5VRi8jVxS-xoaIyl36Jk7Wcha2OQAVqazqf0Akcpp7TKMeWWOYVbqFMs1Q2kwMsPAjrke0AXVK91hkPtRGJMqxCJUVp5RlWdU1TGqB19-bfnZAnD8a_G-J_ybhS3Ne3C04G3V6ehjxSUVQnqIs8O_bDuBteHo5rq6viivPsK6_1NbyXIEK_OHxn5Cf2SujoMUvgCcp9jU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Learning-Based+Scheduling+for+Kubernetes+-Oriented+Edge-Cloud+Network&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Shen%2C+Shihao&rft.au=Han%2C+Yiwen&rft.au=Wang%2C+Xiaofei&rft.au=Wang%2C+Shiqiang&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=31&rft.issue=6&rft.spage=2950&rft_id=info:doi/10.1109%2FTNET.2023.3267168&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon |