Collaborative Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud Network

Kubernetes ( k8s ) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling framework for edge-cloud networks. Besides, the hierarchical distribution of heterogeneous resources makes the modeling and scheduling of k8s -o...

Full description

Saved in:
Bibliographic Details
Published inIEEE/ACM transactions on networking Vol. 31; no. 6; pp. 1 - 15
Main Authors Shen, Shihao, Han, Yiwen, Wang, Xiaofei, Wang, Shiqiang, Leung, Victor C. M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1063-6692
1558-2566
DOI10.1109/TNET.2023.3267168

Cover

Abstract Kubernetes ( k8s ) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling framework for edge-cloud networks. Besides, the hierarchical distribution of heterogeneous resources makes the modeling and scheduling of k8s -oriented edge-cloud network particularly challenging. In this paper, we introduce KaiS , a learning-based scheduling framework for such edge-cloud network to improve the long-term throughput rate of request processing. First, we design a coordinated multi-agent actor-critic algorithm to cater to decentralized request dispatch and dynamic dispatch spaces within the edge cluster. Second, for diverse system scales and structures, we use graph neural networks to embed system state information, and combine the embedding results with multiple policy networks to reduce the orchestration dimensionality by stepwise scheduling. Finally, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration, and present the implementation design of deploying the above algorithms compatible with native k8s components. Experiments using real workload traces show that KaiS can successfully learn appropriate scheduling policies, irrespective of request arrival patterns and system scales. Moreover, KaiS can enhance the average system throughput rate by <inline-formula> <tex-math notation="LaTeX">15.9\%</tex-math> </inline-formula> while reducing scheduling cost by <inline-formula> <tex-math notation="LaTeX">38.4\%</tex-math> </inline-formula> compared to baselines.
AbstractList Kubernetes ( k8s ) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling framework for edge-cloud networks. Besides, the hierarchical distribution of heterogeneous resources makes the modeling and scheduling of k8s -oriented edge-cloud network particularly challenging. In this paper, we introduce KaiS , a learning-based scheduling framework for such edge-cloud network to improve the long-term throughput rate of request processing. First, we design a coordinated multi-agent actor-critic algorithm to cater to decentralized request dispatch and dynamic dispatch spaces within the edge cluster. Second, for diverse system scales and structures, we use graph neural networks to embed system state information, and combine the embedding results with multiple policy networks to reduce the orchestration dimensionality by stepwise scheduling. Finally, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration, and present the implementation design of deploying the above algorithms compatible with native k8s components. Experiments using real workload traces show that KaiS can successfully learn appropriate scheduling policies, irrespective of request arrival patterns and system scales. Moreover, KaiS can enhance the average system throughput rate by <inline-formula> <tex-math notation="LaTeX">15.9\%</tex-math> </inline-formula> while reducing scheduling cost by <inline-formula> <tex-math notation="LaTeX">38.4\%</tex-math> </inline-formula> compared to baselines.
Kubernetes (k8s) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling framework for edge-cloud networks. Besides, the hierarchical distribution of heterogeneous resources makes the modeling and scheduling of k8s-oriented edge-cloud network particularly challenging. In this paper, we introduce KaiS, a learning-based scheduling framework for such edge-cloud network to improve the long-term throughput rate of request processing. First, we design a coordinated multiagent actor-critic algorithm to cater to decentralized request dispatch and dynamic dispatch spaces within the edge cluster. Second, for diverse system scales and structures, we use graph neural networks to embed system state information, and combine the embedding results with multiple policy networks to reduce the orchestration dimensionality by stepwise scheduling. Finally, we adopt a two-time-scale scheduling mechanism to harmonize request dispatch and service orchestration, and present the implementation design of deploying the above algorithms compatible with native k8s components. Experiments using real workload traces show that KaiS can successfully learn appropriate scheduling policies, irrespective of request arrival patterns and system scales. Moreover, KaiS can enhance the average system throughput rate by 15.9% while reducing scheduling cost by 38.4% compared to baselines.
Author Leung, Victor C. M.
Wang, Xiaofei
Han, Yiwen
Shen, Shihao
Wang, Shiqiang
Author_xml – sequence: 1
  givenname: Shihao
  orcidid: 0000-0003-1012-1028
  surname: Shen
  fullname: Shen, Shihao
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 2
  givenname: Yiwen
  orcidid: 0000-0001-6124-4701
  surname: Han
  fullname: Han, Yiwen
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 3
  givenname: Xiaofei
  orcidid: 0000-0002-7223-1030
  surname: Wang
  fullname: Wang, Xiaofei
  organization: College of Intelligence and Computing, Tianjin University, Tianjin, China
– sequence: 4
  givenname: Shiqiang
  orcidid: 0000-0003-2090-5512
  surname: Wang
  fullname: Wang, Shiqiang
  organization: IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
– sequence: 5
  givenname: Victor C. M.
  orcidid: 0000-0003-3529-2640
  surname: Leung
  fullname: Leung, Victor C. M.
  organization: College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
BookMark eNp9kE1LwzAYx4NMcJt-AMFDwXNmXto0OeqYLzg20HkOaftkdtZkpq3itzdjO4gHT3kIv9_z8h-hgfMOEDqnZEIpUVerxWw1YYTxCWcip0IeoSHNMolZJsQg1kRwLIRiJ2jUthtCKCdMDNHT1DeNKXwwXf0JyRxMcLVb4xvTQpU8l69Q9U38SKwPyWNfQHDQQYuXoQbXRWRWrQFPG99XyQK6Lx_eTtGxNU0LZ4d3jF5uZ6vpPZ4v7x6m13NcMpV2GKjhQGQeV2FGKcOAszJjBRSCE2JZqQpbyErK3HLDc0EqRZiVklkllUmBj9Hlvu82-I8e2k5vfB9cHKmZImmqUi5ppPI9VQbftgGsLusuHutdF0zdaEr0LkC9C1DvAtSHAKNJ_5jbUL-b8P2vc7F3agD4xdPIc8l_APv1fbU
CODEN IEANEP
CitedBy_id crossref_primary_10_1016_j_future_2024_107538
crossref_primary_10_1007_s10586_024_04789_6
crossref_primary_10_1007_s10586_024_04733_8
Cites_doi 10.1145/3381052.3381321
10.1038/nature14236
10.1109/TMC.2019.2952097
10.1145/3362031
10.1109/TNET.2020.2968209
10.1109/ICDCS.2019.00088
10.1109/TITS.2020.2990462
10.1109/TPDS.2019.2950937
10.1145/3342280.3342335
10.1016/j.comcom.2020.04.061
10.1109/TC.2020.2987567
10.1145/2890784
10.1109/ICDCS.2019.00211
10.1145/3431379.3460643
10.1145/2623330.2623732
10.1109/TPDS.2022.3150311
10.1109/TKDE.2020.2981333
10.1145/3300061.3345431
10.1109/TPDS.2020.3023936
10.1109/INFOCOM.2019.8737385
10.1109/INFOCOM.2019.8737368
10.1109/INFOCOM41043.2020.9155455
10.1109/COMST.2020.2970550
10.1145/3341302.3342080
10.1109/tcc.2022.3161900
10.1109/JIOT.2016.2579198
10.1109/tmc.2022.3218724
10.1145/1553374.1553380
10.1109/JIOT.2021.3110412
10.1109/TNET.2015.2487344
10.1038/nature16961
10.1109/INFOCOM41043.2020.9155373
10.1109/INFOCOM.2017.8057116
10.1109/INFOCOM42981.2021.9488701
10.1109/TSMCC.2007.913919
10.1109/INFOCOM.2019.8737449
10.1109/TII.2020.3016037
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNET.2023.3267168
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2566
EndPage 15
ExternalDocumentID 10_1109_TNET_2023_3267168
10111038
Genre orig-research
GrantInformation_xml – fundername: Tianjin Xinchuang Haihe Laboratory
  grantid: 22HHXCJC00002
– fundername: Guangdong Pearl River Talent Plan
  grantid: 2019JC01X235
– fundername: China Post-Doctoral Science Foundation
  grantid: 2020M670654
– fundername: Guangdong Pearl River Talent Recruitment Program
  grantid: 2019ZT08X603
– fundername: China NSFC (Youth)
  grantid: 62002260
– fundername: Canadian Natural Sciences and Engineering Research Council
  grantid: RGPIN-2019-06348
– fundername: National Science Foundation of China
  grantid: 62072332
– fundername: Shenzhen Science and Technology Innovation Commission
  grantid: R2020A045
GroupedDBID -DZ
-~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
85S
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABPPZ
ABQJQ
ABVLG
ACGFS
ACGOD
ACIWK
ACM
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENSD
AETEA
AFWIH
AFWXC
AGQYO
AHBIQ
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
D0L
EBS
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IES
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNS
TN5
UPT
YR2
ZCA
9M8
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
HF~
H~9
ICLAB
IFJZH
MVM
ROL
UQL
VH1
XOL
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-e1a3e0870012a99a2e32c52beb6300f2c9bfb8d887f3a3760d902f882f989a4e3
IEDL.DBID RIE
ISSN 1063-6692
IngestDate Sun Jun 29 16:53:52 EDT 2025
Thu Apr 24 23:04:15 EDT 2025
Wed Oct 01 02:32:02 EDT 2025
Wed Aug 27 02:56:30 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-e1a3e0870012a99a2e32c52beb6300f2c9bfb8d887f3a3760d902f882f989a4e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1012-1028
0000-0002-7223-1030
0000-0001-6124-4701
0000-0003-2090-5512
0000-0003-3529-2640
PQID 2904494381
PQPubID 32020
PageCount 15
ParticipantIDs proquest_journals_2904494381
crossref_citationtrail_10_1109_TNET_2023_3267168
crossref_primary_10_1109_TNET_2023_3267168
ieee_primary_10111038
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE/ACM transactions on networking
PublicationTitleAbbrev TNET
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref11
ref10
ref17
ref16
ref19
(ref37) 2020
(ref5) 2020
Lillicrap (ref18) 2015
ref46
ref45
ref48
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref3
ref40
(ref33) 2020
ref35
(ref4) 2020
Greensmith (ref32) 2004; 5
ref34
ref36
ref31
ref30
ref2
ref1
ref39
Xiao (ref47)
ref24
ref23
ref26
ref25
(ref29) 2020
ref20
ref21
ref28
Gog (ref38)
ref27
Silver (ref22)
(ref6) 2020
Sutton (ref14) 2018
References_xml – volume: 5
  start-page: 1
  issue: 9
  year: 2004
  ident: ref32
  article-title: Variance reduction techniques for gradient estimates in reinforcement learning
  publication-title: J. Mach. Learn. Res.
– ident: ref35
  doi: 10.1145/3381052.3381321
– ident: ref17
  doi: 10.1038/nature14236
– ident: ref43
  doi: 10.1109/TMC.2019.2952097
– ident: ref16
  doi: 10.1145/3362031
– ident: ref28
  doi: 10.1109/TNET.2020.2968209
– ident: ref42
  doi: 10.1109/ICDCS.2019.00088
– start-page: 387
  volume-title: Proc. ICML
  ident: ref22
  article-title: Deterministic policy gradient algorithms
– ident: ref41
  doi: 10.1109/TITS.2020.2990462
– ident: ref45
  doi: 10.1109/TPDS.2019.2950937
– ident: ref48
  doi: 10.1145/3342280.3342335
– volume-title: Reinforcement Learning: An Introduction
  year: 2018
  ident: ref14
– ident: ref49
  doi: 10.1016/j.comcom.2020.04.061
– volume-title: KubeEdge: Kubernetes Native Edge Computing Framework (Project Under CNCF)
  year: 2020
  ident: ref4
– start-page: 1
  volume-title: Proc. USENIX OSDI
  ident: ref47
  article-title: Gandiva: Introspective cluster scheduling for deep learning
– volume-title: K8s Documentation: Horizontal Pod Autoscaler
  year: 2020
  ident: ref37
– ident: ref46
  doi: 10.1109/TC.2020.2987567
– ident: ref3
  doi: 10.1145/2890784
– ident: ref44
  doi: 10.1109/ICDCS.2019.00211
– ident: ref34
  doi: 10.1145/3431379.3460643
– ident: ref39
  doi: 10.1145/2623330.2623732
– ident: ref25
  doi: 10.1109/TPDS.2022.3150311
– ident: ref21
  doi: 10.1109/TKDE.2020.2981333
– ident: ref13
  doi: 10.1145/3300061.3345431
– ident: ref27
  doi: 10.1109/TPDS.2020.3023936
– ident: ref11
  doi: 10.1109/INFOCOM.2019.8737385
– ident: ref10
  doi: 10.1109/INFOCOM.2019.8737368
– year: 2015
  ident: ref18
  article-title: Continuous control with deep reinforcement learning
  publication-title: arXiv:1509.02971
– ident: ref12
  doi: 10.1109/INFOCOM41043.2020.9155455
– ident: ref7
  doi: 10.1109/COMST.2020.2970550
– ident: ref15
  doi: 10.1145/3341302.3342080
– ident: ref26
  doi: 10.1109/tcc.2022.3161900
– ident: ref2
  doi: 10.1109/JIOT.2016.2579198
– ident: ref24
  doi: 10.1109/tmc.2022.3218724
– volume-title: Lightweight Kubernetes
  year: 2020
  ident: ref33
– ident: ref36
  doi: 10.1145/1553374.1553380
– ident: ref23
  doi: 10.1109/JIOT.2021.3110412
– ident: ref30
  doi: 10.1109/TNET.2015.2487344
– ident: ref31
  doi: 10.1038/nature16961
– volume-title: Aliababa-Clusterdata
  year: 2020
  ident: ref29
– ident: ref19
  doi: 10.1109/INFOCOM41043.2020.9155373
– ident: ref8
  doi: 10.1109/INFOCOM.2017.8057116
– ident: ref1
  doi: 10.1109/INFOCOM42981.2021.9488701
– volume-title: OpenYurt: Extending Your Native Kubernetes to Edge
  year: 2020
  ident: ref5
– volume-title: Baetyl: Extend Cloud Computing, Data and Service Seamlessly to Edge Devices
  year: 2020
  ident: ref6
– ident: ref20
  doi: 10.1109/TSMCC.2007.913919
– ident: ref9
  doi: 10.1109/INFOCOM.2019.8737449
– start-page: 99
  volume-title: Proc. USENIX OSDI
  ident: ref38
  article-title: Firmament: Fast, centralized cluster scheduling at scale
– ident: ref40
  doi: 10.1109/TII.2020.3016037
SSID ssj0013026
Score 2.4705229
Snippet Kubernetes ( k8s ) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling...
Kubernetes (k8s) has the potential to coordinate distributed edge resources and centralized cloud resources, but currently lacks a specialized scheduling...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Cloud computing
Clustering algorithms
Computational modeling
Dynamic scheduling
Edge computing
Graph neural networks
Heuristic algorithms
IEEE transactions
kubernetes
Learning
Multiagent systems
reinforcement learning
Scheduling
scheduling algorithms
Throughput
Title Collaborative Learning-Based Scheduling for Kubernetes-Oriented Edge-Cloud Network
URI https://ieeexplore.ieee.org/document/10111038
https://www.proquest.com/docview/2904494381
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2566
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013026
  issn: 1063-6692
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZoJxh4FlEoKAMTkoPtpEk8QtWqAlEkaKVuUfzqQJWikjDw6zk7KeUhEFsGO7Lu4bvz3X2H0LmhRsQZNRjER-AwiSTOGNVYxYkE-8ypcog3d6NoOAlvpt1p3azuemG01q74TPv20-Xy1UKW9qkMNBw0kwRJAzXiJKqatdYpA-Jmq0GIE-Ao4qxOYVLCL8ej_ti3c8J9cFYgQEi-GCE3VeXHVezsy2AHjVYnq8pKnvyyEL58-wba-O-j76Lt2tP0rirR2EMbOt9HW5_wBw_QQ28tBa_aq7FWZ_gaTJvyHoGfyhaqzzzwbL3bUuhlbt9p8b0FRwZX1eurmca9-aJU3qiqJ2-hyaA_7g1xPWQBS8bDAmuaBZokNv3MMs4zpgMmu0xoYcG4DJNcGJEouItMkNkKGsUJM-CXG57wLNTBIWrmi1wfIU_EJDMRRLw8hiCrawSNJQVZUDyCsI6aNiIrqqeyRiC3gzDmqYtECE8to1LLqLRmVBtdfGx5ruA3_lrcsoT_tLCieRt1VrxNaw19SRknYcgtwNnxL9tO0Kb9e1W70kHNYlnqU_BACnHmJO8dQoPVhw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB7xOAAH3qhLKeTQUyWntuM8fITVouWVSu0icYvi1x5Y7Vaw4cCvZ-xkCy1q1VsOtmLNwzPjmfkG4LNjTuU1cwTFRxFRZJrUnFli8kKjfZbMBMSbmzIb3orLu_Sua1YPvTDW2lB8ZmP_GXL5ZqYb_1SGGo6aSZNiGVZTIUTatmu9Jg1omK6GQU5CskzyLonJqPw6Kgej2E8Kj9FdwRCh-M0Mhbkq7y7jYGHOt6BcnK0tLLmPm7mK9fMfsI3_ffht2Ox8zei0FY4dWLLTXdh4g0C4B9_7r3LwZKMObXVMztC4megHctT4UvVxhL5tdNUo-zD1L7Xkm4dHRmc1GpixJf3JrDFR2VaU78Pt-WDUH5JuzALRXIo5saxOLC18AprXUtbcJlynXFnl4bgc11I5VRi8jVxS-xoaIyl36Jk7Wcha2OQAVqazqf0Akcpp7TKMeWWOYVbqFMs1Q2kwMsPAjrke0AXVK91hkPtRGJMqxCJUVp5RlWdU1TGqB19-bfnZAnD8a_G-J_ybhS3Ne3C04G3V6ehjxSUVQnqIs8O_bDuBteHo5rq6viivPsK6_1NbyXIEK_OHxn5Cf2SujoMUvgCcp9jU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collaborative+Learning-Based+Scheduling+for+Kubernetes+-Oriented+Edge-Cloud+Network&rft.jtitle=IEEE%2FACM+transactions+on+networking&rft.au=Shen%2C+Shihao&rft.au=Han%2C+Yiwen&rft.au=Wang%2C+Xiaofei&rft.au=Wang%2C+Shiqiang&rft.date=2023-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1063-6692&rft.eissn=1558-2566&rft.volume=31&rft.issue=6&rft.spage=2950&rft_id=info:doi/10.1109%2FTNET.2023.3267168&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6692&client=summon