Distributed Subspace Projection Graph Signal Estimation with Anomaly Interference

The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and the Internet of Things. In those networks, anomaly interference widely exists, such as network attack, noise, device fault, which will hazard...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on network science and engineering Vol. 10; no. 6; pp. 1 - 12
Main Authors Liu, Zhao, Chen, Feng, Duan, Shukai
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4697
2334-329X
DOI10.1109/TNSE.2023.3275625

Cover

Abstract The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and the Internet of Things. In those networks, anomaly interference widely exists, such as network attack, noise, device fault, which will hazard the healthy of the entire system. In the paper, the estimation of graph signals with anomaly interference is investigated. We show that the graph signal estimation problem can be treated as a bandlimited subspace optimization problem, and propose a distributed subspace projection graph signal estimation algorithm based on the graph filter (DispGF), which can achieve better performance with less communication burden. In addition, a graph filter matrix that produces subspace projection is proposed to replace the nonsparse projection matrix, which guarantees distributed implementation and projection accuracy. Different from previous work, here, graph signal estimation is studied with no prior anomaly information. To this end, for FDI attack, random attack, noise interference, we propose anomaly detection and node localization scheme based on smoothness, that can achieve similar performance compared with the case of prior anomaly information known. Numerical experiments verify the effectiveness of the proposed DispGF algorithm. The convergence of the algorithm is theoretically analyzed.
AbstractList The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and the Internet of Things. In those networks, anomaly interference widely exists, such as network attack, noise, device fault, which will hazard the healthy of the entire system. In the paper, the estimation of graph signals with anomaly interference is investigated. We show that the graph signal estimation problem can be treated as a bandlimited subspace optimization problem, and propose a distributed subspace projection graph signal estimation algorithm based on the graph filter (DispGF), which can achieve better performance with less communication burden. In addition, a graph filter matrix that produces subspace projection is proposed to replace the nonsparse projection matrix, which guarantees distributed implementation and projection accuracy. Different from previous work, here, graph signal estimation is studied with no prior anomaly information. To this end, for FDI attack, random attack, noise interference, we propose anomaly detection and node localization scheme based on smoothness, that can achieve similar performance compared with the case of prior anomaly information known. Numerical experiments verify the effectiveness of the proposed DispGF algorithm. The convergence of the algorithm is theoretically analyzed.
The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and the Internet of Things. In those networks, anomaly interference widely exists, such as network attack, noise, device fault, which will hazard the healthy of the entire system. In the article, the estimation of graph signals with anomaly interference is investigated. We show that the graph signal estimation problem can be treated as a bandlimited subspace optimization problem, and propose a distributed subspace projection graph signal estimation algorithm based on the graph filter (DispGF), which can achieve better performance with less communication burden. In addition, a graph filter matrix that produces subspace projection is proposed to replace the nonsparse projection matrix, which guarantees distributed implementation and projection accuracy. Different from previous work, here, graph signal estimation is studied with no prior anomaly information. To this end, for FDI attack, random attack, noise interference, we propose anomaly detection and node localization scheme based on smoothness, that can achieve similar performance compared with the case of prior anomaly information known. Numerical experiments verify the effectiveness of the proposed DispGF algorithm. The convergence of the algorithm is theoretically analyzed.
Author Liu, Zhao
Chen, Feng
Duan, Shukai
Author_xml – sequence: 1
  givenname: Zhao
  surname: Liu
  fullname: Liu, Zhao
  organization: College of Artificial Intelligence, Southwest University, Chongqing, China
– sequence: 2
  givenname: Feng
  orcidid: 0000-0002-9054-6570
  surname: Chen
  fullname: Chen, Feng
  organization: College of Artificial Intelligence, Southwest University, Chongqing, China
– sequence: 3
  givenname: Shukai
  orcidid: 0000-0002-0040-3796
  surname: Duan
  fullname: Duan, Shukai
  organization: College of Artificial Intelligence, Southwest University, Chongqing, China
BookMark eNp9kE9Lw0AQxRepYK39AIKHgOfUzWx2kz2WWmuh-IdW8BY2m4nd0iZ1d4P025u0HsSDpzcM7zfMe5ekV9UVEnId0VEUUXm3elpOR0CBjRgkXAA_I31gLA4ZyPdeN0MSxkImF2To3IZSGkEqGGN98npvnLcmbzwWwbLJ3V5pDF5svUHtTV0FM6v262BpPiq1DabOm5067r-MXwfjqt6p7SGYVx5tiRYrjVfkvFRbh8MfHZC3h-lq8hgunmfzyXgRapCxD5EWUtGcF4IrIamgOS2BKllQFKWMcyww1a0mioscOQKCULoAQKmlRM4G5PZ0d2_rzwadzzZ1Y9svXQZpGsVS8oS2ruTk0rZ2zmKZaeOPCbxVZptFNOsqzLoKs67C7KfCloz-kHvbhreHf5mbE2MQ8Zc_AiY5sG8mOn-3
CODEN ITNSD5
CitedBy_id crossref_primary_10_1109_TCNS_2024_3371548
crossref_primary_10_1109_TSIPN_2025_3546469
Cites_doi 10.1109/ICCVW54120.2021.00105
10.1109/MSP.2014.2329213
10.1561/2200000051
10.1109/tcss.2022.3227270
10.1109/TCYB.2020.2979342
10.1109/TSP.2009.2033729
10.1109/TCYB.2019.2937951
10.1109/TSP.2018.2835384
10.1109/TCSI.2020.2997677
10.1109/TSP.2012.2232663
10.1109/TSP.2014.2356433
10.1109/ICASSP.2014.6855213
10.1109/ICCVW54120.2021.00103
10.1561/2200000016
10.1109/MSP.2012.2235192
10.1109/TSIPN.2016.2613687
10.1109/TSIPN.2022.3156886
10.1109/TSP.2019.2903025
10.1109/TSP.2014.2321121
10.1109/tits.2023.3239114
10.1049/ell2.12459
10.1109/TSP.2017.2755586
10.1109/TSP.2020.2970336
10.1038/sj.jors.2600425
10.1109/TSP.2020.2981204
10.1109/TSP.2015.2469645
10.1109/MSP.2018.2890143
10.1109/ICASSP.2012.6288775
10.1109/JPROC.2018.2799702
10.1109/TSP.2015.2441042
10.1109/TSP.2016.2634543
10.1007/s00034-021-01930-3
10.1109/TSP.2020.2987468
10.1109/TSP.2013.2238935
10.1145/3587038
10.1109/LSP.2017.2712141
10.1090/cbms/092
10.1109/JPROC.2018.2804318
10.1109/TSP.2020.3002607
10.1007/978-3-030-81638-4_3
10.1109/MSP.2020.3016908
10.1090/S0002-9904-1964-11178-2
10.1109/TSP.2020.3038528
10.1109/TSP.2017.2703660
10.1109/MSP.2018.2887284
10.1109/TNSE.2022.3195876
10.1017/CBO9781139020411
10.1109/TCYB.2022.3197591
10.1109/TAES.2018.2803578
10.1109/TSP.2017.2708035
10.1109/TSIPN.2020.3010613
10.1109/JSYST.2019.2927469
10.1109/ICASSP.2009.4960228
10.1109/TSP.2012.2198470
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TNSE.2023.3275625
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2334-329X
EndPage 12
ExternalDocumentID 10_1109_TNSE_2023_3275625
10123952
Genre orig-research
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
AGSQL
CITATION
EJD
IEDLZ
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-e0d9a0b5d65a69060b0f20a9d0e6f94bede8c94b7a56be5e2e26acd22e9c99e53
IEDL.DBID RIE
ISSN 2327-4697
IngestDate Mon Jun 30 08:26:01 EDT 2025
Thu Apr 24 23:04:07 EDT 2025
Wed Oct 01 03:54:50 EDT 2025
Wed Aug 27 02:18:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-e0d9a0b5d65a69060b0f20a9d0e6f94bede8c94b7a56be5e2e26acd22e9c99e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0040-3796
0000-0002-9054-6570
PQID 2881499570
PQPubID 2040409
PageCount 12
ParticipantIDs crossref_primary_10_1109_TNSE_2023_3275625
proquest_journals_2881499570
crossref_citationtrail_10_1109_TNSE_2023_3275625
ieee_primary_10123952
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE transactions on network science and engineering
PublicationTitleAbbrev TNSE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref15
  doi: 10.1109/ICCVW54120.2021.00105
– ident: ref2
  doi: 10.1109/MSP.2014.2329213
– ident: ref40
  doi: 10.1561/2200000051
– ident: ref28
  doi: 10.1109/tcss.2022.3227270
– ident: ref25
  doi: 10.1109/TCYB.2020.2979342
– ident: ref37
  doi: 10.1109/TSP.2009.2033729
– ident: ref24
  doi: 10.1109/TCYB.2019.2937951
– ident: ref34
  doi: 10.1109/TSP.2018.2835384
– ident: ref49
  doi: 10.1109/TCSI.2020.2997677
– ident: ref39
  doi: 10.1109/TSP.2012.2232663
– ident: ref41
  doi: 10.1109/TSP.2014.2356433
– ident: ref30
  doi: 10.1109/ICASSP.2014.6855213
– ident: ref14
  doi: 10.1109/ICCVW54120.2021.00103
– ident: ref48
  doi: 10.1561/2200000016
– ident: ref1
  doi: 10.1109/MSP.2012.2235192
– ident: ref31
  doi: 10.1109/TSIPN.2016.2613687
– ident: ref20
  doi: 10.1109/TSIPN.2022.3156886
– ident: ref5
  doi: 10.1109/TSP.2019.2903025
– ident: ref9
  doi: 10.1109/TSP.2014.2321121
– ident: ref27
  doi: 10.1109/tits.2023.3239114
– ident: ref18
  doi: 10.1049/ell2.12459
– ident: ref17
  doi: 10.1109/TSP.2017.2755586
– ident: ref53
  doi: 10.1109/TSP.2020.2970336
– ident: ref44
  doi: 10.1038/sj.jors.2600425
– ident: ref52
  doi: 10.1109/TSP.2020.2981204
– ident: ref11
  doi: 10.1109/TSP.2015.2469645
– ident: ref6
  doi: 10.1109/MSP.2018.2890143
– ident: ref10
  doi: 10.1109/ICASSP.2012.6288775
– ident: ref12
  doi: 10.1109/JPROC.2018.2799702
– ident: ref29
  doi: 10.1109/TSP.2015.2441042
– ident: ref4
  doi: 10.1109/TSP.2016.2634543
– ident: ref19
  doi: 10.1007/s00034-021-01930-3
– ident: ref54
  doi: 10.1109/TSP.2020.2987468
– ident: ref3
  doi: 10.1109/TSP.2013.2238935
– ident: ref26
  doi: 10.1145/3587038
– ident: ref42
  doi: 10.1109/LSP.2017.2712141
– ident: ref43
  doi: 10.1090/cbms/092
– ident: ref8
  doi: 10.1109/JPROC.2018.2804318
– ident: ref32
  doi: 10.1109/TSP.2020.3002607
– ident: ref13
  doi: 10.1007/978-3-030-81638-4_3
– ident: ref16
  doi: 10.1109/MSP.2020.3016908
– ident: ref45
  doi: 10.1090/S0002-9904-1964-11178-2
– ident: ref51
  doi: 10.1109/TSP.2020.3038528
– ident: ref47
  doi: 10.1109/TSP.2017.2703660
– ident: ref7
  doi: 10.1109/MSP.2018.2887284
– ident: ref46
  doi: 10.1109/TNSE.2022.3195876
– ident: ref50
  doi: 10.1017/CBO9781139020411
– ident: ref23
  doi: 10.1109/TCYB.2022.3197591
– ident: ref22
  doi: 10.1109/TAES.2018.2803578
– ident: ref33
  doi: 10.1109/TSP.2017.2708035
– ident: ref35
  doi: 10.1109/TSIPN.2020.3010613
– ident: ref21
  doi: 10.1109/JSYST.2019.2927469
– ident: ref36
  doi: 10.1109/ICASSP.2009.4960228
– ident: ref38
  doi: 10.1109/TSP.2012.2198470
SSID ssj0001286333
Score 2.2744658
Snippet The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Anomalies
anomaly interference
Computer networks
distributed estimation
Estimation
Filtering algorithms
graph filter
graph signal estimation
Interference
Internet of Things
Optimization
Perturbation methods
secure estimation
Signal processing algorithms
Smart grid
Smoothness
subspace projection
Subspaces
Symmetric matrices
Unmanned aerial vehicles
Wireless sensor networks
Title Distributed Subspace Projection Graph Signal Estimation with Anomaly Interference
URI https://ieeexplore.ieee.org/document/10123952
https://www.proquest.com/docview/2881499570
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2334-329X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001286333
  issn: 2327-4697
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygU5IEJKalxYiceKyhUDBWordQtiu0rQpQUQTrAr8fnpKgCgZiSwbasO_tevvuOkDPrboG2CQucd8GDWCgT5DoSgVOlVhsmnFHnsy0Gsj-ObydiUher-1oYAPDJZxDir3_Lt3OzwFBZB7GoIiWcxF1PUlkVa60EVFIZRVH9cnnBVGc0GPZCbA8eRghyjt2wV3SPb6byQwJ7tXK9TQbLDVXZJE_hotSh-fiG1fjvHe-QrdrApN3qROySNSj2yOYK7OA-ub9CtFxsdAWWouRwfjPQuyom4_hEbxDFmg4fH3ClnhMCVX0jxaAt7Rbz53z2Tn0ssa4WbJLxdW902Q_q1gqB4SouA2BW5UwLK0WOUMVMsylnubIM5FTFGiykxn2TXEgNAjhwmRvLOSijFIjogDSKeQGHhCpwLomzcpzlZGNtQE9Tm8Z8mjMjpU1ki7Al0TNT445j-4tZ5v0PpjLkU4Z8ymo-tcj515SXCnTjr8FNpPvKwIrkLdJesjar7-VbxtPUuYRKJOzol2nHZANXr8oN26RRvi7gxNkdpT715-0Tz7TVaQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAG1GeHpiQkhrHduMRQaG8KlBbqVsU21eEKC2CdoBfj89JUQUCMSWDnVh39r189x0hh86fAuNqLPLeBY-E1DbKTSIjr0qdsUx6oy5kWzRVoyOuurJbFquHWhgACMlnEONruMt3QzvGUFkVsagSLb3EnZNCCFmUa02FVFKVJEl5d3nMdLXdbNVjbBAeJwhzjv2wp7RPaKfyQwYHxXK-TJqTJRX5JE_xeGRi-_ENrfHfa14hS6WJSU-KPbFKZmCwRhangAfXyf0Z4uViqytwFGWH95yB3hVRGc8peoE41rT1-IBfqnsxUFQ4Ugzb0pPB8Dnvv9MQTSzrBTdI57zePm1EZXOFyHItRhEwp3NmpFMyR7BiZliPs1w7BqqnhQEHqfXPWi6VAQkcuMqt4xy01RpksklmB8MBbBGqwTsl3s7xtpMTxoLppS4VvJczq5SrqQphE6JntkQexwYY_Sx4IExnyKcM-ZSVfKqQo68pLwXsxl-DN5DuUwMLklfI7oS1WXky3zKept4p1LLGtn-ZdkDmG-3bm-zmsnm9QxbwT0Xx4S6ZHb2OYc9bISOzH_beJyOH2LY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Subspace+Projection+Graph+Signal+Estimation+With+Anomaly+Interference&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Liu%2C+Zhao&rft.au=Chen%2C+Feng&rft.au=Duan%2C+Shukai&rft.date=2023-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=10&rft.issue=6&rft.spage=3883&rft_id=info:doi/10.1109%2FTNSE.2023.3275625&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon