Distributed Subspace Projection Graph Signal Estimation with Anomaly Interference
The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and the Internet of Things. In those networks, anomaly interference widely exists, such as network attack, noise, device fault, which will hazard...
Saved in:
| Published in | IEEE transactions on network science and engineering Vol. 10; no. 6; pp. 1 - 12 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4697 2334-329X |
| DOI | 10.1109/TNSE.2023.3275625 |
Cover
| Abstract | The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and the Internet of Things. In those networks, anomaly interference widely exists, such as network attack, noise, device fault, which will hazard the healthy of the entire system. In the paper, the estimation of graph signals with anomaly interference is investigated. We show that the graph signal estimation problem can be treated as a bandlimited subspace optimization problem, and propose a distributed subspace projection graph signal estimation algorithm based on the graph filter (DispGF), which can achieve better performance with less communication burden. In addition, a graph filter matrix that produces subspace projection is proposed to replace the nonsparse projection matrix, which guarantees distributed implementation and projection accuracy. Different from previous work, here, graph signal estimation is studied with no prior anomaly information. To this end, for FDI attack, random attack, noise interference, we propose anomaly detection and node localization scheme based on smoothness, that can achieve similar performance compared with the case of prior anomaly information known. Numerical experiments verify the effectiveness of the proposed DispGF algorithm. The convergence of the algorithm is theoretically analyzed. |
|---|---|
| AbstractList | The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and the Internet of Things. In those networks, anomaly interference widely exists, such as network attack, noise, device fault, which will hazard the healthy of the entire system. In the paper, the estimation of graph signals with anomaly interference is investigated. We show that the graph signal estimation problem can be treated as a bandlimited subspace optimization problem, and propose a distributed subspace projection graph signal estimation algorithm based on the graph filter (DispGF), which can achieve better performance with less communication burden. In addition, a graph filter matrix that produces subspace projection is proposed to replace the nonsparse projection matrix, which guarantees distributed implementation and projection accuracy. Different from previous work, here, graph signal estimation is studied with no prior anomaly information. To this end, for FDI attack, random attack, noise interference, we propose anomaly detection and node localization scheme based on smoothness, that can achieve similar performance compared with the case of prior anomaly information known. Numerical experiments verify the effectiveness of the proposed DispGF algorithm. The convergence of the algorithm is theoretically analyzed. The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and the Internet of Things. In those networks, anomaly interference widely exists, such as network attack, noise, device fault, which will hazard the healthy of the entire system. In the article, the estimation of graph signals with anomaly interference is investigated. We show that the graph signal estimation problem can be treated as a bandlimited subspace optimization problem, and propose a distributed subspace projection graph signal estimation algorithm based on the graph filter (DispGF), which can achieve better performance with less communication burden. In addition, a graph filter matrix that produces subspace projection is proposed to replace the nonsparse projection matrix, which guarantees distributed implementation and projection accuracy. Different from previous work, here, graph signal estimation is studied with no prior anomaly information. To this end, for FDI attack, random attack, noise interference, we propose anomaly detection and node localization scheme based on smoothness, that can achieve similar performance compared with the case of prior anomaly information known. Numerical experiments verify the effectiveness of the proposed DispGF algorithm. The convergence of the algorithm is theoretically analyzed. |
| Author | Liu, Zhao Chen, Feng Duan, Shukai |
| Author_xml | – sequence: 1 givenname: Zhao surname: Liu fullname: Liu, Zhao organization: College of Artificial Intelligence, Southwest University, Chongqing, China – sequence: 2 givenname: Feng orcidid: 0000-0002-9054-6570 surname: Chen fullname: Chen, Feng organization: College of Artificial Intelligence, Southwest University, Chongqing, China – sequence: 3 givenname: Shukai orcidid: 0000-0002-0040-3796 surname: Duan fullname: Duan, Shukai organization: College of Artificial Intelligence, Southwest University, Chongqing, China |
| BookMark | eNp9kE9Lw0AQxRepYK39AIKHgOfUzWx2kz2WWmuh-IdW8BY2m4nd0iZ1d4P025u0HsSDpzcM7zfMe5ekV9UVEnId0VEUUXm3elpOR0CBjRgkXAA_I31gLA4ZyPdeN0MSxkImF2To3IZSGkEqGGN98npvnLcmbzwWwbLJ3V5pDF5svUHtTV0FM6v262BpPiq1DabOm5067r-MXwfjqt6p7SGYVx5tiRYrjVfkvFRbh8MfHZC3h-lq8hgunmfzyXgRapCxD5EWUtGcF4IrIamgOS2BKllQFKWMcyww1a0mioscOQKCULoAQKmlRM4G5PZ0d2_rzwadzzZ1Y9svXQZpGsVS8oS2ruTk0rZ2zmKZaeOPCbxVZptFNOsqzLoKs67C7KfCloz-kHvbhreHf5mbE2MQ8Zc_AiY5sG8mOn-3 |
| CODEN | ITNSD5 |
| CitedBy_id | crossref_primary_10_1109_TCNS_2024_3371548 crossref_primary_10_1109_TSIPN_2025_3546469 |
| Cites_doi | 10.1109/ICCVW54120.2021.00105 10.1109/MSP.2014.2329213 10.1561/2200000051 10.1109/tcss.2022.3227270 10.1109/TCYB.2020.2979342 10.1109/TSP.2009.2033729 10.1109/TCYB.2019.2937951 10.1109/TSP.2018.2835384 10.1109/TCSI.2020.2997677 10.1109/TSP.2012.2232663 10.1109/TSP.2014.2356433 10.1109/ICASSP.2014.6855213 10.1109/ICCVW54120.2021.00103 10.1561/2200000016 10.1109/MSP.2012.2235192 10.1109/TSIPN.2016.2613687 10.1109/TSIPN.2022.3156886 10.1109/TSP.2019.2903025 10.1109/TSP.2014.2321121 10.1109/tits.2023.3239114 10.1049/ell2.12459 10.1109/TSP.2017.2755586 10.1109/TSP.2020.2970336 10.1038/sj.jors.2600425 10.1109/TSP.2020.2981204 10.1109/TSP.2015.2469645 10.1109/MSP.2018.2890143 10.1109/ICASSP.2012.6288775 10.1109/JPROC.2018.2799702 10.1109/TSP.2015.2441042 10.1109/TSP.2016.2634543 10.1007/s00034-021-01930-3 10.1109/TSP.2020.2987468 10.1109/TSP.2013.2238935 10.1145/3587038 10.1109/LSP.2017.2712141 10.1090/cbms/092 10.1109/JPROC.2018.2804318 10.1109/TSP.2020.3002607 10.1007/978-3-030-81638-4_3 10.1109/MSP.2020.3016908 10.1090/S0002-9904-1964-11178-2 10.1109/TSP.2020.3038528 10.1109/TSP.2017.2703660 10.1109/MSP.2018.2887284 10.1109/TNSE.2022.3195876 10.1017/CBO9781139020411 10.1109/TCYB.2022.3197591 10.1109/TAES.2018.2803578 10.1109/TSP.2017.2708035 10.1109/TSIPN.2020.3010613 10.1109/JSYST.2019.2927469 10.1109/ICASSP.2009.4960228 10.1109/TSP.2012.2198470 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TNSE.2023.3275625 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2334-329X |
| EndPage | 12 |
| ExternalDocumentID | 10_1109_TNSE_2023_3275625 10123952 |
| Genre | orig-research |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX AGSQL CITATION EJD IEDLZ 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-e0d9a0b5d65a69060b0f20a9d0e6f94bede8c94b7a56be5e2e26acd22e9c99e53 |
| IEDL.DBID | RIE |
| ISSN | 2327-4697 |
| IngestDate | Mon Jun 30 08:26:01 EDT 2025 Thu Apr 24 23:04:07 EDT 2025 Wed Oct 01 03:54:50 EDT 2025 Wed Aug 27 02:18:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-e0d9a0b5d65a69060b0f20a9d0e6f94bede8c94b7a56be5e2e26acd22e9c99e53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0040-3796 0000-0002-9054-6570 |
| PQID | 2881499570 |
| PQPubID | 2040409 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TNSE_2023_3275625 proquest_journals_2881499570 crossref_citationtrail_10_1109_TNSE_2023_3275625 ieee_primary_10123952 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-11-01 |
| PublicationDateYYYYMMDD | 2023-11-01 |
| PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE transactions on network science and engineering |
| PublicationTitleAbbrev | TNSE |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref15 doi: 10.1109/ICCVW54120.2021.00105 – ident: ref2 doi: 10.1109/MSP.2014.2329213 – ident: ref40 doi: 10.1561/2200000051 – ident: ref28 doi: 10.1109/tcss.2022.3227270 – ident: ref25 doi: 10.1109/TCYB.2020.2979342 – ident: ref37 doi: 10.1109/TSP.2009.2033729 – ident: ref24 doi: 10.1109/TCYB.2019.2937951 – ident: ref34 doi: 10.1109/TSP.2018.2835384 – ident: ref49 doi: 10.1109/TCSI.2020.2997677 – ident: ref39 doi: 10.1109/TSP.2012.2232663 – ident: ref41 doi: 10.1109/TSP.2014.2356433 – ident: ref30 doi: 10.1109/ICASSP.2014.6855213 – ident: ref14 doi: 10.1109/ICCVW54120.2021.00103 – ident: ref48 doi: 10.1561/2200000016 – ident: ref1 doi: 10.1109/MSP.2012.2235192 – ident: ref31 doi: 10.1109/TSIPN.2016.2613687 – ident: ref20 doi: 10.1109/TSIPN.2022.3156886 – ident: ref5 doi: 10.1109/TSP.2019.2903025 – ident: ref9 doi: 10.1109/TSP.2014.2321121 – ident: ref27 doi: 10.1109/tits.2023.3239114 – ident: ref18 doi: 10.1049/ell2.12459 – ident: ref17 doi: 10.1109/TSP.2017.2755586 – ident: ref53 doi: 10.1109/TSP.2020.2970336 – ident: ref44 doi: 10.1038/sj.jors.2600425 – ident: ref52 doi: 10.1109/TSP.2020.2981204 – ident: ref11 doi: 10.1109/TSP.2015.2469645 – ident: ref6 doi: 10.1109/MSP.2018.2890143 – ident: ref10 doi: 10.1109/ICASSP.2012.6288775 – ident: ref12 doi: 10.1109/JPROC.2018.2799702 – ident: ref29 doi: 10.1109/TSP.2015.2441042 – ident: ref4 doi: 10.1109/TSP.2016.2634543 – ident: ref19 doi: 10.1007/s00034-021-01930-3 – ident: ref54 doi: 10.1109/TSP.2020.2987468 – ident: ref3 doi: 10.1109/TSP.2013.2238935 – ident: ref26 doi: 10.1145/3587038 – ident: ref42 doi: 10.1109/LSP.2017.2712141 – ident: ref43 doi: 10.1090/cbms/092 – ident: ref8 doi: 10.1109/JPROC.2018.2804318 – ident: ref32 doi: 10.1109/TSP.2020.3002607 – ident: ref13 doi: 10.1007/978-3-030-81638-4_3 – ident: ref16 doi: 10.1109/MSP.2020.3016908 – ident: ref45 doi: 10.1090/S0002-9904-1964-11178-2 – ident: ref51 doi: 10.1109/TSP.2020.3038528 – ident: ref47 doi: 10.1109/TSP.2017.2703660 – ident: ref7 doi: 10.1109/MSP.2018.2887284 – ident: ref46 doi: 10.1109/TNSE.2022.3195876 – ident: ref50 doi: 10.1017/CBO9781139020411 – ident: ref23 doi: 10.1109/TCYB.2022.3197591 – ident: ref22 doi: 10.1109/TAES.2018.2803578 – ident: ref33 doi: 10.1109/TSP.2017.2708035 – ident: ref35 doi: 10.1109/TSIPN.2020.3010613 – ident: ref21 doi: 10.1109/JSYST.2019.2927469 – ident: ref36 doi: 10.1109/ICASSP.2009.4960228 – ident: ref38 doi: 10.1109/TSP.2012.2198470 |
| SSID | ssj0001286333 |
| Score | 2.2744658 |
| Snippet | The estimation of graph signal is a vital problem in many distributed networks, such as vehicular networks, smart grids, unmanned aerial vehicles (UAVs), and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Anomalies anomaly interference Computer networks distributed estimation Estimation Filtering algorithms graph filter graph signal estimation Interference Internet of Things Optimization Perturbation methods secure estimation Signal processing algorithms Smart grid Smoothness subspace projection Subspaces Symmetric matrices Unmanned aerial vehicles Wireless sensor networks |
| Title | Distributed Subspace Projection Graph Signal Estimation with Anomaly Interference |
| URI | https://ieeexplore.ieee.org/document/10123952 https://www.proquest.com/docview/2881499570 |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2334-329X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001286333 issn: 2327-4697 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEww8iygU5IEJKalxYiceKyhUDBWordQtiu0rQpQUQTrAr8fnpKgCgZiSwbasO_tevvuOkDPrboG2CQucd8GDWCgT5DoSgVOlVhsmnFHnsy0Gsj-ObydiUher-1oYAPDJZxDir3_Lt3OzwFBZB7GoIiWcxF1PUlkVa60EVFIZRVH9cnnBVGc0GPZCbA8eRghyjt2wV3SPb6byQwJ7tXK9TQbLDVXZJE_hotSh-fiG1fjvHe-QrdrApN3qROySNSj2yOYK7OA-ub9CtFxsdAWWouRwfjPQuyom4_hEbxDFmg4fH3ClnhMCVX0jxaAt7Rbz53z2Tn0ssa4WbJLxdW902Q_q1gqB4SouA2BW5UwLK0WOUMVMsylnubIM5FTFGiykxn2TXEgNAjhwmRvLOSijFIjogDSKeQGHhCpwLomzcpzlZGNtQE9Tm8Z8mjMjpU1ki7Al0TNT445j-4tZ5v0PpjLkU4Z8ymo-tcj515SXCnTjr8FNpPvKwIrkLdJesjar7-VbxtPUuYRKJOzol2nHZANXr8oN26RRvi7gxNkdpT715-0Tz7TVaQ |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDMDAG1GeHpiQkhrHduMRQaG8KlBbqVsU21eEKC2CdoBfj89JUQUCMSWDnVh39r189x0hh86fAuNqLPLeBY-E1DbKTSIjr0qdsUx6oy5kWzRVoyOuurJbFquHWhgACMlnEONruMt3QzvGUFkVsagSLb3EnZNCCFmUa02FVFKVJEl5d3nMdLXdbNVjbBAeJwhzjv2wp7RPaKfyQwYHxXK-TJqTJRX5JE_xeGRi-_ENrfHfa14hS6WJSU-KPbFKZmCwRhangAfXyf0Z4uViqytwFGWH95yB3hVRGc8peoE41rT1-IBfqnsxUFQ4Ugzb0pPB8Dnvv9MQTSzrBTdI57zePm1EZXOFyHItRhEwp3NmpFMyR7BiZliPs1w7BqqnhQEHqfXPWi6VAQkcuMqt4xy01RpksklmB8MBbBGqwTsl3s7xtpMTxoLppS4VvJczq5SrqQphE6JntkQexwYY_Sx4IExnyKcM-ZSVfKqQo68pLwXsxl-DN5DuUwMLklfI7oS1WXky3zKept4p1LLGtn-ZdkDmG-3bm-zmsnm9QxbwT0Xx4S6ZHb2OYc9bISOzH_beJyOH2LY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Subspace+Projection+Graph+Signal+Estimation+With+Anomaly+Interference&rft.jtitle=IEEE+transactions+on+network+science+and+engineering&rft.au=Liu%2C+Zhao&rft.au=Chen%2C+Feng&rft.au=Duan%2C+Shukai&rft.date=2023-11-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2334-329X&rft.volume=10&rft.issue=6&rft.spage=3883&rft_id=info:doi/10.1109%2FTNSE.2023.3275625&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4697&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4697&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4697&client=summon |