An Optimized Adaptive Bayesian Algorithm for Mitigating EMI-Induced Errors in Dynamic Electromagnetic Environments

Robust and reliable communication is a necessity for maintaining the integrity of electronic systems. However, this can be severely impacted by electromagnetic interference (EMI) and the increasing complexity of electromagnetic environments, which introduces new sources of uncertainty. Fortunately,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electromagnetic compatibility Vol. 66; no. 6; pp. 2085 - 2094
Main Authors Gonzalez-Atienza, Miriam, Vanoost, Dries, Verbeke, Mathias, Pissoort, Davy
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0018-9375
1558-187X
DOI10.1109/TEMC.2024.3482565

Cover

Abstract Robust and reliable communication is a necessity for maintaining the integrity of electronic systems. However, this can be severely impacted by electromagnetic interference (EMI) and the increasing complexity of electromagnetic environments, which introduces new sources of uncertainty. Fortunately, adaptive learning strategies provide promising solutions to overcome these obstacles. In this study, we have evaluated the performance of an adaptive Bayesian decision algorithm that can effectively mitigate the impact of EMI in triple modular redundant channels subjected to multiple single-frequency disturbances. The proposed strategy for hyperparameter tuning allows for optimization of data accuracy and availability. Compared to conventional supervised machine learning techniques, the inherent adaptive capabilities of the Bayesian approach demonstrate superior performance by dynamically adjusting to changes in the received symbol distributions, particularly under conditions of high symbol error rates. This adaptability proved crucial in achieving high classification accuracy (92.59%). The proposed adaptive Bayesian algorithm stands out for its robustness and enhanced performance, presenting a promising solution for its application to dynamic electromagnetic environments characterized by high variability and uncertainty.
AbstractList Robust and reliable communication is a necessity for maintaining the integrity of electronic systems. However, this can be severely impacted by electromagnetic interference (EMI) and the increasing complexity of electromagnetic environments, which introduces new sources of uncertainty. Fortunately, adaptive learning strategies provide promising solutions to overcome these obstacles. In this study, we have evaluated the performance of an adaptive Bayesian decision algorithm that can effectively mitigate the impact of EMI in triple modular redundant channels subjected to multiple single-frequency disturbances. The proposed strategy for hyperparameter tuning allows for optimization of data accuracy and availability. Compared to conventional supervised machine learning techniques, the inherent adaptive capabilities of the Bayesian approach demonstrate superior performance by dynamically adjusting to changes in the received symbol distributions, particularly under conditions of high symbol error rates. This adaptability proved crucial in achieving high classification accuracy (92.59%). The proposed adaptive Bayesian algorithm stands out for its robustness and enhanced performance, presenting a promising solution for its application to dynamic electromagnetic environments characterized by high variability and uncertainty.
Author Verbeke, Mathias
Pissoort, Davy
Vanoost, Dries
Gonzalez-Atienza, Miriam
Author_xml – sequence: 1
  givenname: Miriam
  orcidid: 0000-0003-0036-5301
  surname: Gonzalez-Atienza
  fullname: Gonzalez-Atienza, Miriam
  email: miriam.gonzalezatienza@kuleuven.be
  organization: ESAT-WaveCoRE, Mechatronics Group (M-Group), KU Leuven, Bruges, Belgium
– sequence: 2
  givenname: Dries
  orcidid: 0000-0002-7126-9758
  surname: Vanoost
  fullname: Vanoost, Dries
  email: dries.vanoost@kuleuven.be
  organization: ESAT-WaveCoRE, Mechatronics Group (M-Group), KU Leuven, Bruges, Belgium
– sequence: 3
  givenname: Mathias
  orcidid: 0000-0001-8297-6071
  surname: Verbeke
  fullname: Verbeke, Mathias
  email: verbeke@kuleuven.be
  organization: Declarative Languages and Artificial Intelligence (DTAI), Mechatronics Group (M-Group), KU Leuven, Bruges, Belgium
– sequence: 4
  givenname: Davy
  orcidid: 0000-0002-5077-4237
  surname: Pissoort
  fullname: Pissoort, Davy
  email: davy.pissoort@kuleuven.be
  organization: ESAT-WaveCoRE, Mechatronics Group (M-Group), KU Leuven, Bruges, Belgium
BookMark eNp9kM1KAzEUhYNUsK0-gOAi4HpqfiYzmWWtoxZauqngboiZZEzpJDVJC_XpnaFdiAtX9x44372cMwID66wC4BajCcaoeFiXy9mEIJJOaMoJy9gFGGLGeIJ5_j4AQ4QwTwqasyswCmHTyZQROgR-auFqF01rvlUNp7Xo9oOCj-KoghEWTreN8yZ-tlA7D5cmmkZEYxtYLufJ3NZ72WGl984HaCx8OlrRGgnLrZLRu1Y0VsVe24PxzrbKxnANLrXYBnVznmPw9lyuZ6_JYvUyn00XiSRFGpP6A3FECyIISgvGSM2klhpr2sfKMNa8i6BrnakikwirVBPJBdF1lmVFWmg6BvenuzvvvvYqxGrj9t52LyuK05zhHOW8c-Unl_QuBK90JU3sIjobvTDbCqOqL7jqC676gqtzwR2J_5A7b1rhj_8ydyfGKKV--XPKKeb0BxjXiVc
CODEN IEMCAE
CitedBy_id crossref_primary_10_1080_10589759_2025_2474097
Cites_doi 10.1109/15.709418
10.1109/TEMC.2020.2980790
10.1109/TEMC.2010.2097267
10.1007/bfb0029575
10.1109/TEMC.2012.2208754
10.1109/TEMC.2023.3258745
10.1109/TEMC.2022.3208447
10.1017/CBO9780511779237
10.23919/JCC.2022.07.002
10.1109/temc.2024.3422619
10.14445/23488387/IJCSE-V6I8P104
10.1109/ICDSCA53499.2021.9650252
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TEMC.2024.3482565
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-187X
EndPage 2094
ExternalDocumentID 10_1109_TEMC_2024_3482565
10738318
Genre orig-research
GrantInformation_xml – fundername: European Union's Horizon 2020 research and innovation programme
– fundername: Marie Skłodowska-Curie
  grantid: 955816 (ETERNITY)
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c294t-db080392a2049552d5cfcf1f31558611f8145fdf6e96c01e4f2c8a2fd666949f3
IEDL.DBID RIE
ISSN 0018-9375
IngestDate Thu Aug 28 08:29:52 EDT 2025
Wed Oct 01 01:38:16 EDT 2025
Thu Apr 24 23:09:02 EDT 2025
Wed Aug 27 02:30:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-db080392a2049552d5cfcf1f31558611f8145fdf6e96c01e4f2c8a2fd666949f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8297-6071
0000-0003-0036-5301
0000-0002-7126-9758
0000-0002-5077-4237
PQID 3147517078
PQPubID 85467
PageCount 10
ParticipantIDs ieee_primary_10738318
proquest_journals_3147517078
crossref_citationtrail_10_1109_TEMC_2024_3482565
crossref_primary_10_1109_TEMC_2024_3482565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on electromagnetic compatibility
PublicationTitleAbbrev TEMC
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref12
ref14
ref11
ref10
ref2
ref1
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref10
  doi: 10.1109/15.709418
– ident: ref3
  doi: 10.1109/TEMC.2020.2980790
– ident: ref11
  doi: 10.1109/TEMC.2010.2097267
– ident: ref4
  doi: 10.1007/bfb0029575
– ident: ref12
  doi: 10.1109/TEMC.2012.2208754
– ident: ref7
  doi: 10.1109/TEMC.2023.3258745
– ident: ref9
  doi: 10.1109/TEMC.2022.3208447
– ident: ref2
  doi: 10.1017/CBO9780511779237
– ident: ref6
  doi: 10.23919/JCC.2022.07.002
– ident: ref8
  doi: 10.1109/temc.2024.3422619
– ident: ref1
  article-title: Area: 192: Dependability. section 192-01: Basic concepts
– ident: ref14
  doi: 10.14445/23488387/IJCSE-V6I8P104
– ident: ref5
  doi: 10.1109/ICDSCA53499.2021.9650252
SSID ssj0014523
Score 2.4254096
Snippet Robust and reliable communication is a necessity for maintaining the integrity of electronic systems. However, this can be severely impacted by electromagnetic...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2085
SubjectTerms Accuracy
Adaptive algorithm
Adaptive algorithms
Adaptive learning
Adaptive systems
Algorithms
Bayes methods
Bayesian analysis
Bayesian learning
Computational modeling
electromagnetic environment
Electromagnetic interference
electromagnetic interference (EMI)
Electromagnetics
Electronic systems
Encoding
Machine learning
Performance enhancement
Performance evaluation
Posterior probability
Supervised learning
Symbols
Trajectory
Uncertainty
Title An Optimized Adaptive Bayesian Algorithm for Mitigating EMI-Induced Errors in Dynamic Electromagnetic Environments
URI https://ieeexplore.ieee.org/document/10738318
https://www.proquest.com/docview/3147517078
Volume 66
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-187X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014523
  issn: 0018-9375
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EYWCPDAhpcSJ7SRjgSCEVFhAYov8LBU0rUI6wK_nHKeoAoHYMtiRle98j9x9dwidCkY156EOiLQmAC2pAsFiFigpJBhUmobC8Z2Hd_zmkd4-saeWrN5wYYwxTfGZ6bvHJpevp2rufpXBDU8goCLpKlpNUu7JWl8pA8oin04mcIPjhLUpTBJm5w_58BJCwYj2XSsX5gzJkhFqpqr8UMWNfbneRHeLk_mykpf-vJZ99fGtaeO_j76FNlpPEw-8aGyjFVPuoPWl_oO7qBqU-B50xmT8YTQeaDFzyg9fiHfjuJV48DqaVuP6eYLBtcXDse_HUY4wgBe4oR8KtuVVNa3e8LjEV366Pc79aJ2JGJWOIonzJTLdHnq8zh8ub4J2CEOgoozWgZbgU4ITJSKIJRiLNFNWWWJjcERSTohN4ctbbbnJuAqJoTZSqYgsSADPaGbjfdQpp6U5QFhxoZMwiSQIB1XMZkzEnMs0pkyDIyG7KFygUqi2Q7kblPFaNJFKmBUOyMIBWbRAdtHZ15aZb8_x1-I9B8zSQo9JF_UW2BftDX4rYkITRlwvpMNfth2hNfd2X9vSQ526mptj8FBqedJI5if_TOFr
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAOPIsIlLKHnio5eO3dtX0MxVUKTXpJpd6sfaYRjVO5zoH-ema9ThUVgXrzYVde-Zudh2e-GYBDyZkRIjYRVc5GqCV1JHnKI62kQoPK8lh6vvNkKsYX7Mclv-zJ6h0XxlrbFZ_ZoX_scvlmpdf-Vxne8AwDKpo_gaecMcYDXes-acB4EhLKFO9wmvE-iUnj4uusnBxjMJiwoW_mwr0p2TJD3VyVv5RxZ2FOXsF0c7ZQWPJruG7VUN89aNv46MO_hpe9r0lGQTjewI6t38KLrQ6E76AZ1eQctcZycWcNGRl549Uf-SZ_W8-uJKPr-apZtFdLgs4tmSxCR456ThC-yI_90LitbJpVc0sWNfke5tuTMgzXWcp57UmSpNyi0-3BxUk5Ox5H_RiGSCcFayOj0KtEN0omGE1wnhiunXbUpeiK5IJSl-OXd8YJWwgdU8tconOZOJQBUbDCpe9ht17V9gMQLaTJ4ixRKB5Mc1dwmQqh8pRxg66EGkC8QaXSfY9yPyrjuupilbioPJCVB7LqgRzA0f2Wm9Cg43-L9zwwWwsDJgPY32Bf9Xf4tkopyzj13ZA-_mPbF3g2nk3OqrPT6c9P8Ny_KVS67MNu26ztZ_RXWnXQSekf9TnkuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Adaptive+Bayesian+Algorithm+for+Mitigating+EMI-Induced+Errors+in+Dynamic+Electromagnetic+Environments&rft.jtitle=IEEE+transactions+on+electromagnetic+compatibility&rft.au=Gonzalez-Atienza%2C+Miriam&rft.au=Vanoost%2C+Dries&rft.au=Verbeke%2C+Mathias&rft.au=Davy+Pissoort&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9375&rft.eissn=1558-187X&rft.volume=66&rft.issue=6&rft.spage=2085&rft_id=info:doi/10.1109%2FTEMC.2024.3482565&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9375&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9375&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9375&client=summon