An Optimized Adaptive Bayesian Algorithm for Mitigating EMI-Induced Errors in Dynamic Electromagnetic Environments
Robust and reliable communication is a necessity for maintaining the integrity of electronic systems. However, this can be severely impacted by electromagnetic interference (EMI) and the increasing complexity of electromagnetic environments, which introduces new sources of uncertainty. Fortunately,...
Saved in:
| Published in | IEEE transactions on electromagnetic compatibility Vol. 66; no. 6; pp. 2085 - 2094 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.12.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9375 1558-187X |
| DOI | 10.1109/TEMC.2024.3482565 |
Cover
| Abstract | Robust and reliable communication is a necessity for maintaining the integrity of electronic systems. However, this can be severely impacted by electromagnetic interference (EMI) and the increasing complexity of electromagnetic environments, which introduces new sources of uncertainty. Fortunately, adaptive learning strategies provide promising solutions to overcome these obstacles. In this study, we have evaluated the performance of an adaptive Bayesian decision algorithm that can effectively mitigate the impact of EMI in triple modular redundant channels subjected to multiple single-frequency disturbances. The proposed strategy for hyperparameter tuning allows for optimization of data accuracy and availability. Compared to conventional supervised machine learning techniques, the inherent adaptive capabilities of the Bayesian approach demonstrate superior performance by dynamically adjusting to changes in the received symbol distributions, particularly under conditions of high symbol error rates. This adaptability proved crucial in achieving high classification accuracy (92.59%). The proposed adaptive Bayesian algorithm stands out for its robustness and enhanced performance, presenting a promising solution for its application to dynamic electromagnetic environments characterized by high variability and uncertainty. |
|---|---|
| AbstractList | Robust and reliable communication is a necessity for maintaining the integrity of electronic systems. However, this can be severely impacted by electromagnetic interference (EMI) and the increasing complexity of electromagnetic environments, which introduces new sources of uncertainty. Fortunately, adaptive learning strategies provide promising solutions to overcome these obstacles. In this study, we have evaluated the performance of an adaptive Bayesian decision algorithm that can effectively mitigate the impact of EMI in triple modular redundant channels subjected to multiple single-frequency disturbances. The proposed strategy for hyperparameter tuning allows for optimization of data accuracy and availability. Compared to conventional supervised machine learning techniques, the inherent adaptive capabilities of the Bayesian approach demonstrate superior performance by dynamically adjusting to changes in the received symbol distributions, particularly under conditions of high symbol error rates. This adaptability proved crucial in achieving high classification accuracy (92.59%). The proposed adaptive Bayesian algorithm stands out for its robustness and enhanced performance, presenting a promising solution for its application to dynamic electromagnetic environments characterized by high variability and uncertainty. |
| Author | Verbeke, Mathias Pissoort, Davy Vanoost, Dries Gonzalez-Atienza, Miriam |
| Author_xml | – sequence: 1 givenname: Miriam orcidid: 0000-0003-0036-5301 surname: Gonzalez-Atienza fullname: Gonzalez-Atienza, Miriam email: miriam.gonzalezatienza@kuleuven.be organization: ESAT-WaveCoRE, Mechatronics Group (M-Group), KU Leuven, Bruges, Belgium – sequence: 2 givenname: Dries orcidid: 0000-0002-7126-9758 surname: Vanoost fullname: Vanoost, Dries email: dries.vanoost@kuleuven.be organization: ESAT-WaveCoRE, Mechatronics Group (M-Group), KU Leuven, Bruges, Belgium – sequence: 3 givenname: Mathias orcidid: 0000-0001-8297-6071 surname: Verbeke fullname: Verbeke, Mathias email: verbeke@kuleuven.be organization: Declarative Languages and Artificial Intelligence (DTAI), Mechatronics Group (M-Group), KU Leuven, Bruges, Belgium – sequence: 4 givenname: Davy orcidid: 0000-0002-5077-4237 surname: Pissoort fullname: Pissoort, Davy email: davy.pissoort@kuleuven.be organization: ESAT-WaveCoRE, Mechatronics Group (M-Group), KU Leuven, Bruges, Belgium |
| BookMark | eNp9kM1KAzEUhYNUsK0-gOAi4HpqfiYzmWWtoxZauqngboiZZEzpJDVJC_XpnaFdiAtX9x44372cMwID66wC4BajCcaoeFiXy9mEIJJOaMoJy9gFGGLGeIJ5_j4AQ4QwTwqasyswCmHTyZQROgR-auFqF01rvlUNp7Xo9oOCj-KoghEWTreN8yZ-tlA7D5cmmkZEYxtYLufJ3NZ72WGl984HaCx8OlrRGgnLrZLRu1Y0VsVe24PxzrbKxnANLrXYBnVznmPw9lyuZ6_JYvUyn00XiSRFGpP6A3FECyIISgvGSM2klhpr2sfKMNa8i6BrnakikwirVBPJBdF1lmVFWmg6BvenuzvvvvYqxGrj9t52LyuK05zhHOW8c-Unl_QuBK90JU3sIjobvTDbCqOqL7jqC676gqtzwR2J_5A7b1rhj_8ydyfGKKV--XPKKeb0BxjXiVc |
| CODEN | IEMCAE |
| CitedBy_id | crossref_primary_10_1080_10589759_2025_2474097 |
| Cites_doi | 10.1109/15.709418 10.1109/TEMC.2020.2980790 10.1109/TEMC.2010.2097267 10.1007/bfb0029575 10.1109/TEMC.2012.2208754 10.1109/TEMC.2023.3258745 10.1109/TEMC.2022.3208447 10.1017/CBO9780511779237 10.23919/JCC.2022.07.002 10.1109/temc.2024.3422619 10.14445/23488387/IJCSE-V6I8P104 10.1109/ICDSCA53499.2021.9650252 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 8FD L7M |
| DOI | 10.1109/TEMC.2024.3482565 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-187X |
| EndPage | 2094 |
| ExternalDocumentID | 10_1109_TEMC_2024_3482565 10738318 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Union's Horizon 2020 research and innovation programme – fundername: Marie Skłodowska-Curie grantid: 955816 (ETERNITY) |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS RXW TAE TAF TN5 VH1 AAYXX CITATION 7SP 8FD L7M |
| ID | FETCH-LOGICAL-c294t-db080392a2049552d5cfcf1f31558611f8145fdf6e96c01e4f2c8a2fd666949f3 |
| IEDL.DBID | RIE |
| ISSN | 0018-9375 |
| IngestDate | Thu Aug 28 08:29:52 EDT 2025 Wed Oct 01 01:38:16 EDT 2025 Thu Apr 24 23:09:02 EDT 2025 Wed Aug 27 02:30:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-db080392a2049552d5cfcf1f31558611f8145fdf6e96c01e4f2c8a2fd666949f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8297-6071 0000-0003-0036-5301 0000-0002-7126-9758 0000-0002-5077-4237 |
| PQID | 3147517078 |
| PQPubID | 85467 |
| PageCount | 10 |
| ParticipantIDs | ieee_primary_10738318 proquest_journals_3147517078 crossref_citationtrail_10_1109_TEMC_2024_3482565 crossref_primary_10_1109_TEMC_2024_3482565 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on electromagnetic compatibility |
| PublicationTitleAbbrev | TEMC |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref12 ref14 ref11 ref10 ref2 ref1 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref10 doi: 10.1109/15.709418 – ident: ref3 doi: 10.1109/TEMC.2020.2980790 – ident: ref11 doi: 10.1109/TEMC.2010.2097267 – ident: ref4 doi: 10.1007/bfb0029575 – ident: ref12 doi: 10.1109/TEMC.2012.2208754 – ident: ref7 doi: 10.1109/TEMC.2023.3258745 – ident: ref9 doi: 10.1109/TEMC.2022.3208447 – ident: ref2 doi: 10.1017/CBO9780511779237 – ident: ref6 doi: 10.23919/JCC.2022.07.002 – ident: ref8 doi: 10.1109/temc.2024.3422619 – ident: ref1 article-title: Area: 192: Dependability. section 192-01: Basic concepts – ident: ref14 doi: 10.14445/23488387/IJCSE-V6I8P104 – ident: ref5 doi: 10.1109/ICDSCA53499.2021.9650252 |
| SSID | ssj0014523 |
| Score | 2.4254096 |
| Snippet | Robust and reliable communication is a necessity for maintaining the integrity of electronic systems. However, this can be severely impacted by electromagnetic... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2085 |
| SubjectTerms | Accuracy Adaptive algorithm Adaptive algorithms Adaptive learning Adaptive systems Algorithms Bayes methods Bayesian analysis Bayesian learning Computational modeling electromagnetic environment Electromagnetic interference electromagnetic interference (EMI) Electromagnetics Electronic systems Encoding Machine learning Performance enhancement Performance evaluation Posterior probability Supervised learning Symbols Trajectory Uncertainty |
| Title | An Optimized Adaptive Bayesian Algorithm for Mitigating EMI-Induced Errors in Dynamic Electromagnetic Environments |
| URI | https://ieeexplore.ieee.org/document/10738318 https://www.proquest.com/docview/3147517078 |
| Volume | 66 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-187X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014523 issn: 0018-9375 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwy8EYWCPDAhpcSJ7SRjgSCEVFhAYov8LBU0rUI6wK_nHKeoAoHYMtiRle98j9x9dwidCkY156EOiLQmAC2pAsFiFigpJBhUmobC8Z2Hd_zmkd4-saeWrN5wYYwxTfGZ6bvHJpevp2rufpXBDU8goCLpKlpNUu7JWl8pA8oin04mcIPjhLUpTBJm5w_58BJCwYj2XSsX5gzJkhFqpqr8UMWNfbneRHeLk_mykpf-vJZ99fGtaeO_j76FNlpPEw-8aGyjFVPuoPWl_oO7qBqU-B50xmT8YTQeaDFzyg9fiHfjuJV48DqaVuP6eYLBtcXDse_HUY4wgBe4oR8KtuVVNa3e8LjEV366Pc79aJ2JGJWOIonzJTLdHnq8zh8ub4J2CEOgoozWgZbgU4ITJSKIJRiLNFNWWWJjcERSTohN4ctbbbnJuAqJoTZSqYgsSADPaGbjfdQpp6U5QFhxoZMwiSQIB1XMZkzEnMs0pkyDIyG7KFygUqi2Q7kblPFaNJFKmBUOyMIBWbRAdtHZ15aZb8_x1-I9B8zSQo9JF_UW2BftDX4rYkITRlwvpMNfth2hNfd2X9vSQ526mptj8FBqedJI5if_TOFr |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB6VcgAOPIsIlLKHnio5eO3dtX0MxVUKTXpJpd6sfaYRjVO5zoH-ema9ThUVgXrzYVde-Zudh2e-GYBDyZkRIjYRVc5GqCV1JHnKI62kQoPK8lh6vvNkKsYX7Mclv-zJ6h0XxlrbFZ_ZoX_scvlmpdf-Vxne8AwDKpo_gaecMcYDXes-acB4EhLKFO9wmvE-iUnj4uusnBxjMJiwoW_mwr0p2TJD3VyVv5RxZ2FOXsF0c7ZQWPJruG7VUN89aNv46MO_hpe9r0lGQTjewI6t38KLrQ6E76AZ1eQctcZycWcNGRl549Uf-SZ_W8-uJKPr-apZtFdLgs4tmSxCR456ThC-yI_90LitbJpVc0sWNfke5tuTMgzXWcp57UmSpNyi0-3BxUk5Ox5H_RiGSCcFayOj0KtEN0omGE1wnhiunXbUpeiK5IJSl-OXd8YJWwgdU8tconOZOJQBUbDCpe9ht17V9gMQLaTJ4ixRKB5Mc1dwmQqh8pRxg66EGkC8QaXSfY9yPyrjuupilbioPJCVB7LqgRzA0f2Wm9Cg43-L9zwwWwsDJgPY32Bf9Xf4tkopyzj13ZA-_mPbF3g2nk3OqrPT6c9P8Ny_KVS67MNu26ztZ_RXWnXQSekf9TnkuA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Optimized+Adaptive+Bayesian+Algorithm+for+Mitigating+EMI-Induced+Errors+in+Dynamic+Electromagnetic+Environments&rft.jtitle=IEEE+transactions+on+electromagnetic+compatibility&rft.au=Gonzalez-Atienza%2C+Miriam&rft.au=Vanoost%2C+Dries&rft.au=Verbeke%2C+Mathias&rft.au=Davy+Pissoort&rft.date=2024-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9375&rft.eissn=1558-187X&rft.volume=66&rft.issue=6&rft.spage=2085&rft_id=info:doi/10.1109%2FTEMC.2024.3482565&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9375&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9375&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9375&client=summon |