An RBF Neural Network Clustering Algorithm Based on K-Nearest Neighbor
Neural network is a supervised classification algorithm which can deal with high complexity and nonlinear data analysis. Supervised algorithm needs some known labels in the training process, and then corrects parameters through backpropagation method. However, due to the lack of marked labels, exist...
        Saved in:
      
    
          | Published in | Mathematical problems in engineering Vol. 2022; pp. 1 - 9 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Hindawi
    
        24.08.2022
     John Wiley & Sons, Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1024-123X 1026-7077 1563-5147 1563-5147  | 
| DOI | 10.1155/2022/1083961 | 
Cover
| Abstract | Neural network is a supervised classification algorithm which can deal with high complexity and nonlinear data analysis. Supervised algorithm needs some known labels in the training process, and then corrects parameters through backpropagation method. However, due to the lack of marked labels, existing literature mostly uses Auto-Encoder to reduce the dimension of data when facing of clustering problems. This paper proposes an RBF (Radial Basis Function) neural network clustering algorithm based on K-nearest neighbors theory, which first uses K-means algorithm for preclassification, and then constructs self-supervised labels based on K-nearest neighbors theory for backpropagation. The algorithm in this paper belongs to a self-supervised neural network clustering algorithm, and it also makes the neural network truly have the ability of self-decision-making and self-optimization. From the experimental results of the artificial data sets and the UCI data sets, it can be proved that the proposed algorithm has excellent adaptability and robustness. | 
    
|---|---|
| AbstractList | Neural network is a supervised classification algorithm which can deal with high complexity and nonlinear data analysis. Supervised algorithm needs some known labels in the training process, and then corrects parameters through backpropagation method. However, due to the lack of marked labels, existing literature mostly uses Auto-Encoder to reduce the dimension of data when facing of clustering problems. This paper proposes an RBF (Radial Basis Function) neural network clustering algorithm based on K-nearest neighbors theory, which first uses K-means algorithm for preclassification, and then constructs self-supervised labels based on K-nearest neighbors theory for backpropagation. The algorithm in this paper belongs to a self-supervised neural network clustering algorithm, and it also makes the neural network truly have the ability of self-decision-making and self-optimization. From the experimental results of the artificial data sets and the UCI data sets, it can be proved that the proposed algorithm has excellent adaptability and robustness. | 
    
| Author | Xu, Chugui Liang, Yongquan Liang, Zhao Li, Jitao Wu, Gengkun  | 
    
| Author_xml | – sequence: 1 givenname: Jitao orcidid: 0000-0002-5068-803X surname: Li fullname: Li, Jitao organization: Department of Information Science and TechnologyTaishan UniversityTaian 271000Chinatsu.edu.cn – sequence: 2 givenname: Chugui surname: Xu fullname: Xu, Chugui organization: Department of Information Science and TechnologyTaishan UniversityTaian 271000Chinatsu.edu.cn – sequence: 3 givenname: Yongquan surname: Liang fullname: Liang, Yongquan organization: College of Computer Science and EngineeringShandong University of Science and TechnologyQingdao 266590Chinasdust.edu.cn – sequence: 4 givenname: Gengkun orcidid: 0000-0002-8074-3431 surname: Wu fullname: Wu, Gengkun organization: College of Computer Science and EngineeringShandong University of Science and TechnologyQingdao 266590Chinasdust.edu.cn – sequence: 5 givenname: Zhao surname: Liang fullname: Liang, Zhao organization: Department of Information Science and TechnologyTaishan UniversityTaian 271000Chinatsu.edu.cn  | 
    
| BookMark | eNqF0EFLwzAYBuAgE9ymN39AwaPW5UubpjluY1NxTBAFbyVN062zS2bSMvbvTenOevq-w8PLyztCA220QugW8CMApROCCZkATiOewAUaAk2ikELMBv7HJA6BRF9XaOTcDmMCFNIhWk518D5bBmvVWlH70xyN_Q7mdesaZSu9Cab1xtiq2e6DmXCqCIwOXsO1Ela5xvtqs82NvUaXpaidujnfMfpcLj7mz-Hq7ellPl2FkvC4CQvGMRNcAMlZCaWUKo-KlKcgfeUUy5zlHCTOIaEKs5LGeSFYHJEEikJKHEVjFPa5rT6I01HUdXaw1V7YUwY460bIuhGy8wje3_X-YM1P6xtnO9Na7StmhGFOO9OlPvRKWuOcVeV_ofc931a6EMfqb_0LMcN2MA | 
    
| Cites_doi | 10.1109/access.2020.2974496 10.1126/science.1242072 10.1016/j.knosys.2020.105841 10.1016/j.neunet.2020.07.005 10.1016/j.neucom.2020.02.005 10.1016/j.imavis.2020.103871 10.1109/lsp.2020.2965328  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2022 Jitao Li et al. Copyright © 2022 Jitao Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| Copyright_xml | – notice: Copyright © 2022 Jitao Li et al. – notice: Copyright © 2022 Jitao Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0  | 
    
| DBID | RHU RHW RHX AAYXX CITATION 7TB 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU CWDGH DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS ADTOC UNPAY  | 
    
| DOI | 10.1155/2022/1083961 | 
    
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central (Alumni) ProQuest Central Health Research Premium Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection (Proquest) ProQuest Computer Science Collection Computer Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Engineering Database Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Middle East & Africa Database ProQuest Central Korea ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISSN | 1563-5147 | 
    
| Editor | Liu, Wei | 
    
| Editor_xml | – sequence: 1 givenname: Wei surname: Liu fullname: Liu, Wei  | 
    
| EndPage | 9 | 
    
| ExternalDocumentID | 10.1155/2022/1083961 10_1155_2022_1083961  | 
    
| GrantInformation_xml | – fundername: Natural Science Foundation of Shandong Province grantid: ZR2021MF045  | 
    
| GroupedDBID | 29M 2WC 3V. 4.4 5GY 5VS 8FE 8FG 8R4 8R5 AAFWJ AAJEY ABDBF ABJCF ABUWG ACIPV ACIWK ADBBV AENEX AFKRA AINHJ ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BPHCQ CCPQU CS3 CWDGH E3Z EBS ESX GROUPED_DOAJ HCIFZ I-F IAO IEA IOF ISR ITC K6V K7- KQ8 L6V M7S MK~ M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RHW RHX RNS TR2 TUS XSB YQT ~8M 0R~ 24P AAMMB AAYXX ACCMX AEFGJ AGXDD AIDQK AIDYY CITATION H13 OVT PHGZM PHGZT PQGLB PUEGO 7TB 8FD AZQEC DWQXO FR3 GNUQQ JQ2 KR7 PKEHL PQEST PQUKI PRINS -~9 188 2UF ADTOC AFFNX C1A CAG COF EJD IL9 IPNFZ RIG UGNYK UNPAY  | 
    
| ID | FETCH-LOGICAL-c294t-d7907a9a12b7f1fcceb3d8981c39680cb7b91c0b165e07f54bda743261ddcc033 | 
    
| IEDL.DBID | RHX | 
    
| ISSN | 1024-123X 1026-7077 1563-5147  | 
    
| IngestDate | Tue Aug 19 18:11:00 EDT 2025 Fri Jul 25 10:12:33 EDT 2025 Wed Oct 01 05:03:01 EDT 2025 Sun Jun 02 18:51:17 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Language | English | 
    
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-d7907a9a12b7f1fcceb3d8981c39680cb7b91c0b165e07f54bda743261ddcc033 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-8074-3431 0000-0002-5068-803X  | 
    
| OpenAccessLink | https://dx.doi.org/10.1155/2022/1083961 | 
    
| PQID | 2709596133 | 
    
| PQPubID | 237775 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1155_2022_1083961 proquest_journals_2709596133 crossref_primary_10_1155_2022_1083961 hindawi_primary_10_1155_2022_1083961  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-08-24 | 
    
| PublicationDateYYYYMMDD | 2022-08-24 | 
    
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-24 day: 24  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Mathematical problems in engineering | 
    
| PublicationYear | 2022 | 
    
| Publisher | Hindawi John Wiley & Sons, Inc  | 
    
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc  | 
    
| References | J. J. Zhao (2) W. H. Hu (14) 15 J. Yang (9) Z. Jiang (11) J. Chang (13) 17 W. A. Lin (5) 18 S. Mukherjee (23) U. Shaham (10) I. J. Goodfellow (21) 2014; 27 J. L. Chang (1) 2019 N. Dilokthanakul (22) 2016 M. Tapaswi (3) D. Berthelot (19) 4 6 V. D. M. Laurens (16) 2008; 9 7 J. Y. Xie (12) B. Yang (8) 2017; 70 20  | 
    
| References_xml | – ident: 7 doi: 10.1109/access.2020.2974496 – ident: 17 doi: 10.1126/science.1242072 – ident: 14 article-title: Learning discrete representations via information maximizing self-augmented training – volume: 27 start-page: 2672 issue: 3 year: 2014 ident: 21 article-title: Generative adversarial networks publication-title: Advances in Neural Information Processing Systems – start-page: 5027 ident: 3 article-title: Video face clustering with unknown number of clusters – start-page: 54 ident: 2 article-title: Deep image clustering with category-style representation – start-page: 1965 ident: 11 article-title: Variational deep embedding: an unsupervised and generative approach to clustering – ident: 15 doi: 10.1016/j.knosys.2020.105841 – volume: 9 start-page: 2579 issue: 11 year: 2008 ident: 16 article-title: Visualizing data using t-SNE publication-title: Journal of Machine Learning Research – ident: 18 doi: 10.1016/j.neunet.2020.07.005 – ident: 4 doi: 10.1016/j.neucom.2020.02.005 – ident: 6 doi: 10.1016/j.imavis.2020.103871 – year: 2019 ident: 1 article-title: Deep discriminative clustering analysis – volume: 70 start-page: 3861 year: 2017 ident: 8 article-title: Towards k-means-friendly spaces: simultaneous deep learning and clustering publication-title: Proceedings of Machine Learning Research – start-page: 272 ident: 19 article-title: Understanding and improving interpolation in autoencoders via an adversarial regularizer – start-page: 267 ident: 10 article-title: SpectralNet: spectral clustering using deep neural networks – start-page: 478 ident: 12 article-title: Unsupervised deep embedding for clustering analysis – start-page: 8128 ident: 5 article-title: Deep density clustering of unconstrained faces – start-page: 5879 ident: 13 article-title: Deep adaptive image clustering – ident: 20 doi: 10.1109/lsp.2020.2965328 – year: 2016 ident: 22 article-title: Deep unsupervised clustering with Gaussian mixture variational autoencoders – start-page: 5147 ident: 9 article-title: Joint unsupervised learning of deep representations and image clusters – start-page: 4610 ident: 23 article-title: ClusterGAN: latent space clustering in generative adversarial networks  | 
    
| SSID | ssj0021518 | 
    
| Score | 2.2836196 | 
    
| Snippet | Neural network is a supervised classification algorithm which can deal with high complexity and nonlinear data analysis. Supervised algorithm needs some known... | 
    
| SourceID | unpaywall proquest crossref hindawi  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Back propagation Back propagation networks Classification Cluster analysis Clustering Coders Data analysis Datasets Decision making Deep learning Labels Methods Neural networks Optimization Process parameters Radial basis function  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60InrxLdYXOai3xWy62cdBpBWLKC4iCr0t2cnGCnVb7Rbx3ztpsz4ueh8CmSQz3zdJvgE4wgBNgRa58VB5AYbGiw3nXpJLJLgRGzFtyXKbhlePwXVP9uYgrf_C2GeVdUycBmo9RFsjPxWRrVhR8mmdj1492zXK3q7WLTSUa62gz6YSY_OwIKwyVgMWOpfp3f0XBaP8NvscJ6xaX6tXP4WX0lYBBMUQAgyh_ytJLfYtO35__oVBlyblSH28q8HgRzrqrsGKw5GsPVv4dZgryg1YdZiSuRM73oRuu2T3nS6zIhxkn85efbOLwcQqJFDeYu3BE82z6r-wDmU0zYYlu_FSK207rsieyDttky147F4-XFx5rneChyIJKk9HxHpVonyRR8Y3iESadZzEPtL8Yo55lCc-8twPZcEjI4NcKwITxKe0RuSt1jY0ymFZ7AAzPEbtF5L7aOi4q5xIJYZxIJWm1YxEE45rZ2WjmURGNqUWUmbWqZlzahOOnCf_Mduv3Zy58zTOvle_CSdfrv9znN2_x9mDZWtty8Mi2IdG9TYpDghfVPmh2zSfAGPJbg priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7alLG-rFu70qzt0EPXN6fyD_kHe0pLQ1lpGGOBFApGOllJWOaUxqFsf_1OtlyWPWyjbzYcQjqd775Pkj8BnGCEpkCL3HgsvQhj46WGcy9TAglupCaor2S5GcZXo-jTWIw34GP7L4y2EvELqZe9qeWkj7M6Wzu_Ls8ISlq6HtDHTpU9pjSjzSZsxYKAeAe2RsPP_dt6fzOwanzhuHmOqSf1HYxEVkKPIELSHoEXYq25teL0wvVgDXu-XJX38sejnM9_K0ODHbhrB9CcPvnWW1Wqhz__0HZ85ghfwysHT1m_iac3sFGUu7DjoCpziWC5B4N-yb6cD5jV9iD7YXOYnF3MV1Z4gcoh688ni4dZNf3OzqlQarYo2bU3tIq5y4rsZ5MpRd9bGA0uv15cee5KBg-DLKo8nRCZlpn0A5UY3yASF9dplvpIfU05qkRlPnLlx6LgiRGR0pIwCtE0rRF5GO5Dp1yUxQEww1PUfiG4j4ayiFTEVTFOIyE1BUkSdOFDOxf5faO8kdeMRYjcOih3DurCiXPkP8yO2lnMW2fnQWKXQQnRhF04fZrZv7bz7n8ND2Hbvtr15yA6gk71sCqOCcBU6r0L1F9ecuaD priority: 102 providerName: Unpaywall  | 
    
| Title | An RBF Neural Network Clustering Algorithm Based on K-Nearest Neighbor | 
    
| URI | https://dx.doi.org/10.1155/2022/1083961 https://www.proquest.com/docview/2709596133 https://downloads.hindawi.com/journals/mpe/2022/1083961.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 2022 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1563-5147 dateEnd: 20240530 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: KQ8 dateStart: 19950101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1563-5147 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1563-5147 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1563-5147 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1563-5147 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0021518 issn: 1024-123X databaseCode: 24P dateStart: 19950101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46EX3xtzidIw_Tt0La9Uf62I3V4bDM4aA-lTZpnFC7YTuG_72XNRtOQX28krb0Lsf3fcn1glCLmUykTDI3YseayWyhUUGI5iYWA7pBhbE8kuUhsPtj8z60QtUkqfi5hQ9oJ-W5AQYguZQ529SWlVujfrjWVQBa1R9vhmzB1w5X9e3f7t1Ant2JlLyL1w1iuTfPZ_HHIs6yLxjjH6EDRQ6xV0XzGG2l-Qk6VEQRqzQsTpHv5XjU8bHsrAHjg6qUG3ezuWx7AGCEvexlCrJ_8oY7AFMcT3M80ALZr7YoYTwocoj9GRr7vaduX1MHImjMcM1S4w5I2diNdSNxhC4YAyXMqUt1Bt9HCUucxNUZSXTbSokjLDPhMTAEEEmcM0ba7XNUy6d5eoGwIJRxPbWIzgTkcJyAUmQ2Na2YQ4gco45uVs6KZlXfi2ipFywrkk6NlFPrqKU8-cewxsrNkUqSIjIcuQgJfKJdR7dr1__6nMv_ve4K7UtTrv0aZgPVyvd5eg3koUyaMIH8uyba6fSC4QiswSNtLqcTXBsHQ-_5E8hGvcE | 
    
| linkProvider | Hindawi Publishing | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LU9swEN6hYTr0Uvpimpa2OgA3U0tYfhx6CKFpaCCHDkxzc62VRZimTto4k4EfxV_hL7GKZR490BOH3mXN2Ptp9_vWq12ADQzQ5GiZmx9mXoCh8WLj-16iJBLdiI1YjGQ57Ifd4-DrQA6W4KK-C2PLKmufuHDUeow2R_5RRDZjRcGnnlTdy8_mpM-mn_b3yJibQnQ-H7W7nhsh4KFIgtLTEYm_LMm4UJHhBpG0o46TmONOEsY-qkglHH3FQ5n7kZGB0hnFVJIVWiP6Ntsptia_PTulyv7NdSM7HsEy4ZyLBiy3v-996V5LPIqf1eU7YbsB7gzqUnspbZZBkI8iQhLyO0Hw8dCq7_npHY67Mism2dk8G41uhbvOKlzWH6qqcvm5PSvVNp7_1UPy__mSz-CpY96sVR2V57CUFy9g1bFw5nzc9CV0WgX7ttthtm0Jre9XdfKsPZrZnhIU6VlrdEL7l8NfbJc4gGbjgvW8vm0GPC1p_enJkA7WKzh-kBdcg0YxLvLXwIwfo-a59DkacpCZIhmOYRzITBP-I9GEzdr86aRqKpIuxJiUqYVJ6mDShA2HjX8sW68NnToPNE1vrNyErWsw3bvPm_v3-QAr3aPDg_Rgv997C0_skza5LoJ1aJR_Zvk7Ymeleu-OBIMfDw2nKybXRNc | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nc9MwEN3ptMPHhfI5pBTQoeXmVlYs2T4wTJpgUgIZhqFDbq69spoOqROIM5ny0_gr_BlWsVwoh3LqgbusGUlv375dr1YAOxigKdAqN64yL0BlvMhw7sW5RJIbkRGrJ1neD1X_KHg7kqM1-NHchbFllQ0nrohaT9HmyPdFaDNW5Hza-8aVRXzoJa9mXz37gpT909o8p1FDZFCcLyl8m7887NFZ7wqRvP7U7XvuhQEPRRxUng4pNszizBd5aHyDSKGljuLIx3asIo55mMc-8txXsuChkUGuM3K5FHVojchtMpTofyNSoSJS2Oh-7r3pX4R75Evri3jCdgZsj5qyeyltxkEQX5E4Uf4lh3hjbCPx5eklvXtrUc6y82U2mfzh-pJN-NlsWl3x8mVvUeV7-P2vfpL_567ehTtOkbNObUL3YK0o78OmU-fMcd_8ASSdkn08SJhtZ0Ljh3X9POtOFrbXBCkA1pmc0Hqq8Rk7IG2g2bRkA29omwTPKxp_ejImg3sIR9eymkewXk7L4jEwwyPUfiG5j4aIM8spPEcVBTLTZBehaMFuA4V0VjcbSVdBmpSphUzqINOCHYeTfwzbbg49dcw0T3-feAteXADrynm2rp7nOdwkzKTvDoeDJ3Dbfmhz7iLYhvXq26J4SqKtyp8562BwfN3Q-QUNmk2f | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7alLG-rFu70qzt0EPXN6fyD_kHe0pLQ1lpGGOBFApGOllJWOaUxqFsf_1OtlyWPWyjbzYcQjqd775Pkj8BnGCEpkCL3HgsvQhj46WGcy9TAglupCaor2S5GcZXo-jTWIw34GP7L4y2EvELqZe9qeWkj7M6Wzu_Ls8ISlq6HtDHTpU9pjSjzSZsxYKAeAe2RsPP_dt6fzOwanzhuHmOqSf1HYxEVkKPIELSHoEXYq25teL0wvVgDXu-XJX38sejnM9_K0ODHbhrB9CcPvnWW1Wqhz__0HZ85ghfwysHT1m_iac3sFGUu7DjoCpziWC5B4N-yb6cD5jV9iD7YXOYnF3MV1Z4gcoh688ni4dZNf3OzqlQarYo2bU3tIq5y4rsZ5MpRd9bGA0uv15cee5KBg-DLKo8nRCZlpn0A5UY3yASF9dplvpIfU05qkRlPnLlx6LgiRGR0pIwCtE0rRF5GO5Dp1yUxQEww1PUfiG4j4ayiFTEVTFOIyE1BUkSdOFDOxf5faO8kdeMRYjcOih3DurCiXPkP8yO2lnMW2fnQWKXQQnRhF04fZrZv7bz7n8ND2Hbvtr15yA6gk71sCqOCcBU6r0L1F9ecuaD | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+RBF+Neural+Network+Clustering+Algorithm+Based+on+K-Nearest+Neighbor&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Li%2C+Jitao&rft.au=Xu%2C+Chugui&rft.au=Liang%2C+Yongquan&rft.au=Wu%2C+Gengkun&rft.date=2022-08-24&rft.pub=Hindawi&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1083961&rft.externalDocID=10_1155_2022_1083961 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon |