An RBF Neural Network Clustering Algorithm Based on K-Nearest Neighbor

Neural network is a supervised classification algorithm which can deal with high complexity and nonlinear data analysis. Supervised algorithm needs some known labels in the training process, and then corrects parameters through backpropagation method. However, due to the lack of marked labels, exist...

Full description

Saved in:
Bibliographic Details
Published inMathematical problems in engineering Vol. 2022; pp. 1 - 9
Main Authors Li, Jitao, Xu, Chugui, Liang, Yongquan, Wu, Gengkun, Liang, Zhao
Format Journal Article
LanguageEnglish
Published New York Hindawi 24.08.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1024-123X
1026-7077
1563-5147
1563-5147
DOI10.1155/2022/1083961

Cover

Abstract Neural network is a supervised classification algorithm which can deal with high complexity and nonlinear data analysis. Supervised algorithm needs some known labels in the training process, and then corrects parameters through backpropagation method. However, due to the lack of marked labels, existing literature mostly uses Auto-Encoder to reduce the dimension of data when facing of clustering problems. This paper proposes an RBF (Radial Basis Function) neural network clustering algorithm based on K-nearest neighbors theory, which first uses K-means algorithm for preclassification, and then constructs self-supervised labels based on K-nearest neighbors theory for backpropagation. The algorithm in this paper belongs to a self-supervised neural network clustering algorithm, and it also makes the neural network truly have the ability of self-decision-making and self-optimization. From the experimental results of the artificial data sets and the UCI data sets, it can be proved that the proposed algorithm has excellent adaptability and robustness.
AbstractList Neural network is a supervised classification algorithm which can deal with high complexity and nonlinear data analysis. Supervised algorithm needs some known labels in the training process, and then corrects parameters through backpropagation method. However, due to the lack of marked labels, existing literature mostly uses Auto-Encoder to reduce the dimension of data when facing of clustering problems. This paper proposes an RBF (Radial Basis Function) neural network clustering algorithm based on K-nearest neighbors theory, which first uses K-means algorithm for preclassification, and then constructs self-supervised labels based on K-nearest neighbors theory for backpropagation. The algorithm in this paper belongs to a self-supervised neural network clustering algorithm, and it also makes the neural network truly have the ability of self-decision-making and self-optimization. From the experimental results of the artificial data sets and the UCI data sets, it can be proved that the proposed algorithm has excellent adaptability and robustness.
Author Xu, Chugui
Liang, Yongquan
Liang, Zhao
Li, Jitao
Wu, Gengkun
Author_xml – sequence: 1
  givenname: Jitao
  orcidid: 0000-0002-5068-803X
  surname: Li
  fullname: Li, Jitao
  organization: Department of Information Science and TechnologyTaishan UniversityTaian 271000Chinatsu.edu.cn
– sequence: 2
  givenname: Chugui
  surname: Xu
  fullname: Xu, Chugui
  organization: Department of Information Science and TechnologyTaishan UniversityTaian 271000Chinatsu.edu.cn
– sequence: 3
  givenname: Yongquan
  surname: Liang
  fullname: Liang, Yongquan
  organization: College of Computer Science and EngineeringShandong University of Science and TechnologyQingdao 266590Chinasdust.edu.cn
– sequence: 4
  givenname: Gengkun
  orcidid: 0000-0002-8074-3431
  surname: Wu
  fullname: Wu, Gengkun
  organization: College of Computer Science and EngineeringShandong University of Science and TechnologyQingdao 266590Chinasdust.edu.cn
– sequence: 5
  givenname: Zhao
  surname: Liang
  fullname: Liang, Zhao
  organization: Department of Information Science and TechnologyTaishan UniversityTaian 271000Chinatsu.edu.cn
BookMark eNqF0EFLwzAYBuAgE9ymN39AwaPW5UubpjluY1NxTBAFbyVN062zS2bSMvbvTenOevq-w8PLyztCA220QugW8CMApROCCZkATiOewAUaAk2ikELMBv7HJA6BRF9XaOTcDmMCFNIhWk518D5bBmvVWlH70xyN_Q7mdesaZSu9Cab1xtiq2e6DmXCqCIwOXsO1Ela5xvtqs82NvUaXpaidujnfMfpcLj7mz-Hq7ellPl2FkvC4CQvGMRNcAMlZCaWUKo-KlKcgfeUUy5zlHCTOIaEKs5LGeSFYHJEEikJKHEVjFPa5rT6I01HUdXaw1V7YUwY460bIuhGy8wje3_X-YM1P6xtnO9Na7StmhGFOO9OlPvRKWuOcVeV_ofc931a6EMfqb_0LMcN2MA
Cites_doi 10.1109/access.2020.2974496
10.1126/science.1242072
10.1016/j.knosys.2020.105841
10.1016/j.neunet.2020.07.005
10.1016/j.neucom.2020.02.005
10.1016/j.imavis.2020.103871
10.1109/lsp.2020.2965328
ContentType Journal Article
Copyright Copyright © 2022 Jitao Li et al.
Copyright © 2022 Jitao Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2022 Jitao Li et al.
– notice: Copyright © 2022 Jitao Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID RHU
RHW
RHX
AAYXX
CITATION
7TB
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CWDGH
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
ADTOC
UNPAY
DOI 10.1155/2022/1083961
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central (Alumni)
ProQuest Central
Health Research Premium Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (Proquest)
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Engineering Database
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Middle East & Africa Database
ProQuest Central Korea
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1563-5147
Editor Liu, Wei
Editor_xml – sequence: 1
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
EndPage 9
ExternalDocumentID 10.1155/2022/1083961
10_1155_2022_1083961
GrantInformation_xml – fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2021MF045
GroupedDBID 29M
2WC
3V.
4.4
5GY
5VS
8FE
8FG
8R4
8R5
AAFWJ
AAJEY
ABDBF
ABJCF
ABUWG
ACIPV
ACIWK
ADBBV
AENEX
AFKRA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CS3
CWDGH
E3Z
EBS
ESX
GROUPED_DOAJ
HCIFZ
I-F
IAO
IEA
IOF
ISR
ITC
K6V
K7-
KQ8
L6V
M7S
MK~
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RHW
RHX
RNS
TR2
TUS
XSB
YQT
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
OVT
PHGZM
PHGZT
PQGLB
PUEGO
7TB
8FD
AZQEC
DWQXO
FR3
GNUQQ
JQ2
KR7
PKEHL
PQEST
PQUKI
PRINS
-~9
188
2UF
ADTOC
AFFNX
C1A
CAG
COF
EJD
IL9
IPNFZ
RIG
UGNYK
UNPAY
ID FETCH-LOGICAL-c294t-d7907a9a12b7f1fcceb3d8981c39680cb7b91c0b165e07f54bda743261ddcc033
IEDL.DBID RHX
ISSN 1024-123X
1026-7077
1563-5147
IngestDate Tue Aug 19 18:11:00 EDT 2025
Fri Jul 25 10:12:33 EDT 2025
Wed Oct 01 05:03:01 EDT 2025
Sun Jun 02 18:51:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-d7907a9a12b7f1fcceb3d8981c39680cb7b91c0b165e07f54bda743261ddcc033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8074-3431
0000-0002-5068-803X
OpenAccessLink https://dx.doi.org/10.1155/2022/1083961
PQID 2709596133
PQPubID 237775
PageCount 9
ParticipantIDs unpaywall_primary_10_1155_2022_1083961
proquest_journals_2709596133
crossref_primary_10_1155_2022_1083961
hindawi_primary_10_1155_2022_1083961
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-24
PublicationDateYYYYMMDD 2022-08-24
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-24
  day: 24
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Mathematical problems in engineering
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References J. J. Zhao (2)
W. H. Hu (14)
15
J. Yang (9)
Z. Jiang (11)
J. Chang (13)
17
W. A. Lin (5)
18
S. Mukherjee (23)
U. Shaham (10)
I. J. Goodfellow (21) 2014; 27
J. L. Chang (1) 2019
N. Dilokthanakul (22) 2016
M. Tapaswi (3)
D. Berthelot (19)
4
6
V. D. M. Laurens (16) 2008; 9
7
J. Y. Xie (12)
B. Yang (8) 2017; 70
20
References_xml – ident: 7
  doi: 10.1109/access.2020.2974496
– ident: 17
  doi: 10.1126/science.1242072
– ident: 14
  article-title: Learning discrete representations via information maximizing self-augmented training
– volume: 27
  start-page: 2672
  issue: 3
  year: 2014
  ident: 21
  article-title: Generative adversarial networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 5027
  ident: 3
  article-title: Video face clustering with unknown number of clusters
– start-page: 54
  ident: 2
  article-title: Deep image clustering with category-style representation
– start-page: 1965
  ident: 11
  article-title: Variational deep embedding: an unsupervised and generative approach to clustering
– ident: 15
  doi: 10.1016/j.knosys.2020.105841
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: 16
  article-title: Visualizing data using t-SNE
  publication-title: Journal of Machine Learning Research
– ident: 18
  doi: 10.1016/j.neunet.2020.07.005
– ident: 4
  doi: 10.1016/j.neucom.2020.02.005
– ident: 6
  doi: 10.1016/j.imavis.2020.103871
– year: 2019
  ident: 1
  article-title: Deep discriminative clustering analysis
– volume: 70
  start-page: 3861
  year: 2017
  ident: 8
  article-title: Towards k-means-friendly spaces: simultaneous deep learning and clustering
  publication-title: Proceedings of Machine Learning Research
– start-page: 272
  ident: 19
  article-title: Understanding and improving interpolation in autoencoders via an adversarial regularizer
– start-page: 267
  ident: 10
  article-title: SpectralNet: spectral clustering using deep neural networks
– start-page: 478
  ident: 12
  article-title: Unsupervised deep embedding for clustering analysis
– start-page: 8128
  ident: 5
  article-title: Deep density clustering of unconstrained faces
– start-page: 5879
  ident: 13
  article-title: Deep adaptive image clustering
– ident: 20
  doi: 10.1109/lsp.2020.2965328
– year: 2016
  ident: 22
  article-title: Deep unsupervised clustering with Gaussian mixture variational autoencoders
– start-page: 5147
  ident: 9
  article-title: Joint unsupervised learning of deep representations and image clusters
– start-page: 4610
  ident: 23
  article-title: ClusterGAN: latent space clustering in generative adversarial networks
SSID ssj0021518
Score 2.2836196
Snippet Neural network is a supervised classification algorithm which can deal with high complexity and nonlinear data analysis. Supervised algorithm needs some known...
SourceID unpaywall
proquest
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Back propagation
Back propagation networks
Classification
Cluster analysis
Clustering
Coders
Data analysis
Datasets
Decision making
Deep learning
Labels
Methods
Neural networks
Optimization
Process parameters
Radial basis function
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LSwMxEB60InrxLdYXOai3xWy62cdBpBWLKC4iCr0t2cnGCnVb7Rbx3ztpsz4ueh8CmSQz3zdJvgE4wgBNgRa58VB5AYbGiw3nXpJLJLgRGzFtyXKbhlePwXVP9uYgrf_C2GeVdUycBmo9RFsjPxWRrVhR8mmdj1492zXK3q7WLTSUa62gz6YSY_OwIKwyVgMWOpfp3f0XBaP8NvscJ6xaX6tXP4WX0lYBBMUQAgyh_ytJLfYtO35__oVBlyblSH28q8HgRzrqrsGKw5GsPVv4dZgryg1YdZiSuRM73oRuu2T3nS6zIhxkn85efbOLwcQqJFDeYu3BE82z6r-wDmU0zYYlu_FSK207rsieyDttky147F4-XFx5rneChyIJKk9HxHpVonyRR8Y3iESadZzEPtL8Yo55lCc-8twPZcEjI4NcKwITxKe0RuSt1jY0ymFZ7AAzPEbtF5L7aOi4q5xIJYZxIJWm1YxEE45rZ2WjmURGNqUWUmbWqZlzahOOnCf_Mduv3Zy58zTOvle_CSdfrv9znN2_x9mDZWtty8Mi2IdG9TYpDghfVPmh2zSfAGPJbg
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7alLG-rFu70qzt0EPXN6fyD_kHe0pLQ1lpGGOBFApGOllJWOaUxqFsf_1OtlyWPWyjbzYcQjqd775Pkj8BnGCEpkCL3HgsvQhj46WGcy9TAglupCaor2S5GcZXo-jTWIw34GP7L4y2EvELqZe9qeWkj7M6Wzu_Ls8ISlq6HtDHTpU9pjSjzSZsxYKAeAe2RsPP_dt6fzOwanzhuHmOqSf1HYxEVkKPIELSHoEXYq25teL0wvVgDXu-XJX38sejnM9_K0ODHbhrB9CcPvnWW1Wqhz__0HZ85ghfwysHT1m_iac3sFGUu7DjoCpziWC5B4N-yb6cD5jV9iD7YXOYnF3MV1Z4gcoh688ni4dZNf3OzqlQarYo2bU3tIq5y4rsZ5MpRd9bGA0uv15cee5KBg-DLKo8nRCZlpn0A5UY3yASF9dplvpIfU05qkRlPnLlx6LgiRGR0pIwCtE0rRF5GO5Dp1yUxQEww1PUfiG4j4ayiFTEVTFOIyE1BUkSdOFDOxf5faO8kdeMRYjcOih3DurCiXPkP8yO2lnMW2fnQWKXQQnRhF04fZrZv7bz7n8ND2Hbvtr15yA6gk71sCqOCcBU6r0L1F9ecuaD
  priority: 102
  providerName: Unpaywall
Title An RBF Neural Network Clustering Algorithm Based on K-Nearest Neighbor
URI https://dx.doi.org/10.1155/2022/1083961
https://www.proquest.com/docview/2709596133
https://downloads.hindawi.com/journals/mpe/2022/1083961.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20240530
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: KQ8
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1563-5147
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1563-5147
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0021518
  issn: 1024-123X
  databaseCode: 24P
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fS8MwEA46EX3xtzidIw_Tt0La9Uf62I3V4bDM4aA-lTZpnFC7YTuG_72XNRtOQX28krb0Lsf3fcn1glCLmUykTDI3YseayWyhUUGI5iYWA7pBhbE8kuUhsPtj8z60QtUkqfi5hQ9oJ-W5AQYguZQ529SWlVujfrjWVQBa1R9vhmzB1w5X9e3f7t1Ant2JlLyL1w1iuTfPZ_HHIs6yLxjjH6EDRQ6xV0XzGG2l-Qk6VEQRqzQsTpHv5XjU8bHsrAHjg6qUG3ezuWx7AGCEvexlCrJ_8oY7AFMcT3M80ALZr7YoYTwocoj9GRr7vaduX1MHImjMcM1S4w5I2diNdSNxhC4YAyXMqUt1Bt9HCUucxNUZSXTbSokjLDPhMTAEEEmcM0ba7XNUy6d5eoGwIJRxPbWIzgTkcJyAUmQ2Na2YQ4gco45uVs6KZlXfi2ipFywrkk6NlFPrqKU8-cewxsrNkUqSIjIcuQgJfKJdR7dr1__6nMv_ve4K7UtTrv0aZgPVyvd5eg3koUyaMIH8uyba6fSC4QiswSNtLqcTXBsHQ-_5E8hGvcE
linkProvider Hindawi Publishing
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LU9swEN6hYTr0Uvpimpa2OgA3U0tYfhx6CKFpaCCHDkxzc62VRZimTto4k4EfxV_hL7GKZR490BOH3mXN2Ptp9_vWq12ADQzQ5GiZmx9mXoCh8WLj-16iJBLdiI1YjGQ57Ifd4-DrQA6W4KK-C2PLKmufuHDUeow2R_5RRDZjRcGnnlTdy8_mpM-mn_b3yJibQnQ-H7W7nhsh4KFIgtLTEYm_LMm4UJHhBpG0o46TmONOEsY-qkglHH3FQ5n7kZGB0hnFVJIVWiP6Ntsptia_PTulyv7NdSM7HsEy4ZyLBiy3v-996V5LPIqf1eU7YbsB7gzqUnspbZZBkI8iQhLyO0Hw8dCq7_npHY67Mism2dk8G41uhbvOKlzWH6qqcvm5PSvVNp7_1UPy__mSz-CpY96sVR2V57CUFy9g1bFw5nzc9CV0WgX7ttthtm0Jre9XdfKsPZrZnhIU6VlrdEL7l8NfbJc4gGbjgvW8vm0GPC1p_enJkA7WKzh-kBdcg0YxLvLXwIwfo-a59DkacpCZIhmOYRzITBP-I9GEzdr86aRqKpIuxJiUqYVJ6mDShA2HjX8sW68NnToPNE1vrNyErWsw3bvPm_v3-QAr3aPDg_Rgv997C0_skza5LoJ1aJR_Zvk7Ymeleu-OBIMfDw2nKybXRNc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nc9MwEN3ptMPHhfI5pBTQoeXmVlYs2T4wTJpgUgIZhqFDbq69spoOqROIM5ny0_gr_BlWsVwoh3LqgbusGUlv375dr1YAOxigKdAqN64yL0BlvMhw7sW5RJIbkRGrJ1neD1X_KHg7kqM1-NHchbFllQ0nrohaT9HmyPdFaDNW5Hza-8aVRXzoJa9mXz37gpT909o8p1FDZFCcLyl8m7887NFZ7wqRvP7U7XvuhQEPRRxUng4pNszizBd5aHyDSKGljuLIx3asIo55mMc-8txXsuChkUGuM3K5FHVojchtMpTofyNSoSJS2Oh-7r3pX4R75Evri3jCdgZsj5qyeyltxkEQX5E4Uf4lh3hjbCPx5eklvXtrUc6y82U2mfzh-pJN-NlsWl3x8mVvUeV7-P2vfpL_567ehTtOkbNObUL3YK0o78OmU-fMcd_8ASSdkn08SJhtZ0Ljh3X9POtOFrbXBCkA1pmc0Hqq8Rk7IG2g2bRkA29omwTPKxp_ejImg3sIR9eymkewXk7L4jEwwyPUfiG5j4aIM8spPEcVBTLTZBehaMFuA4V0VjcbSVdBmpSphUzqINOCHYeTfwzbbg49dcw0T3-feAteXADrynm2rp7nOdwkzKTvDoeDJ3Dbfmhz7iLYhvXq26J4SqKtyp8562BwfN3Q-QUNmk2f
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9swED7alLG-rFu70qzt0EPXN6fyD_kHe0pLQ1lpGGOBFApGOllJWOaUxqFsf_1OtlyWPWyjbzYcQjqd775Pkj8BnGCEpkCL3HgsvQhj46WGcy9TAglupCaor2S5GcZXo-jTWIw34GP7L4y2EvELqZe9qeWkj7M6Wzu_Ls8ISlq6HtDHTpU9pjSjzSZsxYKAeAe2RsPP_dt6fzOwanzhuHmOqSf1HYxEVkKPIELSHoEXYq25teL0wvVgDXu-XJX38sejnM9_K0ODHbhrB9CcPvnWW1Wqhz__0HZ85ghfwysHT1m_iac3sFGUu7DjoCpziWC5B4N-yb6cD5jV9iD7YXOYnF3MV1Z4gcoh688ni4dZNf3OzqlQarYo2bU3tIq5y4rsZ5MpRd9bGA0uv15cee5KBg-DLKo8nRCZlpn0A5UY3yASF9dplvpIfU05qkRlPnLlx6LgiRGR0pIwCtE0rRF5GO5Dp1yUxQEww1PUfiG4j4ayiFTEVTFOIyE1BUkSdOFDOxf5faO8kdeMRYjcOih3DurCiXPkP8yO2lnMW2fnQWKXQQnRhF04fZrZv7bz7n8ND2Hbvtr15yA6gk71sCqOCcBU6r0L1F9ecuaD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+RBF+Neural+Network+Clustering+Algorithm+Based+on+K-Nearest+Neighbor&rft.jtitle=Mathematical+problems+in+engineering&rft.au=Li%2C+Jitao&rft.au=Xu%2C+Chugui&rft.au=Liang%2C+Yongquan&rft.au=Wu%2C+Gengkun&rft.date=2022-08-24&rft.pub=Hindawi&rft.issn=1024-123X&rft.eissn=1563-5147&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F1083961&rft.externalDocID=10_1155_2022_1083961
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1024-123X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1024-123X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1024-123X&client=summon