Vector approximate message passing with sparse Bayesian learning for Gaussian mixture prior

Compressed sensing (CS) aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations. Currently, various Bayesian-based algorithms such as sparse Bayesian learning (SBL) and approximate message passing (AMP) based algorithms have been proposed. For SBL, it has ac...

Full description

Saved in:
Bibliographic Details
Published inChina communications Vol. 20; no. 5; pp. 57 - 69
Main Authors Ruan, Chengyao, Zhang, Zaichen, Jiang, Hao, Dang, Jian, Wu, Liang, Zhang, Hongming
Format Journal Article
LanguageEnglish
Published China Institute of Communications 01.05.2023
National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China%National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China
Purple Mountain Laboratories,No.9 Mozhou East Road,Nanjing 211111,China%School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing 210044,China%School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China
Subjects
Online AccessGet full text
ISSN1673-5447
DOI10.23919/JCC.2023.00.005

Cover

Abstract Compressed sensing (CS) aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations. Currently, various Bayesian-based algorithms such as sparse Bayesian learning (SBL) and approximate message passing (AMP) based algorithms have been proposed. For SBL, it has accurate performance with robustness while its computational complexity is high due to matrix inversion. For AMP, its performance is guaranteed by the severe restriction of the measurement matrix, which limits its application in solving CS problem. To overcome the drawbacks of the above algorithms, in this paper, we present a low complexity algorithm for the single linear model that incorporates the vector AMP (VAMP) into the SBL structure with expectation maximization (EM). Specifically, we apply the variance auto-tuning into the VAMP to implement the E step in SBL, which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture (GM) prior. Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.
AbstractList Compressed sensing (CS) aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations. Currently, various Bayesian-based algorithms such as sparse Bayesian learning (SBL) and approximate message passing (AMP) based algorithms have been proposed. For SBL, it has accurate performance with robustness while its computational complexity is high due to matrix inversion. For AMP, its performance is guaranteed by the severe restriction of the measurement matrix, which limits its application in solving CS problem. To overcome the drawbacks of the above algorithms, in this paper, we present a low complexity algorithm for the single linear model that incorporates the vector AMP (VAMP) into the SBL structure with expectation maximization (EM). Specifically, we apply the variance auto-tuning into the VAMP to implement the E step in SBL, which decrease the iterations that require to converge compared with VAMP-EM algorithm when using a Gaussian mixture (GM) prior. Simulation results show that the proposed algorithm has better performance with high robustness under various cases of difficult measurement matrices.
Compressed sensing(CS)aims for seek-ing appropriate algorithms to recover a sparse vec-tor from noisy linear observations.Currently,various Bayesian-based algorithms such as sparse Bayesian learning(SBL)and approximate message passing(AMP)based algorithms have been proposed.For SBL,it has accurate performance with robustness while its computational complexity is high due to ma-trix inversion.For AMP,its performance is guaran-teed by the severe restriction of the measurement ma-trix,which limits its application in solving CS prob-lem.To overcome the drawbacks of the above algo-rithms,in this paper,we present a low complexity al-gorithm for the single linear model that incorporates the vector AMP(VAMP)into the SBL structure with expectation maximization(EM).Specifically,we ap-ply the variance auto-tuning into the VAMP to imple-ment the E step in SBL,which decrease the iterations that require to converge compared with VAMP-EM al-gorithm when using a Gaussian mixture(GM)prior.Simulation results show that the proposed algorithm has better performance with high robustness under var-ious cases of difficult measurement matrices.
Author Zhang, Hongming
Dang, Jian
Zhang, Zaichen
Wu, Liang
Jiang, Hao
Ruan, Chengyao
AuthorAffiliation National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China%National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China;Purple Mountain Laboratories,No.9 Mozhou East Road,Nanjing 211111,China%School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing 210044,China%School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China
AuthorAffiliation_xml – name: National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China%National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China;Purple Mountain Laboratories,No.9 Mozhou East Road,Nanjing 211111,China%School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing 210044,China%School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China
Author_xml – sequence: 1
  givenname: Chengyao
  surname: Ruan
  fullname: Ruan, Chengyao
  organization: National Mobile Communications Research Laboratory, Frontiers Science Center for Mobile Information Communication and Security, Southeast University, Nanjing 210096, China
– sequence: 2
  givenname: Zaichen
  surname: Zhang
  fullname: Zhang, Zaichen
  organization: Purple Mountain Laboratories, No. 9 Mozhou East Road, Nanjing 211111, China
– sequence: 3
  givenname: Hao
  surname: Jiang
  fullname: Jiang, Hao
  organization: School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, China
– sequence: 4
  givenname: Jian
  surname: Dang
  fullname: Dang, Jian
  organization: Purple Mountain Laboratories, No. 9 Mozhou East Road, Nanjing 211111, China
– sequence: 5
  givenname: Liang
  surname: Wu
  fullname: Wu, Liang
  organization: Purple Mountain Laboratories, No. 9 Mozhou East Road, Nanjing 211111, China
– sequence: 6
  givenname: Hongming
  surname: Zhang
  fullname: Zhang, Hongming
  organization: School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
BookMark eNp9kDFPAzEMhTMUiVK6MzDcwtjiXHLpdYQKCqgSC7AwnNzEV1K1uVOSipZfT9oyIAYsS5Zsf37WO2Md1zhi7ILDMBdjPr5-mkyGOeRiCJCy6LAuVyMxKKQcnbJ-CEtIUSolVN5l72-kY-MzbFvfbO0aI2VrCgEXlLUYgnWL7NPGjyy06ANlt7ijYNFlK0Lv9tM60VPchEN3bbdx4xPqbePP2UmNq0D9n9pjr_d3L5OHwex5-ji5mQ10PpZxYAQ3nPMStaw5ES-g0GMNhdEozKg0lEuaC5jzWimUxszn3JRK6FJIk6Mk0WNXx7uf6Gp0i2rZbLxLitXXIm73VkABINMeHPe0b0LwVFfpzTX6XcWhOnhXJe-qPVABpCwSov4g2kaMtnHRo139B14eQUtEv3SgUKMSxDdcqoGl
CODEN CCHOBE
CitedBy_id crossref_primary_10_3390_electronics13173478
crossref_primary_10_1109_LWC_2024_3382514
crossref_primary_10_1007_s11227_024_06072_2
crossref_primary_10_1049_cmu2_12765
crossref_primary_10_1088_1361_6560_ad7223
crossref_primary_10_1016_j_dsp_2024_104387
crossref_primary_10_1049_cmu2_12724
crossref_primary_10_1109_TWC_2024_3380903
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.23919/JCC.2023.00.005
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EndPage 69
ExternalDocumentID zgtx202305004
10_23919_JCC_2023_00_005
10056780
Genre orig-research
GroupedDBID -SI
-SJ
-S~
0R~
29B
4.4
5GY
6IK
92H
92I
97E
AAHTB
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABPEJ
ABQJQ
ABVLG
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
AZLTO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
CAJEJ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
Q--
Q-9
RIA
RIE
RNS
TCJ
TGT
U1G
U5S
U5T
AAYXX
CITATION
2B.
4A8
93N
PSX
RIG
ID FETCH-LOGICAL-c294t-d31d1118ac4f1ee1505c9c05dca3d78de24eb30b1f66a4ddbb1d863c834d2a4e3
IEDL.DBID RIE
ISSN 1673-5447
IngestDate Thu May 29 03:54:26 EDT 2025
Thu Apr 24 23:12:48 EDT 2025
Wed Oct 01 05:04:04 EDT 2025
Wed Aug 27 02:07:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords compressed sensing
expectation propagation
approximate message passing
sparse Bayesian learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-d31d1118ac4f1ee1505c9c05dca3d78de24eb30b1f66a4ddbb1d863c834d2a4e3
PageCount 13
ParticipantIDs crossref_primary_10_23919_JCC_2023_00_005
wanfang_journals_zgtx202305004
crossref_citationtrail_10_23919_JCC_2023_00_005
ieee_primary_10056780
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-01
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-01
  day: 01
PublicationDecade 2020
PublicationTitle China communications
PublicationTitleAbbrev ChinaComm
PublicationTitle_FL China Communications
PublicationYear 2023
Publisher China Institute of Communications
National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China%National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China
Purple Mountain Laboratories,No.9 Mozhou East Road,Nanjing 211111,China%School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing 210044,China%School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China
Publisher_xml – name: China Institute of Communications
– name: Purple Mountain Laboratories,No.9 Mozhou East Road,Nanjing 211111,China%School of Artificial Intelligence,Nanjing University of Information Science and Technology,Nanjing 210044,China%School of Information and Communication Engineering,Beijing University of Posts and Telecommunications,Beijing 100876,China
– name: National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China%National Mobile Communications Research Laboratory,Frontiers Science Center for Mobile Information Communication and Security,Southeast University,Nanjing 210096,China
SSID ssj0000866362
Score 2.3198369
Snippet Compressed sensing (CS) aims for seeking appropriate algorithms to recover a sparse vector from noisy linear observations. Currently, various Bayesian-based...
Compressed sensing(CS)aims for seek-ing appropriate algorithms to recover a sparse vec-tor from noisy linear observations.Currently,various Bayesian-based...
SourceID wanfang
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms approximate message passing
Approximation algorithms
Bayes methods
compressed sensing
Covariance matrices
Estimation
expectation propagation
Message passing
Robustness
sparse Bayesian learning
Sparse matrices
Title Vector approximate message passing with sparse Bayesian learning for Gaussian mixture prior
URI https://ieeexplore.ieee.org/document/10056780
https://d.wanfangdata.com.cn/periodical/zgtx202305004
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  issn: 1673-5447
  databaseCode: RIE
  dateStart: 20130101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://ieeexplore.ieee.org/
  omitProxy: false
  ssIdentifier: ssj0000866362
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3Na9swFBddL91l_cpY-oUOvexg17JlWT62oR8UltNSCj0YWXoOYasTEgfS_vV9T3ZKOtjYzRgJhJ6k93ufP8bOUaNWEIMIcihdIIUxgQarAitEhVdL5raiQuEfQ3U3kveP6WNXrO5rYQDAJ59BSJ8-lu-mdkmuMrzhqK4zjRb6p0yrtljr3aGC2FwlnkBUqIwC_jJrw5Jxkov84n4wCIkqPIwolyv9oIY8r4qv2qkrU483FMzNLhuul9bmlfwKl00Z2tc_ujb-99r32JcOavLL9mzssy2oD9jOuhJ5ccieHrzLnvu-4qsJYlfgz0SJMgY-Q1CNWo2Tn5bjqzNfAL8yL0A1l7yjmhhzRLz81iwX_u_zZEXhCD6bT6bzHhvdXP8c3AUd2UJg41w2gUuEQ-FoY2UlABAnpja3UeqsSVymHcQS7e6oFJVSRjpXlsJplVidSBcbCclXtl1Pa_jGOCJC5bLcVJLMR2VMrI2RSlciLkuEM312sd77wnadyIkQ43eBFomXVoHSKkhaRUTdS9M--_4-Y9Z24fjH2B7t_sa4duP77KyTb9Fd00XxOm5WNDVK8a04-svEY_aZxrRZjidsu5kv4RSRSFOe-RP4BkwQ2oE
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFLcQO5QLG4yJsgE-7LJDQpw4TnIcFV356gkmpB0ix36pKmhatalU-Ot5z0kRm8TELYpsyfKz_X7v88fYd9SoJYQgvAwK60mhtZeCUZ4RosSrJTNTUqHw9VANbuXFXXzXFqu7WhgAcMln4NOni-XbqVmSqwxvOKrrJEUL_UMspYybcq0XlwqicxU5ClGhEgr5y6QJTIZRJrKTi17PJ7JwP6BsrvgvReSYVVzdTlXqavRKxfQ_suF6cU1myb2_rAvfPP3Tt_Hdq__EtluwyX82p2OHbUC1yzrrWuTFZ_bnt3Pac9dZfDVG9Ap8QqQoI-AzhNWo1zh5ajm-O_MF8FP9CFR1yVuyiRFHzMt_6eXC_Z2MVxSQ4LP5eDrfY7f9s5vewGvpFjwTZrL2bCQsiifVRpYCAJFibDITxNboyCaphVCi5R0UolRKS2uLQthURSaNpA21hOgL26ymFewzjphQ2STTpSQDUmkdplpLlZYiLAoENF12st773LS9yIkS4yFHm8RJK0dp5SStPKD-pXGX_XiZMWv6cPxn7B7t_qtxzcZ32VEr37y9qIv8aVSvaGoQ42tx8MbEY9YZ3Fxf5Vfnw8uvbIvGNzmP39hmPV_CIeKSujhyp_EZ5hzdzg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vector+approximate+message+passing+with+sparse+Bayesian+learning+for+Gaussian+mixture+prior&rft.jtitle=China+communications&rft.au=Ruan%2C+Chengyao&rft.au=Zhang%2C+Zaichen&rft.au=Jiang%2C+Hao&rft.au=Dang%2C+Jian&rft.date=2023-05-01&rft.pub=China+Institute+of+Communications&rft.issn=1673-5447&rft.volume=20&rft.issue=5&rft.spage=57&rft.epage=69&rft_id=info:doi/10.23919%2FJCC.2023.00.005&rft.externalDocID=10056780
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgtx%2Fzgtx.jpg