Practical Privacy Preserving-Aided Disease Diagnosis with Multiclass SVM in an Outsourced Environment
With the rapid development of cloud computing and machine learning, using outsourced stored data and machine learning model for training and online-aided disease diagnosis has a great application prospect. However, training and diagnosis in an outsourced environment will cause serious challenges to...
Saved in:
| Published in | Security and communication networks Vol. 2022; pp. 1 - 17 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Hindawi
12.10.2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1939-0114 1939-0122 1939-0122 |
| DOI | 10.1155/2022/7751845 |
Cover
| Abstract | With the rapid development of cloud computing and machine learning, using outsourced stored data and machine learning model for training and online-aided disease diagnosis has a great application prospect. However, training and diagnosis in an outsourced environment will cause serious challenges to the privacy of data. At present, many scholars have proposed privacy preserving machine learning schemes and made a lot of progress, but there are still great challenges in security and low client load. In this paper, we propose a complete privacy preserving outsourced multiclass SVM training and aided disease diagnosis scheme. We design some efficient basic operation algorithms for encrypted data. Then, we design an efficient and privacy preserving SVM model training protocol using the basic operation algorithms. We propose a secure maximum finding algorithm and secure comparison algorithm. Then, we design an efficient online-aided disease diagnosis scheme based on the BFV cryptosystem and blinding technique. Detailed security analysis proves that our scheme can protect the privacy of each participant. The experimental results illustrate that our proposed scheme significantly reduces the computation overhead compared with the previous similar works. Our proposed scheme completes most of the operations of aided disease diagnosis by the cloud servers and the client only needs to complete a small amount of encryption and decryption operations. The overall computation overhead is 0.175 s, and the efficiency of online aided disease diagnosis is improved by 85.4%. At the same time, our proposed scheme provides multiclass diagnosis results, which can better assist doctors in their treatment. |
|---|---|
| AbstractList | With the rapid development of cloud computing and machine learning, using outsourced stored data and machine learning model for training and online-aided disease diagnosis has a great application prospect. However, training and diagnosis in an outsourced environment will cause serious challenges to the privacy of data. At present, many scholars have proposed privacy preserving machine learning schemes and made a lot of progress, but there are still great challenges in security and low client load. In this paper, we propose a complete privacy preserving outsourced multiclass SVM training and aided disease diagnosis scheme. We design some efficient basic operation algorithms for encrypted data. Then, we design an efficient and privacy preserving SVM model training protocol using the basic operation algorithms. We propose a secure maximum finding algorithm and secure comparison algorithm. Then, we design an efficient online-aided disease diagnosis scheme based on the BFV cryptosystem and blinding technique. Detailed security analysis proves that our scheme can protect the privacy of each participant. The experimental results illustrate that our proposed scheme significantly reduces the computation overhead compared with the previous similar works. Our proposed scheme completes most of the operations of aided disease diagnosis by the cloud servers and the client only needs to complete a small amount of encryption and decryption operations. The overall computation overhead is 0.175 s, and the efficiency of online aided disease diagnosis is improved by 85.4%. At the same time, our proposed scheme provides multiclass diagnosis results, which can better assist doctors in their treatment. |
| Author | Kumar, Neeraj Jia, Xingxing Wang, Hongyuan Zhao, Ruoli Xie, Yong |
| Author_xml | – sequence: 1 givenname: Ruoli orcidid: 0000-0003-2023-4376 surname: Zhao fullname: Zhao, Ruoli organization: Department of Computer Technology and ApplicationsQinghai UniversityXiningChinaqhu.edu.cn – sequence: 2 givenname: Yong orcidid: 0000-0003-0472-5378 surname: Xie fullname: Xie, Yong organization: Department of Computer Technology and ApplicationsQinghai UniversityXiningChinaqhu.edu.cn – sequence: 3 givenname: Xingxing orcidid: 0000-0001-7713-3520 surname: Jia fullname: Jia, Xingxing organization: School of Mathematics and StatisticsLanzhou UniversityLanzhouChinalzu.edu.cn – sequence: 4 givenname: Hongyuan surname: Wang fullname: Wang, Hongyuan organization: Qinghai Province Yindajihuang Project Construction and Operation BureauXiningChina – sequence: 5 givenname: Neeraj orcidid: 0000-0002-3020-3947 surname: Kumar fullname: Kumar, Neeraj organization: School of Computer ScienceUniversity of Petroleum and Energy StudiesDehradunUttarakhandIndiaupes.ac.in |
| BookMark | eNqFkEtrwkAUhYdioWq76w8Y6LJNnVcSsxRrH6Ao9LEN18mMjsSJnUkU_31HIl22i8u5i-8cDqeHOrayCqFbSh4pjeMBI4wN0jSmQxFfoC7NeBYRyljn96fiCvW83xCSUJGKLlILB7I2Ekq8cGYP8hhUeeX2xq6ikSlUgZ-MV-BVUFjZyhuPD6Ze41lTBmMJ3uP3rxk2FoPF86b2VeNksE3s3rjKbpWtr9GlhtKrm7P20efz5GP8Gk3nL2_j0TSSLBN1JLWMMwAu5FByybmmVCec83AMYglSFzJhkOlMLBVXgi-HLCGSgIwZZ6nmfRS1uY3dwfEAZZnvnNmCO-aU5KeN8tNG-XmjwN-1_M5V343ydb4J5W2omLOUpSLjjJyoh5aSrvLeKf1f6H2Lr40t4GD-pn8A_JuDFw |
| Cites_doi | 10.1109/jsyst.2020.3027758 10.1109/tdsc.2013.51 10.1109/jbhi.2016.2548248 10.1007/11731139_74 10.1109/jbhi.2015.2407157 10.1038/s41598-018-20166-x 10.1016/j.ins.2019.05.025 10.1109/jiot.2019.2901840 10.1109/tifs.2019.2946097 10.1109/tdsc.2021.3119897 10.1016/j.neulet.2010.01.056 10.1016/j.jnca.2017.12.021 10.1109/tkde.2011.162 10.1007/s11042-017-4632-y 10.1007/s13042-014-0245-1 10.1109/tii.2021.3110808 10.1109/jiot.2018.2882224 10.1109/tsc.2020.3004627 10.1007/978-981-15-2774-6_29 10.1109/tdsc.2020.3040012 10.1126/science.aam9710 10.1109/jiot.2020.3004231 10.2196/medinform.8805 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Ruoli Zhao et al. Copyright © 2022 Ruoli Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2022 Ruoli Zhao et al. – notice: Copyright © 2022 Ruoli Zhao et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1155/2022/7751845 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Technology Research Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-0122 |
| Editor | Aswani Kumar, Ch |
| Editor_xml | – sequence: 1 givenname: Ch surname: Aswani Kumar fullname: Aswani Kumar, Ch |
| EndPage | 17 |
| ExternalDocumentID | 10.1155/2022/7751845 10_1155_2022_7751845 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 61862052 – fundername: Science and Technology Foundation of Qinghai Province grantid: 2019-ZJ-7065 |
| GroupedDBID | .4S .DC 05W 0R~ 123 1OC 3SF 4.4 52U 5DZ 66C 8-1 8UM AAESR AAFWJ AAJEY AAONW ACGFO ADBBV ADIZJ AENEX AFBPY AFKRA AJXKR ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS ATUGU AZVAB BCNDV BENPR BGLVJ BHBCM BNHUX BOGZA BRXPI CCPQU CS3 DR2 DU5 EBS EIS F1Z G-S GROUPED_DOAJ HCIFZ HZ~ IAO ICD ITC IX1 K7- LITHE MY. MY~ NNB O9- OIG OK1 P2P PIMPY RHU RHW RHX TH9 TUS W99 WBKPD XV2 24P AAMMB AAYXX ACCMX ADMLS AEFGJ AGXDD AIDQK AIDYY CITATION H13 PUEGO 7SC 7SP 8FD JQ2 L7M L~C L~D 31~ AAEVG AANHP AAZKR ACBWZ ACRPL ACXQS ACYXJ ADNMO ADTOC AEIMD AGQPQ AMBMR ASPBG AVWKF AZFZN BDRZF EJD FEDTE GODZA HVGLF LH4 LW6 ROL SUPJJ UNPAY |
| ID | FETCH-LOGICAL-c294t-cfc59aa34c8c3c33f11f63336332a5cacfdc62a9f94be3e43b8260c0ac52327f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1939-0114 1939-0122 |
| IngestDate | Sun Oct 26 02:39:21 EDT 2025 Fri Jul 25 20:53:03 EDT 2025 Wed Oct 01 02:26:11 EDT 2025 Sun Jun 02 18:53:18 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-cfc59aa34c8c3c33f11f63336332a5cacfdc62a9f94be3e43b8260c0ac52327f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3020-3947 0000-0001-7713-3520 0000-0003-0472-5378 0000-0003-2023-4376 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/scn/2022/7751845.pdf |
| PQID | 2727493205 |
| PQPubID | 1046363 |
| PageCount | 17 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_7751845 proquest_journals_2727493205 crossref_primary_10_1155_2022_7751845 hindawi_primary_10_1155_2022_7751845 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-12 |
| PublicationDateYYYYMMDD | 2022-10-12 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-12 day: 12 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Security and communication networks |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 23 K. Mandal (20) 26 27 R. Bost (35) 28 M. S. Riazi (11) J. Zhang (30) P. Paillier (41) X. Liu (22) 2017; 14 S. Tan (24) J. Zhang (4) H. Yu (33) 2006 L. Jena (15) 2020 O. Ohrimenko (31) 10 32 12 13 14 36 37 16 38 17 39 E. Ayday (3) 1 2 5 A. Triastcyn (18) F. Zheng (25) 2021 6 R. Chen (29) M. Ćwiklińska-Jurkowska (7) 2009; 29 S. Laur (19) 40 Z. Brakerski (34) 2011 S. G. Teo (8) M. Z. Omer (9) 21 |
| References_xml | – ident: 38 doi: 10.1109/jsyst.2020.3027758 – start-page: 941 ident: 8 article-title: Privacy preserving support vector machine using non-linear kernels on hadoop mahout – ident: 13 doi: 10.1109/tdsc.2013.51 – ident: 12 doi: 10.1109/jbhi.2016.2548248 – start-page: 647 volume-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining year: 2006 ident: 33 article-title: Privacy-preserving svm classification on vertically partitioned data doi: 10.1007/11731139_74 – start-page: 1 ident: 35 article-title: Machine learning classification over encrypted data – start-page: 9583 ident: 18 article-title: Bayesian differential privacy for machine learning – ident: 16 doi: 10.1109/jbhi.2015.2407157 – start-page: 1021 ident: 24 article-title: Cryptgpu: fast privacy-preserving machine learning on the gpu – ident: 14 doi: 10.1038/s41598-018-20166-x – ident: 5 doi: 10.1016/j.ins.2019.05.025 – ident: 21 doi: 10.1109/jiot.2019.2901840 – start-page: 57 ident: 20 article-title: Privfl: practical privacy-preserving federated regressions on high-dimensional data over mobile networks – ident: 36 doi: 10.1109/tifs.2019.2946097 – start-page: 619 ident: 31 article-title: Oblivious multi-party machine learning on trusted processors – ident: 40 doi: 10.1109/tdsc.2021.3119897 – start-page: 129 ident: 29 article-title: Differentially private high-dimensional data publication via sampling-based inference – ident: 3 article-title: Privacy-preserving computation of disease risk by using genomic, clinical, and environmental data – ident: 17 doi: 10.1016/j.neulet.2010.01.056 – start-page: 472 ident: 4 article-title: Privacy-preserving disease risk test based on bloom filters – ident: 39 doi: 10.1016/j.jnca.2017.12.021 – start-page: 84 ident: 9 article-title: Privacy preserving in distributed svm data mining on vertical partitioned data – ident: 6 doi: 10.1109/tkde.2011.162 – start-page: 707 ident: 11 article-title: Chameleon: a hybrid secure computation framework for machine learning applications – volume: 14 start-page: 222 issue: 1 year: 2017 ident: 22 article-title: Privacy-preserving outsourced clinical decision support system in the cloud publication-title: IEEE Transactions on Services Computing – ident: 10 doi: 10.1007/s11042-017-4632-y – ident: 28 doi: 10.1007/s13042-014-0245-1 – start-page: 618 ident: 19 article-title: Cryptographically private support vector machines – ident: 26 doi: 10.1109/tii.2021.3110808 – ident: 2 doi: 10.1109/jiot.2018.2882224 – ident: 27 doi: 10.1109/tsc.2020.3004627 – start-page: 232 volume-title: Advances in Intelligent Computing and Communication year: 2020 ident: 15 article-title: Chronic disease risk (cdr) prediction in biomedical data using machine learning approach doi: 10.1007/978-981-15-2774-6_29 – ident: 23 doi: 10.1109/tdsc.2020.3040012 – year: 2021 ident: 25 article-title: Towards secure and practical machine learning via secret sharing and random permutation – start-page: 505 volume-title: Annual Cryptology Conference year: 2011 ident: 34 article-title: Fully homomorphic encryption from ring-lwe and security for key dependent messages – start-page: 223 ident: 41 article-title: Public-key cryptosystems based on composite degree residuosity classes – ident: 32 doi: 10.1126/science.aam9710 – volume: 29 start-page: 63 issue: 4 year: 2009 ident: 7 article-title: Performance of the support vector machines for medical classification problems publication-title: Biocybernetics and Biomedical Engineering – ident: 37 doi: 10.1109/jiot.2020.3004231 – start-page: 665 ident: 30 article-title: Privgene: differentially private model fitting using genetic algorithms – ident: 1 doi: 10.2196/medinform.8805 |
| SSID | ssj0061474 |
| Score | 2.2598596 |
| Snippet | With the rapid development of cloud computing and machine learning, using outsourced stored data and machine learning model for training and online-aided... |
| SourceID | unpaywall proquest crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Accuracy Algorithms Classification Cloud computing Cybersecurity Design Diagnosis Disease Efficiency Encryption Machine learning Medical diagnosis Outsourcing Privacy Support vector machines Training |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5uIOqDeMXplDxM34Jtc2n7OHRjCFNRJ3sradpoYdSxdY79e0960U1BfSil9BI4p8n3nZwvJwi1Iu7DwBhZRAE9JoDQPpGeFgSwJ9TK1C_Pdy3p34regN0M-bAskjT9mcIHtDPhuXPpmvQA4zVU84RRbj30htWACwDjlsljI_2xWaVv__buCvKsv5qQd56sEMuNWTqWi7kcjZYwpruDtktyiNuFN3fRWpzuoa2lkoH7KC4KDIFl8f0keZdqgY2KwvT49IW0kyiO8HWRdIFzLqNLptjMtuJ8ra0ybBk_PvdxkmKZ4rtZVszfR7jztebtAA26naerHim3SiDK8VlGlFbcl5Iy5SmqKNW2rQWlFA5HciWVjpRwpK99FsY0ZjSEsMJSllQQiDqupoeonr6l8RHC3PBtGoWaSc6EZ_kQ9AgWCrOlr7a5bqDzyozBuKiIEeSRBOeBMXdQmruBWqWN_3isWTkgKLvPNHCAVTFglhbcvvh0yq_fOf5fcydo01ySXJPSRPVsMotPgVZk4Vn-U30Au9fCYw priority: 102 providerName: Hindawi Publishing |
| Title | Practical Privacy Preserving-Aided Disease Diagnosis with Multiclass SVM in an Outsourced Environment |
| URI | https://dx.doi.org/10.1155/2022/7751845 https://www.proquest.com/docview/2727493205 https://downloads.hindawi.com/journals/scn/2022/7751845.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1939-0122 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061474 issn: 1939-0122 databaseCode: ADMLS dateStart: 20110501 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVEBS databaseName: International Security & Counter Terrorism Reference Center - eBooks customDbUrl: eissn: 1939-0122 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061474 issn: 1939-0122 databaseCode: EIS dateStart: 20110501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=tsh providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1939-0122 databaseCode: DR2 dateStart: 20070101 customDbUrl: isFulltext: true eissn: 1939-0122 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061474 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1939-0122 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0061474 issn: 1939-0122 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS9xAEB_sibQ-2FotWq3sg_q2Z24_4gWfjlY5BK1Yr5wghM1stg1KPLycYv96Z_NRPR-q9CFfZNlNZpad3-x8AWxaHdHCaAOOBI85SeiIm64LOcmexKHPX15WLTk6DvsDdTjUwxnYa2JhrE8Rf23suP3b66R3Wbla13Qd74wx9-q62Nn15gKl2yPr3sBsqGmkFswOjk9655Ud2XsBddTjvRCN27vWU11MCaS5etQpvPl2ko_M_Z25unoieg7ew0Xz0ZXHyWV7UiRt_PMsn-N__tUHWKghKetVc2gRZtL8I8w_SVS4BGmV1oj4yU5usluD98z7bvh1Jv_Fe5lNLftWmXroWjrvZWPm93hZGeGLHqOzHz-PWJYzk7Pvk6KyGli2_xhptwyDg_2zr31eF2jgKCJVcHSoI2Okwi5KlNJ1Oi6UUtIhjEaDzmIoTOQilaQyVTIhZSbAwCCpv2LXyU_Qyq_zdAWY9ihf2sQpo1XYDSJStUKVhL6QsOtotwpbDZfiUZWHIy71F61jT7q4Jt0qbNYkfqHZesPfuGFDLAjLKcKzAb3e_svzf_bz-bUN1-Cdf-SlL8w6tIqbSfqF4EyRbBCQPxV0Pu0PN-op_ACH_PBv |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB5qRdQHb_FmH9S3rWl2Nzb4VDwQwQO0oiCEzWxWgyUtbaror3c3h7U-qPgQkpBlN5lZZr7JXADbSvhGMCqHooHH1Ghon8qG9qjRPaFGW78861pyfuGdtvjZnbirwEGZC6NsifiOVP3ak7VJX-NMWhd07e_1MbHmuru3b90FXNS6So_BuCfMSlUYb11cNe9zP7KNAqrz4bXrlmHvQoxMMaKQJopVR_Dm5CDpyrdX2W5_UT0ns_BQvnQecfJcG6RhDd-_1XP851fNwUwBSUkz30PzUImSBZj-UqhwEaK8rJHhJ7nqxS8S34iN3bByJnmkzVhFihzlrh5zzoL34j6x_3hJluGLFqOT69tzEidEJuRykOZeA0WOh5l2S9A6Ob45PKVFgwaKrs9TihqFLyXj2ECGjOl6XXuMMXO4UqBErdBzpa99HkYs4iw0xoyDjkRj_rr7mi1DNekk0QoQYVE-U6HmUnCv4fjG1PJ46NlGwrou9CrslFwKunkdjiCzX4QILOmCgnSrsF2Q-JdhGyV_g5INgWuwHDd41jGPdz95_uM8a38duA5T9pZmsTAbUE17g2jTwJk03Cq27QdT3e5z |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Practical+Privacy+Preserving-Aided+Disease+Diagnosis+with+Multiclass+SVM+in+an+Outsourced+Environment&rft.jtitle=Security+and+communication+networks&rft.au=Zhao%2C+Ruoli&rft.au=Xie%2C+Yong&rft.au=Jia%2C+Xingxing&rft.au=Wang%2C+Hongyuan&rft.date=2022-10-12&rft.pub=Hindawi&rft.issn=1939-0114&rft.eissn=1939-0122&rft.volume=2022&rft_id=info:doi/10.1155%2F2022%2F7751845&rft.externalDocID=10_1155_2022_7751845 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1939-0114&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1939-0114&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1939-0114&client=summon |