Improving Path Loss Prediction Using Environmental Feature Extraction from Satellite Images: Hand-Crafted vs. Convolutional Neural Network
There is an increased exploration of the potential of wireless communication networks in the automation of daily human tasks via the Internet of Things. Such implementations are only possible with the proper design of networks. Path loss prediction is a key factor in the design of networks with para...
Saved in:
| Published in | Applied sciences Vol. 12; no. 15; p. 7685 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.08.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2076-3417 2076-3417 |
| DOI | 10.3390/app12157685 |
Cover
| Abstract | There is an increased exploration of the potential of wireless communication networks in the automation of daily human tasks via the Internet of Things. Such implementations are only possible with the proper design of networks. Path loss prediction is a key factor in the design of networks with parameters such as cell radius, antenna heights, and the number of cell sites that can be set. As path loss is affected by the environment, satellite images of network locations are used in developing path loss prediction models such that environmental effects are captured. We developed a path loss model based on the Extreme Gradient Boosting (XGBoost) algorithm, whose inputs are numeric (non-image) features that influence path loss and features extracted from images composed of four tiled satellite images of points along the transmitter to receiver path. The model can predict path loss for multiple frequencies, antenna heights, and environments such that it can be incorporated into Radio Planning Tools. Various feature extraction methods that included CNN and hand-crafted and their combinations were applied to the images in order to determine the best input features, which, when combined with non-image features, will result in the best XGBoost model. Although hand-crafted features have the advantage of not requiring a large volume of data as no training is involved in them, they failed in this application as their use led to a reduction in accuracy. However, the best model was obtained when image features extracted using CNN and GLCM were combined with the non-image features, resulting in an RMSE improvement of 9.4272% against a model with non-image features only without satellite images. The XGBoost model performed better than Random Forest (RF), Extreme Learning Trees (ET), Gradient Boosting, and K Nearest Neighbor (KNN) based on the combination of CNN, GLCM, and non-image features. Further analysis using the Shapley Additive Explanations (SHAP) revealed that features extracted from the satellite images using CNN had the highest contribution toward the XGBoost model’s output. The variation in values of features with output path loss values was presented using SHAP summary plots. Interactions were also observed between some features based on their dependence plots from the computed SHAP values. This information, when further explored, could serve as the basis for the development of an explainable/glass box path loss model. |
|---|---|
| AbstractList | There is an increased exploration of the potential of wireless communication networks in the automation of daily human tasks via the Internet of Things. Such implementations are only possible with the proper design of networks. Path loss prediction is a key factor in the design of networks with parameters such as cell radius, antenna heights, and the number of cell sites that can be set. As path loss is affected by the environment, satellite images of network locations are used in developing path loss prediction models such that environmental effects are captured. We developed a path loss model based on the Extreme Gradient Boosting (XGBoost) algorithm, whose inputs are numeric (non-image) features that influence path loss and features extracted from images composed of four tiled satellite images of points along the transmitter to receiver path. The model can predict path loss for multiple frequencies, antenna heights, and environments such that it can be incorporated into Radio Planning Tools. Various feature extraction methods that included CNN and hand-crafted and their combinations were applied to the images in order to determine the best input features, which, when combined with non-image features, will result in the best XGBoost model. Although hand-crafted features have the advantage of not requiring a large volume of data as no training is involved in them, they failed in this application as their use led to a reduction in accuracy. However, the best model was obtained when image features extracted using CNN and GLCM were combined with the non-image features, resulting in an RMSE improvement of 9.4272% against a model with non-image features only without satellite images. The XGBoost model performed better than Random Forest (RF), Extreme Learning Trees (ET), Gradient Boosting, and K Nearest Neighbor (KNN) based on the combination of CNN, GLCM, and non-image features. Further analysis using the Shapley Additive Explanations (SHAP) revealed that features extracted from the satellite images using CNN had the highest contribution toward the XGBoost model’s output. The variation in values of features with output path loss values was presented using SHAP summary plots. Interactions were also observed between some features based on their dependence plots from the computed SHAP values. This information, when further explored, could serve as the basis for the development of an explainable/glass box path loss model. |
| Author | Malik, Owais Ahmed Lai, Daphne Teck Ching Sani, Usman Sammani |
| Author_xml | – sequence: 1 givenname: Usman Sammani orcidid: 0000-0002-6240-2334 surname: Sani fullname: Sani, Usman Sammani – sequence: 2 givenname: Owais Ahmed orcidid: 0000-0002-4888-5448 surname: Malik fullname: Malik, Owais Ahmed – sequence: 3 givenname: Daphne Teck Ching orcidid: 0000-0001-8290-8941 surname: Lai fullname: Lai, Daphne Teck Ching |
| BookMark | eNqFkc1u1DAURiNUJErpihewxBLS2o5_YnZoNKUjjUol6Dq6sZ3BQ2IH25nSV-CpyTQIVQgJb65ln3sW3_eyOPHB26J4TfBFVSl8CeNIKOFS1PxZcUqxFGXFiDx5cn9RnKe0x_NRpKoJPi1-boYxhoPzO3QL-SvahpTQbbTG6eyCR3fp-LX2BxeDH6zP0KMrC3mKFq1_5AgL1sUwoM-Qbd-7bNFmgJ1N79E1eFOuInTZGnRIF2gV_CH003FnFt3YKT6OfB_it1fF8w76ZM9_z7Pi7mr9ZXVdbj993Kw-bEtNFculllTp1ggDwLBgjJlKcqV0zUXbdVWtuG6J6QzlrYSK1QrjjlgDWtat4i1UZ8Vm8ZoA-2aMboD40ARwzeNDiLsGYna6t42wWgkquNAgmSHQVgYrRqWkndGYt7Pr3eKa_AgP99D3f4QEN8damie1zPibBZ8z_z7ZlJt9mOIcRWqoxJgzKTCZqbcLpePcRrTdf5zkL1q7DMeE53Zc_8-dXw3Ersg |
| CitedBy_id | crossref_primary_10_3390_app122111054 crossref_primary_10_3390_s24165178 crossref_primary_10_3390_electronics12030497 crossref_primary_10_3390_electronics13101983 crossref_primary_10_3390_info13110519 crossref_primary_10_3390_s24010304 |
| Cites_doi | 10.33395/sinkron.v4i1.10199 10.3390/electronics10243114 10.3390/app12115713 10.4314/njt.v39i4.30 10.1109/LAWP.2022.3151492 10.1109/WiMob50308.2020.9253369 10.24843/SPEKTRUM.2021.v08.i01.p26 10.1002/dac.4680 10.3233/FAIA210413 10.1504/IJSISE.2018.093266 10.1109/ICBASE51474.2020.00103 10.1016/B978-0-12-818961-0.00003-X 10.1007/s11276-019-02243-9 10.1108/SR-04-2019-0092 10.1016/j.icte.2020.04.008 10.1016/j.ifacol.2017.12.003 10.3390/s20071927 10.3390/healthcare8030247 10.1007/s11276-021-02682-3 10.1038/s41598-018-32511-1 10.3390/telecom1020009 10.1587/comex.2020XBL0100 10.1109/ICEVT48285.2019.8994017 10.1109/ICIAS49414.2021.9642585 10.1109/ACCESS.2020.3048583 10.3390/s21155100 10.1016/j.eswa.2017.02.017 10.1145/3394486.3403287 10.3390/app9091908 10.1109/WCNC.2019.8885668 10.1007/s13244-018-0639-9 10.1109/ACCESS.2020.2964103 10.1109/WCNC51071.2022.9771737 10.1109/TAP.2017.2705112 10.1109/GLOBECOM42002.2020.9322089 10.4236/ojapps.2022.126068 10.1109/ACCESS.2021.3059589 10.1007/978-3-030-82269-9_15 10.1016/j.dib.2018.02.026 10.1109/ICOIN53446.2022.9687274 10.1007/s00138-020-01121-1 10.1201/9781315108230 10.1145/2939672.2939785 10.1109/JIOT.2019.2906838 10.1016/j.patcog.2017.05.025 10.1109/ACCESS.2019.2931072 10.1109/ACCESS.2020.2985929 10.4314/star.v4i4.21 10.1016/j.cirp.2016.04.072 10.1109/WCNC51071.2022.9771981 10.1038/s41598-020-77264-y 10.3390/app11010089 10.1109/ACCESS.2021.3070711 10.23919/EuCAP48036.2020.9135876 10.23919/EuCAP48036.2020.9135353 10.1109/SCORED.2007.4451366 10.1109/SIBGRAPI.2012.15 10.1109/LAWP.2021.3086180 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.3390/app12157685 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central ProQuest One Academic Middle East (New) ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_6ec962656ca74d1ab3d0942772fdc05b 10.3390/app12157685 10_3390_app12157685 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c294t-c729cbd6daa406444d37599c856bff3895cb1dfd25b7a348900f1edac78b95ba3 |
| IEDL.DBID | DOA |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 18:42:14 EDT 2025 Sun Oct 26 04:09:09 EDT 2025 Mon Jun 30 11:18:19 EDT 2025 Thu Oct 16 04:25:40 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-c729cbd6daa406444d37599c856bff3895cb1dfd25b7a348900f1edac78b95ba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6240-2334 0000-0002-4888-5448 0000-0001-8290-8941 |
| OpenAccessLink | https://doaj.org/article/6ec962656ca74d1ab3d0942772fdc05b |
| PQID | 2700547601 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6ec962656ca74d1ab3d0942772fdc05b unpaywall_primary_10_3390_app12157685 proquest_journals_2700547601 crossref_primary_10_3390_app12157685 crossref_citationtrail_10_3390_app12157685 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Paramkusham (ref_44) 2018; 11 ref_50 Sotiroudis (ref_18) 2021; 20 Ojo (ref_68) 2022; 12 Rashmi (ref_62) 2015; 38 Nanni (ref_22) 2017; 71 Sotiroudis (ref_11) 2021; 9 Cheng (ref_27) 2021; 9 ref_57 Thrane (ref_8) 2020; 8 ref_56 Choras (ref_45) 2007; 1 ref_10 ref_54 ref_52 Moraitis (ref_65) 2020; 26 ref_17 ref_16 ref_15 ref_59 Weimer (ref_53) 2016; 65 ref_61 ref_60 Ratnam (ref_30) 2021; 9 Casagrande (ref_47) 2020; 31 Inoue (ref_33) 2020; 9 Lahoud (ref_38) 2019; 6 ref_25 ref_69 ref_24 Ebhota (ref_64) 2018; 13 ref_23 ref_67 ref_66 ref_20 Li (ref_41) 2018; 18 Cahyadi (ref_13) 2021; 8 ref_28 Xia (ref_58) 2017; 78 Popoola (ref_39) 2018; 17 ref_72 ref_71 Omoze (ref_12) 2021; 39 ref_36 Horn (ref_42) 2017; 50 ref_35 ref_34 ref_32 ref_31 Sukiman (ref_46) 2019; 4 Lin (ref_21) 2020; 10 Ahmadien (ref_7) 2020; 8 ref_37 Sotiroudis (ref_4) 2020; 1 Jimoh (ref_70) 2015; 4 Moraitis (ref_5) 2021; 27 Ates (ref_26) 2019; 7 Wang (ref_55) 2018; 8 Sotiroudis (ref_9) 2020; 6 Yamashita (ref_51) 2018; 9 ref_40 ref_1 ref_3 ref_2 Bodapati (ref_19) 2019; 7 Ayadi (ref_14) 2017; 65 ref_49 ref_48 Wu (ref_29) 2022; 21 ref_6 Wang (ref_43) 2019; 39 Ojo (ref_63) 2021; 34 |
| References_xml | – volume: 4 start-page: 1 year: 2019 ident: ref_46 article-title: Feature Extraction Method GLCM and LVQ in Digital Image-Based Face Recognition publication-title: SinkrOn doi: 10.33395/sinkron.v4i1.10199 – volume: 1 start-page: 6 year: 2007 ident: ref_45 article-title: Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems publication-title: Int. J. Biol. Biomed. Eng. – ident: ref_66 doi: 10.3390/electronics10243114 – ident: ref_6 doi: 10.3390/app12115713 – volume: 18 start-page: 6765 year: 2018 ident: ref_41 article-title: Hyperband: A Novel Bandit-Based Approach To Hyperparameter Optimization publication-title: J. Mach Learn. Res. – volume: 39 start-page: 1216 year: 2021 ident: ref_12 article-title: Statistical Tuning of COST 231 Hata Model in Deployed 1800 MHz GSM Networks for a Rural Environment publication-title: Niger. J. Technol. doi: 10.4314/njt.v39i4.30 – volume: 7 start-page: 147 year: 2019 ident: ref_19 article-title: Role of Deep Neural Features vs Hand Crafted Features for Hand Written Digit Recognition publication-title: Int. J. Recent Technol. Eng – volume: 21 start-page: 903 year: 2022 ident: ref_29 article-title: Enhanced Path Loss Model by Image-Based Environmental Characterization publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2022.3151492 – ident: ref_67 doi: 10.1109/WiMob50308.2020.9253369 – volume: 8 start-page: 230 year: 2021 ident: ref_13 article-title: Perbandingan Nilai Shadow Fading Pada Model Propagasi Stanford University Interim ( Sui ) Dengan Metode Simulasi Dan Drive Test publication-title: J. Spektrum doi: 10.24843/SPEKTRUM.2021.v08.i01.p26 – volume: 34 start-page: e4680 year: 2021 ident: ref_63 article-title: Radial Basis Function Neural Network Path Loss Prediction Model for LTE Networks in Multitransmitter Signal Propagation Environments publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4680 – ident: ref_35 – ident: ref_17 doi: 10.3233/FAIA210413 – volume: 11 start-page: 136 year: 2018 ident: ref_44 article-title: Comparison of Rotation Invariant Local Frequency, LBP and SFTA Methods for Breast Abnormality Classification publication-title: Int. J. Signal Imaging Syst. Eng. doi: 10.1504/IJSISE.2018.093266 – ident: ref_56 doi: 10.1109/ICBASE51474.2020.00103 – ident: ref_52 doi: 10.1016/B978-0-12-818961-0.00003-X – volume: 26 start-page: 2891 year: 2020 ident: ref_65 article-title: Measurements and Path Loss Models for a TD-LTE Network at 3.7 GHz in Rural Areas publication-title: Wirel. Netw. doi: 10.1007/s11276-019-02243-9 – volume: 39 start-page: 783 year: 2019 ident: ref_43 article-title: Review of Image Low-Level Feature Extraction Methods for Content-Based Image Retrieval publication-title: Sens. Rev. doi: 10.1108/SR-04-2019-0092 – volume: 6 start-page: 160 year: 2020 ident: ref_9 article-title: Deep Learning for Radio Propagation: Using Image-Driven Regression to Estimate Path Loss in Urban Areas publication-title: ICT Express doi: 10.1016/j.icte.2020.04.008 – volume: 50 start-page: 13 year: 2017 ident: ref_42 article-title: Performance of Convolutional Neural Networks for Feature Extraction in Froth Flotation Sensing publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2017.12.003 – ident: ref_2 doi: 10.3390/s20071927 – ident: ref_54 doi: 10.3390/healthcare8030247 – volume: 27 start-page: 4169 year: 2021 ident: ref_5 article-title: Performance Evaluation of Machine Learning Methods for Path Loss Prediction in Rural Environment at 3.7GHz publication-title: Wirel. Netw. doi: 10.1007/s11276-021-02682-3 – ident: ref_69 – volume: 8 start-page: 14285 year: 2018 ident: ref_55 article-title: Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting publication-title: Sci. Rep. doi: 10.1038/s41598-018-32511-1 – volume: 1 start-page: 114 year: 2020 ident: ref_4 article-title: Tool to Explain Radio Propagation and Reduce Model Complexity publication-title: Telecom doi: 10.3390/telecom1020009 – volume: 9 start-page: 506 year: 2020 ident: ref_33 article-title: Radio Propagation Prediction Using Deep Neural Network and Building Occupancy Estimation publication-title: IEICE Commun. Express doi: 10.1587/comex.2020XBL0100 – ident: ref_1 doi: 10.1109/ICEVT48285.2019.8994017 – ident: ref_72 – ident: ref_16 doi: 10.1109/ICIAS49414.2021.9642585 – ident: ref_59 – volume: 9 start-page: 3278 year: 2021 ident: ref_30 article-title: FadeNet: Deep Learning-Based Mm-Wave Large-Scale Channel Fading Prediction and Its Applications publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3048583 – ident: ref_15 doi: 10.3390/s21155100 – volume: 78 start-page: 225 year: 2017 ident: ref_58 article-title: Boosted Decision Tree Approach Using Bayesian Hyper-Parameter Optimization for Credit Scoring publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.017 – ident: ref_31 doi: 10.1145/3394486.3403287 – ident: ref_3 doi: 10.3390/app9091908 – ident: ref_10 doi: 10.1109/WCNC.2019.8885668 – volume: 9 start-page: 611 year: 2018 ident: ref_51 article-title: Convolutional Neural Networks: An Overview and Application in Radiology publication-title: Insights Imaging doi: 10.1007/s13244-018-0639-9 – ident: ref_34 – volume: 8 start-page: 7925 year: 2020 ident: ref_8 article-title: Model-Aided Deep Learning Method for Path Loss Prediction in Mobile Communication Systems at 2.6 GHz publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2964103 – ident: ref_25 doi: 10.1109/WCNC51071.2022.9771737 – volume: 65 start-page: 3675 year: 2017 ident: ref_14 article-title: Path Loss Model Using Learning Machine for Heterogeneous Networks publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2017.2705112 – ident: ref_23 doi: 10.1109/GLOBECOM42002.2020.9322089 – ident: ref_40 – volume: 12 start-page: 990 year: 2022 ident: ref_68 article-title: Path Loss Modeling: A Machine Learning Based Approach Using Support Vector Regression and Radial Basis Function Models publication-title: Open J. Appl. Sci. doi: 10.4236/ojapps.2022.126068 – volume: 9 start-page: 30441 year: 2021 ident: ref_11 article-title: Fusing Diverse Input Modalities for Path Loss Prediction: A Deep Learning Approach publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3059589 – ident: ref_37 – volume: 38 start-page: 489 year: 2015 ident: ref_62 article-title: Dropouts Meet Multiple Additive Regression Trees publication-title: J. Mach. Learn. Res. – ident: ref_20 doi: 10.1007/978-3-030-82269-9_15 – volume: 17 start-page: 1062 year: 2018 ident: ref_39 article-title: Path Loss Dataset for Modeling Radio Wave Propagation in Smart Campus Environment publication-title: Data Br. doi: 10.1016/j.dib.2018.02.026 – ident: ref_28 doi: 10.1109/ICOIN53446.2022.9687274 – volume: 31 start-page: 71 year: 2020 ident: ref_47 article-title: New Feature Extraction Process Based on SFTA and DWT to Enhance Classification of Ceramic Tiles Quality publication-title: Mach. Vis. Appl. doi: 10.1007/s00138-020-01121-1 – ident: ref_71 doi: 10.1201/9781315108230 – volume: 13 start-page: 13409 year: 2018 ident: ref_64 article-title: Investigating Signal Power Loss Prediction in A Metropolitan Island Using ADALINE and Multi-Layer Perceptron Back Propagation Networks publication-title: Int. J. Appl. Eng. Res. – ident: ref_61 doi: 10.1145/2939672.2939785 – volume: 6 start-page: 2366 year: 2019 ident: ref_38 article-title: LoRaWAN Network Radio Propagation Models and Performance Evaluation in Various Environments in Lebanon publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2906838 – volume: 71 start-page: 158 year: 2017 ident: ref_22 article-title: Handcrafted vs. Non-Handcrafted Features for Computer Vision Classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.05.025 – volume: 7 start-page: 101366 year: 2019 ident: ref_26 article-title: Path Loss Exponent and Shadowing Factor Prediction From Satellite Images Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2931072 – volume: 8 start-page: 64982 year: 2020 ident: ref_7 article-title: Predicting Path Loss Distribution of an Area from Satellite Images Using Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2985929 – volume: 4 start-page: 138 year: 2015 ident: ref_70 article-title: Clutter Height Variation Effects on Frequency Dependent Path Loss Models at UHF Bands in Build-Up Areas publication-title: Sci. Technol. Arts Res. J. doi: 10.4314/star.v4i4.21 – volume: 65 start-page: 417 year: 2016 ident: ref_53 article-title: Design of Deep Convolutional Neural Network Architectures for Automated Feature Extraction in Industrial Inspection publication-title: CIRP Ann. Manuf. Technol. doi: 10.1016/j.cirp.2016.04.072 – ident: ref_24 doi: 10.1109/WCNC51071.2022.9771981 – ident: ref_36 – volume: 10 start-page: 20336 year: 2020 ident: ref_21 article-title: Comparison of Handcrafted Features and Convolutional Neural Networks for Liver MR Image Adequacy Assessment publication-title: Sci. Rep. doi: 10.1038/s41598-020-77264-y – ident: ref_48 doi: 10.3390/app11010089 – ident: ref_57 – volume: 9 start-page: 62867 year: 2021 ident: ref_27 article-title: Millimeter Wave Path Loss Modeling for 5G Communications Using Deep Learning With Dilated Convolution and Attention publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3070711 – ident: ref_32 doi: 10.23919/EuCAP48036.2020.9135876 – ident: ref_60 doi: 10.23919/EuCAP48036.2020.9135353 – ident: ref_49 doi: 10.1109/SCORED.2007.4451366 – ident: ref_50 doi: 10.1109/SIBGRAPI.2012.15 – volume: 20 start-page: 1443 year: 2021 ident: ref_18 article-title: Enhancing Machine Learning Models for Path Loss Prediction Using Image Texture Techniques publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2021.3086180 |
| SSID | ssj0000913810 |
| Score | 2.2819629 |
| Snippet | There is an increased exploration of the potential of wireless communication networks in the automation of daily human tasks via the Internet of Things. Such... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 7685 |
| SubjectTerms | Accuracy Algorithms Antennas environment feature extraction hand-crafted Investigations Licensed products Machine learning Neural networks path loss Propagation Receivers & amplifiers satellite image |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gF4QGyAKAzkhyEBUiAfduIgIcSqTgVBVQGT9hb5I-alpCVNB_wL_NXcuW7WSWhPkSLLjnLn8-98d78DOM6cKiWvbZRIKyNUiiySWqGXglAkSZRJS08p9HmaT874x3NxvgfTbS0MpVVubaI31HZh6I78NQVIBacMjnfLnxF1jaLo6raFhgqtFexbTzF2A_ZTYsYawP7JeDr70t-6EAumTOJNoV6G_j7FiYlgAVG3uHI0eQb_K7Dz5rpZqj-_1Hy-cwKd3oU7ATqy9xtZH8Be3RzC7R1CwUM4CFt1xZ4HPukX9-Bvf3HAZoj32CdcnM1aitCQVJjPGmDjy4o3XISQ4bqt2fh3125KHxgVorCvyjN4djX78AMt0eoNm6jGRqOWeo1bdrF6xUaL5iLoM05E5B_-4bPN78PZ6fjbaBKFFgwRSol3kUHsbbTNrVJ48nPObVaIsjRS5No5BDvC6MQ6mwpdqIzLMo5dUltlCqlLoVX2AAbNoqkfAuOFdLEpuHax4o5oeQpp0JpkKokzFbshvNz-_coEfnJqkzGv0E8hUVU7ohrCcT94uaHl-P-wExJjP4S4tP2LRfu9CluzymtTolsncqMKbhOlM4s-b4puh7MmFnoIR1slqMIGX1WX6jiEZ71iXPctj66f5jHcSqmywucWHsGga9f1E8Q7nX4alPgfEjcBCA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wA8wDZAK2yTH4YESGnjxE4cXqat6lQQTJWg0niK_BEjREmrNC0ffwJ_9e4St3QIISSeEkUXx5bPl9_Zd78j5CR2KpO8sAGTVgagFHEgtQIvBaAIY8pEWUMp9PYyGU346ytxtZXFj2GV4Ip_aox0BE52AGY27bOoz0QfoLHoz607Xfm9JJaIjHMhMId6B-6TsEN2Jpfjsw9YU279dpuWF4N3j6fCSKeADd34ETV8_TdA5u1lOVffv6rpdOt_c3GfqHVP2zCTz71lrXvmx28kjv8zlF1yz4NRetZqzx65VZT75O4WReE-2fOLf0GfeYbq5w_Iz81WBB0DgqRvYIB0XOGZD84zbeIQ6PBXDh18BLHmsiro8FtdtckUFFNb6DvVcILWBX31BWzb4iUdqdIGgwqrl1u6WvToYFau_AqBhpBOpLk08esPyeRi-H4wCnxRhwDmndeBATRvtE2sUoAlOOc2TkWWGSkS7RzAJ2E0s85GQqcq5jILQ8cKq0wqdSa0ih-RTjkriwNCeSpdaFKuXai4Q6KfVBqwT7FiYaxC1yUv1jOcG894joU3pjl4PqgO-ZY6dMnJRnjeEn38WewcVWUjguzczYNZ9TH3iz1PCpOBoygSo1JumdKxBS86AkfGWRMK3SWHa0XLvclY5BgBIDiGKHXJ043y_a0vj_9R7gm5E2HSRhO2eEg6dbUsjgBK1frYr5ZrgPgZGg priority: 102 providerName: Unpaywall |
| Title | Improving Path Loss Prediction Using Environmental Feature Extraction from Satellite Images: Hand-Crafted vs. Convolutional Neural Network |
| URI | https://www.proquest.com/docview/2700547601 https://www.mdpi.com/2076-3417/12/15/7685/pdf?version=1659445551 https://doaj.org/article/6ec962656ca74d1ab3d0942772fdc05b |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources(FREE) customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOQAH1BYQC-3KhyIBUiDZ2InNrV3tsiBYrYCVyinyR3xa0iqbLfAX-NXMOOk2lSq4cIoSWYnlebbfxDNvAI5Sr5XkpYsS6WSEoEgjaTR6KUhFkkTbkQqSQp_m2WzJP5yK016pL4oJa-WB24F7k5VWIekWmdU5d4k2qUOPZISk0DsbC0OrbyxVz5kKa7BKSLqqTchL0a-n82ASUkB2La5tQUGp_xq9vLupzvWvH3q16u0001140FFEdtx2bQ9uldU-3O8JB-7DXjcl1-xFpxv98iH83v4gYAvkdewjfpwtajqJodFnITqATa4y2_AjxAA3dckmP5u6TXFglHDCvuig1NmU7P13XHHWb9lMVy4a11RT3LGL9Ws2PqsuOtzii0jkI1xCVPkjWE4nX8ezqCu1EKE1eBNZ5NjWuMxpjTs859yluVDKSpEZ75HUCGsS591ImFynXKo49knptM2lUcLo9DHsVGdV-QQYz6WPbc6NjzX3JL-TS4urRqqTONWxH8Cry9EvbKdDTuUwVgX6I2SqomeqARxtG5-38hs3NzshM26bkGZ2eIBIKjokFf9C0gAOLkFQdBN5XdC5vOAUODSA51tg_K0vT_9HX57BvRHlWYRIwwPYaepNeYjspzFDuC2n74Zw52QyX3weBtjj3XK-OP72B2QNB2E |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9lA4IFpABArsoZUAydT27voHqUI0pEpoGkXQSr2Z_bG5BCfYTktfgYfi2ZjZrNNUQr31ZMla7Vqe2dlvdma-IWSXFTJNeG68IDGJB0rBvERJ8FIAigSB1GFqKYVORlH_jH85F-dr5G9bC4Npla1NtIbaTDXeke9jgFRwzOD4OPvlYdcojK62LTSka61gDizFmCvsOM6vLsGFqw8Gn0Hee2F41Dvt9j3XZcCDD-GNpwFeamUiIyUcbpxzw2KRpjoRkSoKOM-FVoEpTChULBlPUt8vgtxIHScqFUoymPce2eCMp-D8bRz2RuOvy1seZN1MAn9RGMhY6mNcGgkdAOWLG0eh7RhwA-ZuzsuZvLqUk8nKiXf0iDx0UJV-WujWFlnLy23yYIXAcJtsOdNQ0zeOv_rtY_JneVFBx4Av6RAWp-MKI0KoBdRmKdDedYUdLIJIdF7ltPe7qRalFhQLX-g3aRlDm5wOfoLlqz_QviyN162wt7mhF_V72p2WF27_wERINmIfNrv9CTm7E2E8JevltMyfEcrjpPB1zFXhS14gDVCcaLBeTAY-k37RIe_av59px4eObTkmGfhFKKpsRVQdsrscPFvQgPx_2CGKcTkEubvti2n1I3OmIItynYIbKSItY24CqZgBHzsEN6cw2heqQ3ZaJcicQamza_XvkL2lYtz2Lc9vn-Y12eyfngyz4WB0_ILcD7Gqw-Y17pD1pprnLwFrNeqVU2hKvt_1HvoHcxU_DA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkXgcEC0gthTwoZUAKTQPO3GQEILtLru0VCtBpd6CHzGXbXZJsi39C_wkfh0zTjbdSqi3niJFlh1lxuNvPDPfELITWZkKlhsvEEZ4oBSRJ5QELwWgSBBIHaaOUujrUTw6Zl9O-Mka-bushcG0yqVNdIbazDTeke9hgJQzzODYs21axGR_-GH-y8MOUhhpXbbTaFTkIL84B_etej_eB1nvhuFw8L0_8toOAx58BKs9DdBSKxMbKeFgY4yZKOFpqgWPlbVwlnOtAmNNyFUiIyZS37dBbqROhEq5khHMe4vcTpDFHavUh5-7-x3k2xSB35QERlHqY0QaqRwA3_Mrh6DrFXAF4N5dFHN5cS6n05WzbviQPGhBKv3YaNUGWcuLTXJ_hbpwk2y0RqGir1rm6tePyJ_uioJOAFnSQ1icTkqMBaH8qctPoIPL2jpYBDHooszp4HddNkUWFEte6DfpuELrnI5PweZV7-hIFsbrl9jV3NCz6i3tz4qzdufAREgz4h4ur_0xOb4RUTwh68WsyJ8SyhJhfZ0wZX3JLBIAJUKD3Ypk4EfStz3yZvn3M90yoWNDjmkGHhGKKlsRVY_sdIPnDQHI_4d9QjF2Q5C1272YlT-z1ghkca5TcCB5rGXCTCBVZMC7DsHBsUb7XPXI9lIJstaUVNml4vfIbqcY133L1vXTvCR3YOdkh-Ojg2fkXojlHC6hcZus1-Uifw4gq1YvnDZT8uOmt88_yhI8pg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wA8wDZAK2yTH4YESGnjxE4cXqat6lQQTJWg0niK_BEjREmrNC0ffwJ_9e4St3QIISSeEkUXx5bPl9_Zd78j5CR2KpO8sAGTVgagFHEgtQIvBaAIY8pEWUMp9PYyGU346ytxtZXFj2GV4Ip_aox0BE52AGY27bOoz0QfoLHoz607Xfm9JJaIjHMhMId6B-6TsEN2Jpfjsw9YU279dpuWF4N3j6fCSKeADd34ETV8_TdA5u1lOVffv6rpdOt_c3GfqHVP2zCTz71lrXvmx28kjv8zlF1yz4NRetZqzx65VZT75O4WReE-2fOLf0GfeYbq5w_Iz81WBB0DgqRvYIB0XOGZD84zbeIQ6PBXDh18BLHmsiro8FtdtckUFFNb6DvVcILWBX31BWzb4iUdqdIGgwqrl1u6WvToYFau_AqBhpBOpLk08esPyeRi-H4wCnxRhwDmndeBATRvtE2sUoAlOOc2TkWWGSkS7RzAJ2E0s85GQqcq5jILQ8cKq0wqdSa0ih-RTjkriwNCeSpdaFKuXai4Q6KfVBqwT7FiYaxC1yUv1jOcG894joU3pjl4PqgO-ZY6dMnJRnjeEn38WewcVWUjguzczYNZ9TH3iz1PCpOBoygSo1JumdKxBS86AkfGWRMK3SWHa0XLvclY5BgBIDiGKHXJ043y_a0vj_9R7gm5E2HSRhO2eEg6dbUsjgBK1frYr5ZrgPgZGg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Path+Loss+Prediction+Using+Environmental+Feature+Extraction+from+Satellite+Images%3A+Hand-Crafted+vs.+Convolutional+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Usman+Sammani+Sani&rft.au=Owais+Ahmed+Malik&rft.au=Daphne+Teck+Ching+Lai&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=15&rft.spage=7685&rft_id=info:doi/10.3390%2Fapp12157685&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6ec962656ca74d1ab3d0942772fdc05b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |