Improving Path Loss Prediction Using Environmental Feature Extraction from Satellite Images: Hand-Crafted vs. Convolutional Neural Network

There is an increased exploration of the potential of wireless communication networks in the automation of daily human tasks via the Internet of Things. Such implementations are only possible with the proper design of networks. Path loss prediction is a key factor in the design of networks with para...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 12; no. 15; p. 7685
Main Authors Sani, Usman Sammani, Malik, Owais Ahmed, Lai, Daphne Teck Ching
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2022
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app12157685

Cover

Abstract There is an increased exploration of the potential of wireless communication networks in the automation of daily human tasks via the Internet of Things. Such implementations are only possible with the proper design of networks. Path loss prediction is a key factor in the design of networks with parameters such as cell radius, antenna heights, and the number of cell sites that can be set. As path loss is affected by the environment, satellite images of network locations are used in developing path loss prediction models such that environmental effects are captured. We developed a path loss model based on the Extreme Gradient Boosting (XGBoost) algorithm, whose inputs are numeric (non-image) features that influence path loss and features extracted from images composed of four tiled satellite images of points along the transmitter to receiver path. The model can predict path loss for multiple frequencies, antenna heights, and environments such that it can be incorporated into Radio Planning Tools. Various feature extraction methods that included CNN and hand-crafted and their combinations were applied to the images in order to determine the best input features, which, when combined with non-image features, will result in the best XGBoost model. Although hand-crafted features have the advantage of not requiring a large volume of data as no training is involved in them, they failed in this application as their use led to a reduction in accuracy. However, the best model was obtained when image features extracted using CNN and GLCM were combined with the non-image features, resulting in an RMSE improvement of 9.4272% against a model with non-image features only without satellite images. The XGBoost model performed better than Random Forest (RF), Extreme Learning Trees (ET), Gradient Boosting, and K Nearest Neighbor (KNN) based on the combination of CNN, GLCM, and non-image features. Further analysis using the Shapley Additive Explanations (SHAP) revealed that features extracted from the satellite images using CNN had the highest contribution toward the XGBoost model’s output. The variation in values of features with output path loss values was presented using SHAP summary plots. Interactions were also observed between some features based on their dependence plots from the computed SHAP values. This information, when further explored, could serve as the basis for the development of an explainable/glass box path loss model.
AbstractList There is an increased exploration of the potential of wireless communication networks in the automation of daily human tasks via the Internet of Things. Such implementations are only possible with the proper design of networks. Path loss prediction is a key factor in the design of networks with parameters such as cell radius, antenna heights, and the number of cell sites that can be set. As path loss is affected by the environment, satellite images of network locations are used in developing path loss prediction models such that environmental effects are captured. We developed a path loss model based on the Extreme Gradient Boosting (XGBoost) algorithm, whose inputs are numeric (non-image) features that influence path loss and features extracted from images composed of four tiled satellite images of points along the transmitter to receiver path. The model can predict path loss for multiple frequencies, antenna heights, and environments such that it can be incorporated into Radio Planning Tools. Various feature extraction methods that included CNN and hand-crafted and their combinations were applied to the images in order to determine the best input features, which, when combined with non-image features, will result in the best XGBoost model. Although hand-crafted features have the advantage of not requiring a large volume of data as no training is involved in them, they failed in this application as their use led to a reduction in accuracy. However, the best model was obtained when image features extracted using CNN and GLCM were combined with the non-image features, resulting in an RMSE improvement of 9.4272% against a model with non-image features only without satellite images. The XGBoost model performed better than Random Forest (RF), Extreme Learning Trees (ET), Gradient Boosting, and K Nearest Neighbor (KNN) based on the combination of CNN, GLCM, and non-image features. Further analysis using the Shapley Additive Explanations (SHAP) revealed that features extracted from the satellite images using CNN had the highest contribution toward the XGBoost model’s output. The variation in values of features with output path loss values was presented using SHAP summary plots. Interactions were also observed between some features based on their dependence plots from the computed SHAP values. This information, when further explored, could serve as the basis for the development of an explainable/glass box path loss model.
Author Malik, Owais Ahmed
Lai, Daphne Teck Ching
Sani, Usman Sammani
Author_xml – sequence: 1
  givenname: Usman Sammani
  orcidid: 0000-0002-6240-2334
  surname: Sani
  fullname: Sani, Usman Sammani
– sequence: 2
  givenname: Owais Ahmed
  orcidid: 0000-0002-4888-5448
  surname: Malik
  fullname: Malik, Owais Ahmed
– sequence: 3
  givenname: Daphne Teck Ching
  orcidid: 0000-0001-8290-8941
  surname: Lai
  fullname: Lai, Daphne Teck Ching
BookMark eNqFkc1u1DAURiNUJErpihewxBLS2o5_YnZoNKUjjUol6Dq6sZ3BQ2IH25nSV-CpyTQIVQgJb65ln3sW3_eyOPHB26J4TfBFVSl8CeNIKOFS1PxZcUqxFGXFiDx5cn9RnKe0x_NRpKoJPi1-boYxhoPzO3QL-SvahpTQbbTG6eyCR3fp-LX2BxeDH6zP0KMrC3mKFq1_5AgL1sUwoM-Qbd-7bNFmgJ1N79E1eFOuInTZGnRIF2gV_CH003FnFt3YKT6OfB_it1fF8w76ZM9_z7Pi7mr9ZXVdbj993Kw-bEtNFculllTp1ggDwLBgjJlKcqV0zUXbdVWtuG6J6QzlrYSK1QrjjlgDWtat4i1UZ8Vm8ZoA-2aMboD40ARwzeNDiLsGYna6t42wWgkquNAgmSHQVgYrRqWkndGYt7Pr3eKa_AgP99D3f4QEN8damie1zPibBZ8z_z7ZlJt9mOIcRWqoxJgzKTCZqbcLpePcRrTdf5zkL1q7DMeE53Zc_8-dXw3Ersg
CitedBy_id crossref_primary_10_3390_app122111054
crossref_primary_10_3390_s24165178
crossref_primary_10_3390_electronics12030497
crossref_primary_10_3390_electronics13101983
crossref_primary_10_3390_info13110519
crossref_primary_10_3390_s24010304
Cites_doi 10.33395/sinkron.v4i1.10199
10.3390/electronics10243114
10.3390/app12115713
10.4314/njt.v39i4.30
10.1109/LAWP.2022.3151492
10.1109/WiMob50308.2020.9253369
10.24843/SPEKTRUM.2021.v08.i01.p26
10.1002/dac.4680
10.3233/FAIA210413
10.1504/IJSISE.2018.093266
10.1109/ICBASE51474.2020.00103
10.1016/B978-0-12-818961-0.00003-X
10.1007/s11276-019-02243-9
10.1108/SR-04-2019-0092
10.1016/j.icte.2020.04.008
10.1016/j.ifacol.2017.12.003
10.3390/s20071927
10.3390/healthcare8030247
10.1007/s11276-021-02682-3
10.1038/s41598-018-32511-1
10.3390/telecom1020009
10.1587/comex.2020XBL0100
10.1109/ICEVT48285.2019.8994017
10.1109/ICIAS49414.2021.9642585
10.1109/ACCESS.2020.3048583
10.3390/s21155100
10.1016/j.eswa.2017.02.017
10.1145/3394486.3403287
10.3390/app9091908
10.1109/WCNC.2019.8885668
10.1007/s13244-018-0639-9
10.1109/ACCESS.2020.2964103
10.1109/WCNC51071.2022.9771737
10.1109/TAP.2017.2705112
10.1109/GLOBECOM42002.2020.9322089
10.4236/ojapps.2022.126068
10.1109/ACCESS.2021.3059589
10.1007/978-3-030-82269-9_15
10.1016/j.dib.2018.02.026
10.1109/ICOIN53446.2022.9687274
10.1007/s00138-020-01121-1
10.1201/9781315108230
10.1145/2939672.2939785
10.1109/JIOT.2019.2906838
10.1016/j.patcog.2017.05.025
10.1109/ACCESS.2019.2931072
10.1109/ACCESS.2020.2985929
10.4314/star.v4i4.21
10.1016/j.cirp.2016.04.072
10.1109/WCNC51071.2022.9771981
10.1038/s41598-020-77264-y
10.3390/app11010089
10.1109/ACCESS.2021.3070711
10.23919/EuCAP48036.2020.9135876
10.23919/EuCAP48036.2020.9135353
10.1109/SCORED.2007.4451366
10.1109/SIBGRAPI.2012.15
10.1109/LAWP.2021.3086180
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
UNPAY
DOA
DOI 10.3390/app12157685
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_6ec962656ca74d1ab3d0942772fdc05b
10.3390/app12157685
10_3390_app12157685
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c294t-c729cbd6daa406444d37599c856bff3895cb1dfd25b7a348900f1edac78b95ba3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 14 18:42:14 EDT 2025
Sun Oct 26 04:09:09 EDT 2025
Mon Jun 30 11:18:19 EDT 2025
Thu Oct 16 04:25:40 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-c729cbd6daa406444d37599c856bff3895cb1dfd25b7a348900f1edac78b95ba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6240-2334
0000-0002-4888-5448
0000-0001-8290-8941
OpenAccessLink https://doaj.org/article/6ec962656ca74d1ab3d0942772fdc05b
PQID 2700547601
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_6ec962656ca74d1ab3d0942772fdc05b
unpaywall_primary_10_3390_app12157685
proquest_journals_2700547601
crossref_primary_10_3390_app12157685
crossref_citationtrail_10_3390_app12157685
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Paramkusham (ref_44) 2018; 11
ref_50
Sotiroudis (ref_18) 2021; 20
Ojo (ref_68) 2022; 12
Rashmi (ref_62) 2015; 38
Nanni (ref_22) 2017; 71
Sotiroudis (ref_11) 2021; 9
Cheng (ref_27) 2021; 9
ref_57
Thrane (ref_8) 2020; 8
ref_56
Choras (ref_45) 2007; 1
ref_10
ref_54
ref_52
Moraitis (ref_65) 2020; 26
ref_17
ref_16
ref_15
ref_59
Weimer (ref_53) 2016; 65
ref_61
ref_60
Ratnam (ref_30) 2021; 9
Casagrande (ref_47) 2020; 31
Inoue (ref_33) 2020; 9
Lahoud (ref_38) 2019; 6
ref_25
ref_69
ref_24
Ebhota (ref_64) 2018; 13
ref_23
ref_67
ref_66
ref_20
Li (ref_41) 2018; 18
Cahyadi (ref_13) 2021; 8
ref_28
Xia (ref_58) 2017; 78
Popoola (ref_39) 2018; 17
ref_72
ref_71
Omoze (ref_12) 2021; 39
ref_36
Horn (ref_42) 2017; 50
ref_35
ref_34
ref_32
ref_31
Sukiman (ref_46) 2019; 4
Lin (ref_21) 2020; 10
Ahmadien (ref_7) 2020; 8
ref_37
Sotiroudis (ref_4) 2020; 1
Jimoh (ref_70) 2015; 4
Moraitis (ref_5) 2021; 27
Ates (ref_26) 2019; 7
Wang (ref_55) 2018; 8
Sotiroudis (ref_9) 2020; 6
Yamashita (ref_51) 2018; 9
ref_40
ref_1
ref_3
ref_2
Bodapati (ref_19) 2019; 7
Ayadi (ref_14) 2017; 65
ref_49
ref_48
Wu (ref_29) 2022; 21
ref_6
Wang (ref_43) 2019; 39
Ojo (ref_63) 2021; 34
References_xml – volume: 4
  start-page: 1
  year: 2019
  ident: ref_46
  article-title: Feature Extraction Method GLCM and LVQ in Digital Image-Based Face Recognition
  publication-title: SinkrOn
  doi: 10.33395/sinkron.v4i1.10199
– volume: 1
  start-page: 6
  year: 2007
  ident: ref_45
  article-title: Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems
  publication-title: Int. J. Biol. Biomed. Eng.
– ident: ref_66
  doi: 10.3390/electronics10243114
– ident: ref_6
  doi: 10.3390/app12115713
– volume: 18
  start-page: 6765
  year: 2018
  ident: ref_41
  article-title: Hyperband: A Novel Bandit-Based Approach To Hyperparameter Optimization
  publication-title: J. Mach Learn. Res.
– volume: 39
  start-page: 1216
  year: 2021
  ident: ref_12
  article-title: Statistical Tuning of COST 231 Hata Model in Deployed 1800 MHz GSM Networks for a Rural Environment
  publication-title: Niger. J. Technol.
  doi: 10.4314/njt.v39i4.30
– volume: 7
  start-page: 147
  year: 2019
  ident: ref_19
  article-title: Role of Deep Neural Features vs Hand Crafted Features for Hand Written Digit Recognition
  publication-title: Int. J. Recent Technol. Eng
– volume: 21
  start-page: 903
  year: 2022
  ident: ref_29
  article-title: Enhanced Path Loss Model by Image-Based Environmental Characterization
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2022.3151492
– ident: ref_67
  doi: 10.1109/WiMob50308.2020.9253369
– volume: 8
  start-page: 230
  year: 2021
  ident: ref_13
  article-title: Perbandingan Nilai Shadow Fading Pada Model Propagasi Stanford University Interim ( Sui ) Dengan Metode Simulasi Dan Drive Test
  publication-title: J. Spektrum
  doi: 10.24843/SPEKTRUM.2021.v08.i01.p26
– volume: 34
  start-page: e4680
  year: 2021
  ident: ref_63
  article-title: Radial Basis Function Neural Network Path Loss Prediction Model for LTE Networks in Multitransmitter Signal Propagation Environments
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4680
– ident: ref_35
– ident: ref_17
  doi: 10.3233/FAIA210413
– volume: 11
  start-page: 136
  year: 2018
  ident: ref_44
  article-title: Comparison of Rotation Invariant Local Frequency, LBP and SFTA Methods for Breast Abnormality Classification
  publication-title: Int. J. Signal Imaging Syst. Eng.
  doi: 10.1504/IJSISE.2018.093266
– ident: ref_56
  doi: 10.1109/ICBASE51474.2020.00103
– ident: ref_52
  doi: 10.1016/B978-0-12-818961-0.00003-X
– volume: 26
  start-page: 2891
  year: 2020
  ident: ref_65
  article-title: Measurements and Path Loss Models for a TD-LTE Network at 3.7 GHz in Rural Areas
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-019-02243-9
– volume: 39
  start-page: 783
  year: 2019
  ident: ref_43
  article-title: Review of Image Low-Level Feature Extraction Methods for Content-Based Image Retrieval
  publication-title: Sens. Rev.
  doi: 10.1108/SR-04-2019-0092
– volume: 6
  start-page: 160
  year: 2020
  ident: ref_9
  article-title: Deep Learning for Radio Propagation: Using Image-Driven Regression to Estimate Path Loss in Urban Areas
  publication-title: ICT Express
  doi: 10.1016/j.icte.2020.04.008
– volume: 50
  start-page: 13
  year: 2017
  ident: ref_42
  article-title: Performance of Convolutional Neural Networks for Feature Extraction in Froth Flotation Sensing
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2017.12.003
– ident: ref_2
  doi: 10.3390/s20071927
– ident: ref_54
  doi: 10.3390/healthcare8030247
– volume: 27
  start-page: 4169
  year: 2021
  ident: ref_5
  article-title: Performance Evaluation of Machine Learning Methods for Path Loss Prediction in Rural Environment at 3.7GHz
  publication-title: Wirel. Netw.
  doi: 10.1007/s11276-021-02682-3
– ident: ref_69
– volume: 8
  start-page: 14285
  year: 2018
  ident: ref_55
  article-title: Enhanced Prediction of Hot Spots at Protein-Protein Interfaces Using Extreme Gradient Boosting
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32511-1
– volume: 1
  start-page: 114
  year: 2020
  ident: ref_4
  article-title: Tool to Explain Radio Propagation and Reduce Model Complexity
  publication-title: Telecom
  doi: 10.3390/telecom1020009
– volume: 9
  start-page: 506
  year: 2020
  ident: ref_33
  article-title: Radio Propagation Prediction Using Deep Neural Network and Building Occupancy Estimation
  publication-title: IEICE Commun. Express
  doi: 10.1587/comex.2020XBL0100
– ident: ref_1
  doi: 10.1109/ICEVT48285.2019.8994017
– ident: ref_72
– ident: ref_16
  doi: 10.1109/ICIAS49414.2021.9642585
– ident: ref_59
– volume: 9
  start-page: 3278
  year: 2021
  ident: ref_30
  article-title: FadeNet: Deep Learning-Based Mm-Wave Large-Scale Channel Fading Prediction and Its Applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3048583
– ident: ref_15
  doi: 10.3390/s21155100
– volume: 78
  start-page: 225
  year: 2017
  ident: ref_58
  article-title: Boosted Decision Tree Approach Using Bayesian Hyper-Parameter Optimization for Credit Scoring
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.017
– ident: ref_31
  doi: 10.1145/3394486.3403287
– ident: ref_3
  doi: 10.3390/app9091908
– ident: ref_10
  doi: 10.1109/WCNC.2019.8885668
– volume: 9
  start-page: 611
  year: 2018
  ident: ref_51
  article-title: Convolutional Neural Networks: An Overview and Application in Radiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– ident: ref_34
– volume: 8
  start-page: 7925
  year: 2020
  ident: ref_8
  article-title: Model-Aided Deep Learning Method for Path Loss Prediction in Mobile Communication Systems at 2.6 GHz
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2964103
– ident: ref_25
  doi: 10.1109/WCNC51071.2022.9771737
– volume: 65
  start-page: 3675
  year: 2017
  ident: ref_14
  article-title: Path Loss Model Using Learning Machine for Heterogeneous Networks
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2017.2705112
– ident: ref_23
  doi: 10.1109/GLOBECOM42002.2020.9322089
– ident: ref_40
– volume: 12
  start-page: 990
  year: 2022
  ident: ref_68
  article-title: Path Loss Modeling: A Machine Learning Based Approach Using Support Vector Regression and Radial Basis Function Models
  publication-title: Open J. Appl. Sci.
  doi: 10.4236/ojapps.2022.126068
– volume: 9
  start-page: 30441
  year: 2021
  ident: ref_11
  article-title: Fusing Diverse Input Modalities for Path Loss Prediction: A Deep Learning Approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3059589
– ident: ref_37
– volume: 38
  start-page: 489
  year: 2015
  ident: ref_62
  article-title: Dropouts Meet Multiple Additive Regression Trees
  publication-title: J. Mach. Learn. Res.
– ident: ref_20
  doi: 10.1007/978-3-030-82269-9_15
– volume: 17
  start-page: 1062
  year: 2018
  ident: ref_39
  article-title: Path Loss Dataset for Modeling Radio Wave Propagation in Smart Campus Environment
  publication-title: Data Br.
  doi: 10.1016/j.dib.2018.02.026
– ident: ref_28
  doi: 10.1109/ICOIN53446.2022.9687274
– volume: 31
  start-page: 71
  year: 2020
  ident: ref_47
  article-title: New Feature Extraction Process Based on SFTA and DWT to Enhance Classification of Ceramic Tiles Quality
  publication-title: Mach. Vis. Appl.
  doi: 10.1007/s00138-020-01121-1
– ident: ref_71
  doi: 10.1201/9781315108230
– volume: 13
  start-page: 13409
  year: 2018
  ident: ref_64
  article-title: Investigating Signal Power Loss Prediction in A Metropolitan Island Using ADALINE and Multi-Layer Perceptron Back Propagation Networks
  publication-title: Int. J. Appl. Eng. Res.
– ident: ref_61
  doi: 10.1145/2939672.2939785
– volume: 6
  start-page: 2366
  year: 2019
  ident: ref_38
  article-title: LoRaWAN Network Radio Propagation Models and Performance Evaluation in Various Environments in Lebanon
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2019.2906838
– volume: 71
  start-page: 158
  year: 2017
  ident: ref_22
  article-title: Handcrafted vs. Non-Handcrafted Features for Computer Vision Classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.05.025
– volume: 7
  start-page: 101366
  year: 2019
  ident: ref_26
  article-title: Path Loss Exponent and Shadowing Factor Prediction From Satellite Images Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2931072
– volume: 8
  start-page: 64982
  year: 2020
  ident: ref_7
  article-title: Predicting Path Loss Distribution of an Area from Satellite Images Using Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2985929
– volume: 4
  start-page: 138
  year: 2015
  ident: ref_70
  article-title: Clutter Height Variation Effects on Frequency Dependent Path Loss Models at UHF Bands in Build-Up Areas
  publication-title: Sci. Technol. Arts Res. J.
  doi: 10.4314/star.v4i4.21
– volume: 65
  start-page: 417
  year: 2016
  ident: ref_53
  article-title: Design of Deep Convolutional Neural Network Architectures for Automated Feature Extraction in Industrial Inspection
  publication-title: CIRP Ann. Manuf. Technol.
  doi: 10.1016/j.cirp.2016.04.072
– ident: ref_24
  doi: 10.1109/WCNC51071.2022.9771981
– ident: ref_36
– volume: 10
  start-page: 20336
  year: 2020
  ident: ref_21
  article-title: Comparison of Handcrafted Features and Convolutional Neural Networks for Liver MR Image Adequacy Assessment
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-77264-y
– ident: ref_48
  doi: 10.3390/app11010089
– ident: ref_57
– volume: 9
  start-page: 62867
  year: 2021
  ident: ref_27
  article-title: Millimeter Wave Path Loss Modeling for 5G Communications Using Deep Learning With Dilated Convolution and Attention
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3070711
– ident: ref_32
  doi: 10.23919/EuCAP48036.2020.9135876
– ident: ref_60
  doi: 10.23919/EuCAP48036.2020.9135353
– ident: ref_49
  doi: 10.1109/SCORED.2007.4451366
– ident: ref_50
  doi: 10.1109/SIBGRAPI.2012.15
– volume: 20
  start-page: 1443
  year: 2021
  ident: ref_18
  article-title: Enhancing Machine Learning Models for Path Loss Prediction Using Image Texture Techniques
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2021.3086180
SSID ssj0000913810
Score 2.2819629
Snippet There is an increased exploration of the potential of wireless communication networks in the automation of daily human tasks via the Internet of Things. Such...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 7685
SubjectTerms Accuracy
Algorithms
Antennas
environment
feature extraction
hand-crafted
Investigations
Licensed products
Machine learning
Neural networks
path loss
Propagation
Receivers & amplifiers
satellite image
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED-N7gF4QGyAKAzkhyEBUiAfduIgIcSqTgVBVQGT9hb5I-alpCVNB_wL_NXcuW7WSWhPkSLLjnLn8-98d78DOM6cKiWvbZRIKyNUiiySWqGXglAkSZRJS08p9HmaT874x3NxvgfTbS0MpVVubaI31HZh6I78NQVIBacMjnfLnxF1jaLo6raFhgqtFexbTzF2A_ZTYsYawP7JeDr70t-6EAumTOJNoV6G_j7FiYlgAVG3uHI0eQb_K7Dz5rpZqj-_1Hy-cwKd3oU7ATqy9xtZH8Be3RzC7R1CwUM4CFt1xZ4HPukX9-Bvf3HAZoj32CdcnM1aitCQVJjPGmDjy4o3XISQ4bqt2fh3125KHxgVorCvyjN4djX78AMt0eoNm6jGRqOWeo1bdrF6xUaL5iLoM05E5B_-4bPN78PZ6fjbaBKFFgwRSol3kUHsbbTNrVJ48nPObVaIsjRS5No5BDvC6MQ6mwpdqIzLMo5dUltlCqlLoVX2AAbNoqkfAuOFdLEpuHax4o5oeQpp0JpkKokzFbshvNz-_coEfnJqkzGv0E8hUVU7ohrCcT94uaHl-P-wExJjP4S4tP2LRfu9CluzymtTolsncqMKbhOlM4s-b4puh7MmFnoIR1slqMIGX1WX6jiEZ71iXPctj66f5jHcSqmywucWHsGga9f1E8Q7nX4alPgfEjcBCA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wA8wDZAK2yTH4YESGnjxE4cXqat6lQQTJWg0niK_BEjREmrNC0ffwJ_9e4St3QIISSeEkUXx5bPl9_Zd78j5CR2KpO8sAGTVgagFHEgtQIvBaAIY8pEWUMp9PYyGU346ytxtZXFj2GV4Ip_aox0BE52AGY27bOoz0QfoLHoz607Xfm9JJaIjHMhMId6B-6TsEN2Jpfjsw9YU279dpuWF4N3j6fCSKeADd34ETV8_TdA5u1lOVffv6rpdOt_c3GfqHVP2zCTz71lrXvmx28kjv8zlF1yz4NRetZqzx65VZT75O4WReE-2fOLf0GfeYbq5w_Iz81WBB0DgqRvYIB0XOGZD84zbeIQ6PBXDh18BLHmsiro8FtdtckUFFNb6DvVcILWBX31BWzb4iUdqdIGgwqrl1u6WvToYFau_AqBhpBOpLk08esPyeRi-H4wCnxRhwDmndeBATRvtE2sUoAlOOc2TkWWGSkS7RzAJ2E0s85GQqcq5jILQ8cKq0wqdSa0ih-RTjkriwNCeSpdaFKuXai4Q6KfVBqwT7FiYaxC1yUv1jOcG894joU3pjl4PqgO-ZY6dMnJRnjeEn38WewcVWUjguzczYNZ9TH3iz1PCpOBoygSo1JumdKxBS86AkfGWRMK3SWHa0XLvclY5BgBIDiGKHXJ043y_a0vj_9R7gm5E2HSRhO2eEg6dbUsjgBK1frYr5ZrgPgZGg
  priority: 102
  providerName: Unpaywall
Title Improving Path Loss Prediction Using Environmental Feature Extraction from Satellite Images: Hand-Crafted vs. Convolutional Neural Network
URI https://www.proquest.com/docview/2700547601
https://www.mdpi.com/2076-3417/12/15/7685/pdf?version=1659445551
https://doaj.org/article/6ec962656ca74d1ab3d0942772fdc05b
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources(FREE)
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOQAH1BYQC-3KhyIBUiDZ2InNrV3tsiBYrYCVyinyR3xa0iqbLfAX-NXMOOk2lSq4cIoSWYnlebbfxDNvAI5Sr5XkpYsS6WSEoEgjaTR6KUhFkkTbkQqSQp_m2WzJP5yK016pL4oJa-WB24F7k5VWIekWmdU5d4k2qUOPZISk0DsbC0OrbyxVz5kKa7BKSLqqTchL0a-n82ASUkB2La5tQUGp_xq9vLupzvWvH3q16u0001140FFEdtx2bQ9uldU-3O8JB-7DXjcl1-xFpxv98iH83v4gYAvkdewjfpwtajqJodFnITqATa4y2_AjxAA3dckmP5u6TXFglHDCvuig1NmU7P13XHHWb9lMVy4a11RT3LGL9Ws2PqsuOtzii0jkI1xCVPkjWE4nX8ezqCu1EKE1eBNZ5NjWuMxpjTs859yluVDKSpEZ75HUCGsS591ImFynXKo49knptM2lUcLo9DHsVGdV-QQYz6WPbc6NjzX3JL-TS4urRqqTONWxH8Cry9EvbKdDTuUwVgX6I2SqomeqARxtG5-38hs3NzshM26bkGZ2eIBIKjokFf9C0gAOLkFQdBN5XdC5vOAUODSA51tg_K0vT_9HX57BvRHlWYRIwwPYaepNeYjspzFDuC2n74Zw52QyX3weBtjj3XK-OP72B2QNB2E
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtNAEF6V9lA4IFpABArsoZUAydT27voHqUI0pEpoGkXQSr2Z_bG5BCfYTktfgYfi2ZjZrNNUQr31ZMla7Vqe2dlvdma-IWSXFTJNeG68IDGJB0rBvERJ8FIAigSB1GFqKYVORlH_jH85F-dr5G9bC4Npla1NtIbaTDXeke9jgFRwzOD4OPvlYdcojK62LTSka61gDizFmCvsOM6vLsGFqw8Gn0Hee2F41Dvt9j3XZcCDD-GNpwFeamUiIyUcbpxzw2KRpjoRkSoKOM-FVoEpTChULBlPUt8vgtxIHScqFUoymPce2eCMp-D8bRz2RuOvy1seZN1MAn9RGMhY6mNcGgkdAOWLG0eh7RhwA-ZuzsuZvLqUk8nKiXf0iDx0UJV-WujWFlnLy23yYIXAcJtsOdNQ0zeOv_rtY_JneVFBx4Av6RAWp-MKI0KoBdRmKdDedYUdLIJIdF7ltPe7qRalFhQLX-g3aRlDm5wOfoLlqz_QviyN162wt7mhF_V72p2WF27_wERINmIfNrv9CTm7E2E8JevltMyfEcrjpPB1zFXhS14gDVCcaLBeTAY-k37RIe_av59px4eObTkmGfhFKKpsRVQdsrscPFvQgPx_2CGKcTkEubvti2n1I3OmIItynYIbKSItY24CqZgBHzsEN6cw2heqQ3ZaJcicQamza_XvkL2lYtz2Lc9vn-Y12eyfngyz4WB0_ILcD7Gqw-Y17pD1pprnLwFrNeqVU2hKvt_1HvoHcxU_DA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkXgcEC0gthTwoZUAKTQPO3GQEILtLru0VCtBpd6CHzGXbXZJsi39C_wkfh0zTjbdSqi3niJFlh1lxuNvPDPfELITWZkKlhsvEEZ4oBSRJ5QELwWgSBBIHaaOUujrUTw6Zl9O-Mka-bushcG0yqVNdIbazDTeke9hgJQzzODYs21axGR_-GH-y8MOUhhpXbbTaFTkIL84B_etej_eB1nvhuFw8L0_8toOAx58BKs9DdBSKxMbKeFgY4yZKOFpqgWPlbVwlnOtAmNNyFUiIyZS37dBbqROhEq5khHMe4vcTpDFHavUh5-7-x3k2xSB35QERlHqY0QaqRwA3_Mrh6DrFXAF4N5dFHN5cS6n05WzbviQPGhBKv3YaNUGWcuLTXJ_hbpwk2y0RqGir1rm6tePyJ_uioJOAFnSQ1icTkqMBaH8qctPoIPL2jpYBDHooszp4HddNkUWFEte6DfpuELrnI5PweZV7-hIFsbrl9jV3NCz6i3tz4qzdufAREgz4h4ur_0xOb4RUTwh68WsyJ8SyhJhfZ0wZX3JLBIAJUKD3Ypk4EfStz3yZvn3M90yoWNDjmkGHhGKKlsRVY_sdIPnDQHI_4d9QjF2Q5C1272YlT-z1ghkca5TcCB5rGXCTCBVZMC7DsHBsUb7XPXI9lIJstaUVNml4vfIbqcY133L1vXTvCR3YOdkh-Ojg2fkXojlHC6hcZus1-Uifw4gq1YvnDZT8uOmt88_yhI8pg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQ9wA8wDZAK2yTH4YESGnjxE4cXqat6lQQTJWg0niK_BEjREmrNC0ffwJ_9e4St3QIISSeEkUXx5bPl9_Zd78j5CR2KpO8sAGTVgagFHEgtQIvBaAIY8pEWUMp9PYyGU346ytxtZXFj2GV4Ip_aox0BE52AGY27bOoz0QfoLHoz607Xfm9JJaIjHMhMId6B-6TsEN2Jpfjsw9YU279dpuWF4N3j6fCSKeADd34ETV8_TdA5u1lOVffv6rpdOt_c3GfqHVP2zCTz71lrXvmx28kjv8zlF1yz4NRetZqzx65VZT75O4WReE-2fOLf0GfeYbq5w_Iz81WBB0DgqRvYIB0XOGZD84zbeIQ6PBXDh18BLHmsiro8FtdtckUFFNb6DvVcILWBX31BWzb4iUdqdIGgwqrl1u6WvToYFau_AqBhpBOpLk08esPyeRi-H4wCnxRhwDmndeBATRvtE2sUoAlOOc2TkWWGSkS7RzAJ2E0s85GQqcq5jILQ8cKq0wqdSa0ih-RTjkriwNCeSpdaFKuXai4Q6KfVBqwT7FiYaxC1yUv1jOcG894joU3pjl4PqgO-ZY6dMnJRnjeEn38WewcVWUjguzczYNZ9TH3iz1PCpOBoygSo1JumdKxBS86AkfGWRMK3SWHa0XLvclY5BgBIDiGKHXJ043y_a0vj_9R7gm5E2HSRhO2eEg6dbUsjgBK1frYr5ZrgPgZGg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+Path+Loss+Prediction+Using+Environmental+Feature+Extraction+from+Satellite+Images%3A+Hand-Crafted+vs.+Convolutional+Neural+Network&rft.jtitle=Applied+sciences&rft.au=Usman+Sammani+Sani&rft.au=Owais+Ahmed+Malik&rft.au=Daphne+Teck+Ching+Lai&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=15&rft.spage=7685&rft_id=info:doi/10.3390%2Fapp12157685&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6ec962656ca74d1ab3d0942772fdc05b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon