Multigranularity Pruning Model for Subject Recognition Task under Knowledge Base Question Answering When General Models Fail
In general knowledge base question answering (KBQA) models, subject recognition (SR) is usually a precondition of finding an answer, and it is a common way to employ a general named entity recognition (NER) model such as BERT-CRF to recognize the subject. However, in previous researches, the differe...
Saved in:
| Published in | International journal of intelligent systems Vol. 2023; no. 1 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Hindawi
2023
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0884-8173 1098-111X 1098-111X |
| DOI | 10.1155/2023/1202315 |
Cover
| Abstract | In general knowledge base question answering (KBQA) models, subject recognition (SR) is usually a precondition of finding an answer, and it is a common way to employ a general named entity recognition (NER) model such as BERT-CRF to recognize the subject. However, in previous researches, the difference between a NER task and a SR task is usually ignored, and a wrong entity recognized by the NER model will certainly lead to a wrong answer in the KBQA task, which is one bottleneck for KBQA performance. In this paper, a multigranularity pruning model (MGPM) is proposed to answer a question when general models fail to recognize a subject. In MGPM, the set of all possible subjects in the Knowledge Base (KB) is pruned by 4 multigranularity pruning submodels successively based on the constraint of relation (domain and tuple), string similarity, and semantic similarity. Experimental results show that our model is compatible with various KBQA models for both single-relation and complex questions answering. The integrated MGPM model (with the BERT-CRF model) achieves a SR accuracy of 94.4% on the SimpleQuestions dataset, 68.6% on the WebQuestionsSP dataset, and 63.7% on the WebQuestions dataset, which outperforms the original model by a margin of 3.6%, 8.6%, and 5.3%, respectively. |
|---|---|
| AbstractList | In general knowledge base question answering (KBQA) models, subject recognition (SR) is usually a precondition of finding an answer, and it is a common way to employ a general named entity recognition (NER) model such as BERT‐CRF to recognize the subject. However, in previous researches, the difference between a NER task and a SR task is usually ignored, and a wrong entity recognized by the NER model will certainly lead to a wrong answer in the KBQA task, which is one bottleneck for KBQA performance. In this paper, a multigranularity pruning model (MGPM) is proposed to answer a question when general models fail to recognize a subject. In MGPM, the set of all possible subjects in the Knowledge Base (KB) is pruned by 4 multigranularity pruning submodels successively based on the constraint of relation (domain and tuple), string similarity, and semantic similarity. Experimental results show that our model is compatible with various KBQA models for both single‐relation and complex questions answering. The integrated MGPM model (with the BERT‐CRF model) achieves a SR accuracy of 94.4% on the SimpleQuestions dataset, 68.6% on the WebQuestionsSP dataset, and 63.7% on the WebQuestions dataset, which outperforms the original model by a margin of 3.6%, 8.6%, and 5.3%, respectively. |
| Author | Xu, Xirong Wei, Xiaopeng Wang, Ziming Huang, Degen Li, Haochen Song, Xiaoying |
| Author_xml | – sequence: 1 givenname: Ziming surname: Wang fullname: Wang, Ziming organization: School of Computer Science and TechnologyDalian University of TechnologyDalian 116024Chinadlut.edu.cn – sequence: 2 givenname: Xirong orcidid: 0000-0002-7558-3031 surname: Xu fullname: Xu, Xirong organization: School of Computer Science and TechnologyDalian University of TechnologyDalian 116024Chinadlut.edu.cn – sequence: 3 givenname: Xiaoying surname: Song fullname: Song, Xiaoying organization: School of Computer Science and TechnologyDalian University of TechnologyDalian 116024Chinadlut.edu.cn – sequence: 4 givenname: Haochen surname: Li fullname: Li, Haochen organization: School of Computer Science and TechnologyDalian University of TechnologyDalian 116024Chinadlut.edu.cn – sequence: 5 givenname: Xiaopeng orcidid: 0000-0002-8497-611X surname: Wei fullname: Wei, Xiaopeng organization: School of Computer Science and TechnologyDalian University of TechnologyDalian 116024Chinadlut.edu.cn – sequence: 6 givenname: Degen surname: Huang fullname: Huang, Degen organization: School of Computer Science and TechnologyDalian University of TechnologyDalian 116024Chinadlut.edu.cn |
| BookMark | eNqFkMtOwzAQRS1UJMpjxwdYYgmhduy8lgXxElS8BbvIcSbBxdjFThRV4uNJCGvY3JnF0dHM3UYTYw0gtE_JMaVRNAtJyGZ0SBptoCklWRpQSl8naErSlAcpTdgW2vZ-SQilCY-m6GvR6kbVTphWC6eaNb5zrVGmxgtbgsaVdfixLZYgG_wA0tZGNcoa_CT8O25NCQ5fG9tpKGvAJ8IDvm_B_yBz4ztwg-rlDQy-AANO6NHr8blQehdtVkJ72PudO-j5_Ozp9DK4ub24Op3fBDLMeNOnZBmnZRGBKDiJJQcuJSskSSLOWZbKKmM85IyyOEwKLqOYsBh4lvK4KPp9BwWjtzUrse6E1vnKqQ_h1jkl-VBdPpSW_1bX8wcjv3L2c3gnX9rWmf7EPEzTjCQhJ6ynjkZKOuu9g-o_6eGIvylTik79TX8DprCKNQ |
| Cites_doi | 10.1145/3289600.3290956 10.1162/tacl_a_00334 10.21437/Interspeech.2019-1873 10.1017/s1351324921000139 10.1007/978-3-031-15931-2_25 10.18653/v1/2022.naacl-main.20 10.1017/s1351324921000127 10.3115/v1/P14-1090 10.1109/access.2019.2918675 10.18653/v1/2021.acl-long.17 10.1109/access.2023.3252608 10.1162/coli_a_00127 10.1162/tacl_a_00386 10.1109/access.2019.2904337 10.1109/access.2019.2909826 10.3390/app132011249 10.1162/tacl_a_00282 10.1162/tacl_a_00104 10.1145/1376616.1376746 10.1162/tacl_a_00429 10.1162/coli_a_00434 10.18653/v1/2021.acl-long.63 10.1109/IJCNN48605.2020.9207186 10.18653/v1/2021.naacl-main.269 10.1162/coli_a_00462 10.1162/tacl_a_00470 10.18653/v1/2021.semeval-1.175 10.1109/ICCV.2019.00756 10.18653/v1/2022.ecnlp-1.20 10.18653/v1/2022.acl-long.65 10.18653/v1/2022.insights-1.8 10.18653/v1/2022.findings-acl.214 10.1109/CVPR46437.2021.00725 10.18653/v1/D18-1051 10.18653/v1/2023.acl-demo.51 10.18653/v1/2021.acl-srw.4 10.18653/v1/P16-1076 10.18653/v1/W18-5446 10.18653/v1/D13-1160 10.18653/v1/N19-1029 10.18653/v1/D19-1514 10.18653/v1/2022.acl-long.40 10.21437/Interspeech.2020-1570 10.1162/tacl_a_00336 10.1109/tpami.2017.2773081 10.18653/v1/2021.acl-long.451 |
| ContentType | Journal Article |
| Copyright | Copyright © 2023 Ziming Wang et al. Copyright © 2023 Ziming Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2023 Ziming Wang et al. – notice: Copyright © 2023 Ziming Wang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | RHU RHW RHX AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY |
| DOI | 10.1155/2023/1202315 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1098-111X |
| Editor | Khosravi, Mohammad R. |
| Editor_xml | – sequence: 1 givenname: Mohammad R. surname: Khosravi fullname: Khosravi, Mohammad R. |
| ExternalDocumentID | 10.1155/2023/1202315 10_1155_2023_1202315 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U21A20491; U1936109; U1908214 |
| GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AAONW AAXRX AAZKR ABCQN ABCUV ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXME ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ARAPS ARCSS ATUGU AUFTA AZBYB AZQEC AZVAB BAFTC BENPR BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO F00 F01 F04 G-S G.N GNP GNUQQ GODZA H.T H.X HBH HCIFZ HHY HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHU RHW RHX RWI RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WWI WXSBR WYISQ WZISG XG1 XPP XV2 ZZTAW ~IA ~WT .Y3 24P 31~ AAMMB AANHP AASGY AAYXX ABDPE ABEML ACBWZ ACCMX ACRPL ACSCC ACXQS ACYXJ ADMLS ADNMO AEFGJ AFZJQ AGQPQ AGXDD AI. AIDQK AIDYY AIQQE AIURR ALUQN ASPBG AVWKF AZFZN BDRZF BFHJK CITATION CMOOK EJD FEDTE H13 HF~ HVGLF LH4 LW6 M59 MVM PALCI PHGZM PHGZT PQGLB PUEGO RIWAO RJQFR ROL SAMSI VH1 ZY4 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK JQ2 L6V L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c294t-c2c3941db5eab406c4e4cc3bc07544398cf93424313627b4c56036e49846bb603 |
| IEDL.DBID | BENPR |
| ISSN | 0884-8173 1098-111X |
| IngestDate | Tue Aug 19 14:51:24 EDT 2025 Sun Jul 13 03:50:39 EDT 2025 Wed Oct 01 03:27:41 EDT 2025 Sun Jun 02 19:22:43 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-c2c3941db5eab406c4e4cc3bc07544398cf93424313627b4c56036e49846bb603 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8497-611X 0000-0002-7558-3031 |
| OpenAccessLink | https://www.proquest.com/docview/2889072403?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2889072403 |
| PQPubID | 1026350 |
| ParticipantIDs | unpaywall_primary_10_1155_2023_1202315 proquest_journals_2889072403 crossref_primary_10_1155_2023_1202315 hindawi_primary_10_1155_2023_1202315 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-00-00 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of intelligent systems |
| PublicationYear | 2023 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | e_1_2_10_23_2 e_1_2_10_44_2 e_1_2_10_21_2 e_1_2_10_42_2 e_1_2_10_40_2 e_1_2_10_2_2 e_1_2_10_18_2 e_1_2_10_39_2 e_1_2_10_53_2 e_1_2_10_4_2 e_1_2_10_16_2 e_1_2_10_37_2 e_1_2_10_55_2 e_1_2_10_6_2 e_1_2_10_14_2 e_1_2_10_35_2 e_1_2_10_11_2 e_1_2_10_34_2 e_1_2_10_8_2 e_1_2_10_32_2 e_1_2_10_30_2 e_1_2_10_51_2 e_1_2_10_29_2 e_1_2_10_27_2 e_1_2_10_48_2 e_1_2_10_25_2 e_1_2_10_46_2 e_1_2_10_22_2 e_1_2_10_45_2 Levenshtein V. I. (e_1_2_10_47_2) 1966; 163 e_1_2_10_20_2 e_1_2_10_43_2 e_1_2_10_41_2 Yang Z. (e_1_2_10_12_2) 2019 e_1_2_10_19_2 e_1_2_10_1_2 e_1_2_10_3_2 e_1_2_10_17_2 e_1_2_10_52_2 e_1_2_10_5_2 e_1_2_10_15_2 e_1_2_10_38_2 e_1_2_10_54_2 e_1_2_10_7_2 e_1_2_10_13_2 e_1_2_10_36_2 e_1_2_10_56_2 e_1_2_10_9_2 e_1_2_10_57_2 e_1_2_10_33_2 e_1_2_10_10_2 e_1_2_10_31_2 e_1_2_10_50_2 e_1_2_10_28_2 e_1_2_10_26_2 e_1_2_10_49_2 e_1_2_10_24_2 |
| References_xml | – ident: e_1_2_10_56_2 doi: 10.1145/3289600.3290956 – ident: e_1_2_10_23_2 doi: 10.1162/tacl_a_00334 – ident: e_1_2_10_34_2 doi: 10.21437/Interspeech.2019-1873 – ident: e_1_2_10_11_2 – ident: e_1_2_10_15_2 doi: 10.1017/s1351324921000139 – ident: e_1_2_10_57_2 doi: 10.1007/978-3-031-15931-2_25 – ident: e_1_2_10_38_2 doi: 10.18653/v1/2022.naacl-main.20 – ident: e_1_2_10_14_2 doi: 10.1017/s1351324921000127 – ident: e_1_2_10_48_2 – ident: e_1_2_10_4_2 doi: 10.3115/v1/P14-1090 – ident: e_1_2_10_8_2 doi: 10.1109/access.2019.2918675 – ident: e_1_2_10_28_2 doi: 10.18653/v1/2021.acl-long.17 – ident: e_1_2_10_42_2 doi: 10.1109/access.2023.3252608 – ident: e_1_2_10_2_2 doi: 10.1162/coli_a_00127 – ident: e_1_2_10_30_2 – ident: e_1_2_10_24_2 doi: 10.1162/tacl_a_00386 – ident: e_1_2_10_9_2 doi: 10.1109/access.2019.2904337 – ident: e_1_2_10_5_2 doi: 10.1109/access.2019.2909826 – ident: e_1_2_10_26_2 doi: 10.3390/app132011249 – ident: e_1_2_10_45_2 doi: 10.1162/tacl_a_00282 – ident: e_1_2_10_52_2 – ident: e_1_2_10_22_2 doi: 10.1162/tacl_a_00104 – ident: e_1_2_10_3_2 doi: 10.1145/1376616.1376746 – ident: e_1_2_10_25_2 doi: 10.1162/tacl_a_00429 – ident: e_1_2_10_17_2 doi: 10.1162/coli_a_00434 – volume: 163 start-page: 845 year: 1966 ident: e_1_2_10_47_2 article-title: Binary codes capable of correcting deletions, insertions and reversals publication-title: Doklady Akademii Nauk SSSR – ident: e_1_2_10_29_2 doi: 10.18653/v1/2021.acl-long.63 – ident: e_1_2_10_19_2 doi: 10.1109/IJCNN48605.2020.9207186 – ident: e_1_2_10_46_2 doi: 10.18653/v1/2021.naacl-main.269 – ident: e_1_2_10_16_2 doi: 10.1162/coli_a_00462 – ident: e_1_2_10_43_2 doi: 10.1162/tacl_a_00470 – ident: e_1_2_10_6_2 – ident: e_1_2_10_18_2 doi: 10.18653/v1/2021.semeval-1.175 – ident: e_1_2_10_32_2 doi: 10.1109/ICCV.2019.00756 – ident: e_1_2_10_41_2 doi: 10.18653/v1/2022.ecnlp-1.20 – ident: e_1_2_10_37_2 doi: 10.18653/v1/2022.acl-long.65 – ident: e_1_2_10_39_2 doi: 10.18653/v1/2022.insights-1.8 – ident: e_1_2_10_40_2 doi: 10.18653/v1/2022.findings-acl.214 – ident: e_1_2_10_33_2 doi: 10.1109/CVPR46437.2021.00725 – ident: e_1_2_10_55_2 doi: 10.18653/v1/D18-1051 – ident: e_1_2_10_13_2 – ident: e_1_2_10_53_2 doi: 10.18653/v1/2023.acl-demo.51 – ident: e_1_2_10_20_2 doi: 10.18653/v1/2021.acl-srw.4 – ident: e_1_2_10_1_2 doi: 10.18653/v1/P16-1076 – ident: e_1_2_10_21_2 doi: 10.18653/v1/W18-5446 – ident: e_1_2_10_50_2 doi: 10.18653/v1/D13-1160 – ident: e_1_2_10_10_2 – ident: e_1_2_10_7_2 doi: 10.18653/v1/N19-1029 – ident: e_1_2_10_31_2 doi: 10.18653/v1/D19-1514 – ident: e_1_2_10_36_2 doi: 10.18653/v1/2022.acl-long.40 – ident: e_1_2_10_35_2 doi: 10.21437/Interspeech.2020-1570 – start-page: 5754 volume-title: Proceedings of the 2019 Annual Conference on Neural Information Processing Systems year: 2019 ident: e_1_2_10_12_2 – ident: e_1_2_10_49_2 – ident: e_1_2_10_44_2 doi: 10.1162/tacl_a_00336 – ident: e_1_2_10_51_2 – ident: e_1_2_10_54_2 doi: 10.1109/tpami.2017.2773081 – ident: e_1_2_10_27_2 doi: 10.18653/v1/2021.acl-long.451 |
| SSID | ssj0011745 |
| Score | 2.3430147 |
| Snippet | In general knowledge base question answering (KBQA) models, subject recognition (SR) is usually a precondition of finding an answer, and it is a common way to... |
| SourceID | unpaywall proquest crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Publisher |
| SubjectTerms | Datasets Intelligent systems Knowledge bases (artificial intelligence) Natural language Neural networks Pruning Questions Recognition Semantics Similarity |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA86EL34LU6nvMP0VlzX1zY9TnEMRZGxwW4lSVMVSzfWjSH4x_vSj-EU1EvIIU0hL8nv917eB2NNpWKOBA1WLPyWhbZWVuDFwrJFpCIfI4zz8LGHR683xLuROyqTJGU_n_AJ7Yx67lzZpjXB5OvcM55b_d5o-VhApNotyCJa3Padyr_927cryLPxYlTexesKsdycpxPxvhBJ8gVjurtsuySH0CmkucfWdLrPdqrCC1CewwP2kYfNPhPMGCdS4tHwNJ0bAweY0mYJEBEFuhGMiQX6lYfQOIWByN7ARI1N4b6ypcE14Rjkdk8zpJNmizw7IdA1nUKZlbqYN4OueE0O2bB7O7jpWWUZBUu1A5xRq5wA7Ui6WkjCb4UalXKkauXJ7wKu4sDBNjEJAjNfoiIS5HgaA6ImUlL_iNXScaqPGXDUTsRdUipjOuy25MpctEJFWiIqL6qzi2qJw0mRLSPMtQzXDY0QwlIUddYs1_-PYY1KOGF5tLKwzTkp9CaNYJ1dLgX26zwn__vdKdsyncLA0mC12XSuz4hyzOR5vuE-AaWLzRQ priority: 102 providerName: Hindawi Publishing – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xVtN44WOAKIPJD2xvaZvGThNpLwVRVSAQQq3UPUyRvwKlVVo1rSrQ_vidExtRHti0F8sPlpOc7bvfXe5-BjiVMo0omgYv5e2mR30tvThMuedzJVWbKpoW5WPXN2FvQC-HbLgBP1wtjDIU8VOu8vqD8UlXo0JbW7nmjdHjKDf-etDwTeuz-kylH6AaMkTiFagObm47P0vgSL2o_MHsG8pMPNJDl_fO2NoUaxbpo33sGuD8tMxm_GnFJ5NXtqe7Db_cW5cpJ-P6ciHq8vkNoeP_ftYObFlQSjrlLtqFDZ19hm134QOx538Pfhfluvdo3kzyKuJ3cjtfmsAKMVeqTQgCYIKayIR2yJ3LTJpmpM_zMTHVanNy5WJ45AztJynirWZIJ8tXBSsiQfOQEcuGXc6bky4fTfZh0L3on_c8e32DJ1sxXWArg5j6SjDNBeIGSTWVMhCyWZDuxZFM44C2EMGgEW0LKhF8BaGmMUIiIbB_AJVsmulDIBHVgYoYOrMpKhlfRNIoeC6VFpTKUNXgm1vCZFaydCSFd8NYYgSaWLHW4NTK_y_Djt3iJ26NklYUxc22oS-swfeXDfHuPEf_OvALbJpOGdo5hspivtQnCHYW4qvd038AZwL6DA priority: 102 providerName: Unpaywall |
| Title | Multigranularity Pruning Model for Subject Recognition Task under Knowledge Base Question Answering When General Models Fail |
| URI | https://dx.doi.org/10.1155/2023/1202315 https://www.proquest.com/docview/2889072403 https://downloads.hindawi.com/journals/ijis/2023/1202315.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2023 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 1098-111X databaseCode: ADMLS dateStart: 19860301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1098-111X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011745 issn: 1098-111X databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1098-111X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011745 issn: 1098-111X databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT9tAEB5BoqpcoKVFhEK0B-BmgeN1sj6gKjzSqIUoSomUnqx9uUVETshDERI_nhl7l9ILvVi2tdrDzu7MN7Mz3wAcap0JjqYhyGTrNOCh1UHSzGQQSqNNixueFeVjN71md8i_j-LRGvR8LQylVXqdWChqM9EUIz9pCIF-HLHHfZ0-BNQ1im5XfQsN6VormLOCYmwdqg1ixqpA9fyq1x-83Csg_o5LXMkDEbYinwofxxQFiE5CelKL3FdG6t0f8o5Xd_9g0PfLfCofV3I8fmWOOh9g0-FI1i4F_xHWbL4NW75HA3NH9hM8FRW2v9EiUb4pQm7Wny0pFsKoC9qYIWZlqDwoGsMGPplokrNbOb9nVGA2Yz982I2do8ljRYiUhrTz-aogMmSo0XPmCKzLeeesI-_Gn2HYubq96Aau40KgGwlf4FNHCQ-Niq1UaOo1t1zrSOnTgicvETpLIt5A0IF2r6W4RrwUNS1PEMUohe87UMknud0FJriNjIjR_8xQL4RKaNLJUhurONdNU4Mjv8TptCTWSAuHJI5TEkLqRFGDQ7f-_xm274WTulM4T__umRocvwjszXn23p7nC2zQuDIGsw-VxWxpDxCVLFQd1kXnWx2q7cub6591t_Hw76A7wq9hr9_-9QxLyOM5 |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5RUEUvfaOmhXYP0JsFtseJfUAVryg0ECEUJG7uvgyokZPGiSKk_rb-ts7Yu0Av9MRl5YO9h53xfN_MzgNgU-siRYKGoJCdnQBDq4OsXcgglEabDhos6vKx00G7d4HfL5PLJfjja2E4rdLbxNpQm7HmGPl2lKbkx3H3uG-TXwFPjeLbVT9CQ7rRCma3bjHmCjv69nZBLly1e3xI8t6Kou7R8KAXuCkDgY4ynNGq4wxDoxIrFcGbRotax0rv1L3hslQXWYwRAS3Z-o5CTRwhblvMCLmVomfa9xmsYIwZOX8r-0eDs_O7ewzi-0nDYzFIw07sU--ThKMO8XbIK4_kfQCKz6_ZG1_c_MN5V-flRN4u5Gj0AP66r-Gl461ir1G0N7Bky7fwys-EEM5EvIPfdUXvFSEg57cSxRdn0znHXgRPXRsJ4siCjBVHf8S5T14al2Ioq5-CC9qmou_DfGKfIFbUIVl-Za-sFnXjREEIUgrXMLvZtxJdeTN6DxdPcvZrsFyOS_sBRIo2NmlC_m5BdihUqWYMkNpYhajbpgVb_ojzSdPII68doCTJWQi5E0ULNt35_-e1dS-c3P31VX6voy34eiewR_f5-Pg-X2C1Nzw9yU-OB_1P8IK_aeI_67A8m87tBjGimfrs1E7Aj6fW9L-tIhk9 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xUGkvQKGooUDnANysYHsd2wdU8XKBtAhVIHFzd9driho5aZwoQuKX8euYsb0ULnDisvLB3sPOeL5vZucBsKl1HgmCBieX4Y4jXKOduJNLx5WZzkKRibwqH_t51jm-FKdXwdUU3NtaGE6rtDaxMtRZX3OMvO1FEflx3D2unTdpEeeHybfBP4cnSPFNqx2nUatI19xOyH0rd08OSdZbnpccXRwcO82EAUd7sRjRqv1YuJkKjFQEbVoYobWv9E7VFy6OdB77wiOQJTsfKqGJH_gdI2JCbaXomfadhtmQu7hzlXry_fEGg5h-UDNY4URu6Nuk-yDgeIPfdnnlYbxP4PDdH_bDJzfP2O77cTGQtxPZ6z0BvmQR5hvGinu1in2EKVMswYKdBoGNcViGu6qW95qwjzNbidzj-XDMURfkeWs9JHaMZKY47oO_bNpSv8ALWf5FLmUbYtcG-HCfwBWrYCy_sleUk6plIhJ2FNi0yq73LTGRN71PcPkmJ78CM0W_MJ8BI2H8LArI083JArkq0mz9pc6MEkJ3shZs2SNOB3ULj7RyfYIgZSGkjShasNmc_yuvrVnhpM3_Xqb_tbMF248Ce3Gf1Zf3-QpzpN_pj5Oz7hf4wJ_UgZ81mBkNx2adqNBIbVQ6h_D7rZX8AeXAFtc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-xVtN44WOAKIPJD2xvaZvGThNpLwVRVSAQQq3UPUyRvwKlVVo1rSrQ_vidExtRHti0F8sPlpOc7bvfXe5-BjiVMo0omgYv5e2mR30tvThMuedzJVWbKpoW5WPXN2FvQC-HbLgBP1wtjDIU8VOu8vqD8UlXo0JbW7nmjdHjKDf-etDwTeuz-kylH6AaMkTiFagObm47P0vgSL2o_MHsG8pMPNJDl_fO2NoUaxbpo33sGuD8tMxm_GnFJ5NXtqe7Db_cW5cpJ-P6ciHq8vkNoeP_ftYObFlQSjrlLtqFDZ19hm134QOx538Pfhfluvdo3kzyKuJ3cjtfmsAKMVeqTQgCYIKayIR2yJ3LTJpmpM_zMTHVanNy5WJ45AztJynirWZIJ8tXBSsiQfOQEcuGXc6bky4fTfZh0L3on_c8e32DJ1sxXWArg5j6SjDNBeIGSTWVMhCyWZDuxZFM44C2EMGgEW0LKhF8BaGmMUIiIbB_AJVsmulDIBHVgYoYOrMpKhlfRNIoeC6VFpTKUNXgm1vCZFaydCSFd8NYYgSaWLHW4NTK_y_Djt3iJ26NklYUxc22oS-swfeXDfHuPEf_OvALbJpOGdo5hspivtQnCHYW4qvd038AZwL6DA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multigranularity+Pruning+Model+for+Subject+Recognition+Task+under+Knowledge+Base+Question+Answering+When+General+Models+Fail&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Wang%2C+Ziming&rft.au=Xu%2C+Xirong&rft.au=Song%2C+Xiaoying&rft.au=Li%2C+Haochen&rft.date=2023&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=2023&rft_id=info:doi/10.1155%2F2023%2F1202315&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |