Hybrid User-Based Task Assignment for Mobile Crowdsensing: Problem and Algorithm
With the rapid growth of Internet of Things and proliferation of handheld smart devices, mobile crowdsensing has been regarded as an effective sensing paradigm due to its high scalability, low cost, and wide coverage. In this article, we study hybrid task assignment where semi-opportunistic and part...
Saved in:
| Published in | IEEE internet of things journal Vol. 11; no. 11; pp. 19589 - 19601 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.06.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2327-4662 |
| DOI | 10.1109/JIOT.2024.3367958 |
Cover
| Abstract | With the rapid growth of Internet of Things and proliferation of handheld smart devices, mobile crowdsensing has been regarded as an effective sensing paradigm due to its high scalability, low cost, and wide coverage. In this article, we study hybrid task assignment where semi-opportunistic and participatory users co-exist for task executions while tasks are delay sensitive and have heterogeneous qualities. The design objective is to maximize the total quality of completed tasks subject to a total budget shared by both types of users. We formulate this problem as an integer programming problem. We propose an efficient hybrid users-based task assignment algorithm (referred to as HU-TSA), which works in an iterative way as follows. It first selects the top <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> (initially, <inline-formula> <tex-math notation="LaTeX">n=1 </tex-math></inline-formula>) semi-opportunistic users in terms of quality-cost ratio for task assignment. It then clusters the remaining tasks into different regions based on their closeness and then performs utility-based optimized user-region binding and standardized task density-based path planning for the participatory users. It repeats the above process over all possible values of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> to seek an optimal budget splitting between the two types of users for improved performance. We present the detailed design description of HU-TSA and deduce its computational complexity. Extensive simulations are carried out and the results show the effectiveness of HU-TSA by comparing with existing algorithms. |
|---|---|
| AbstractList | With the rapid growth of Internet of Things and proliferation of handheld smart devices, mobile crowdsensing has been regarded as an effective sensing paradigm due to its high scalability, low cost, and wide coverage. In this article, we study hybrid task assignment where semi-opportunistic and participatory users co-exist for task executions while tasks are delay sensitive and have heterogeneous qualities. The design objective is to maximize the total quality of completed tasks subject to a total budget shared by both types of users. We formulate this problem as an integer programming problem. We propose an efficient hybrid users-based task assignment algorithm (referred to as HU-TSA), which works in an iterative way as follows. It first selects the top <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> (initially, <inline-formula> <tex-math notation="LaTeX">n=1 </tex-math></inline-formula>) semi-opportunistic users in terms of quality-cost ratio for task assignment. It then clusters the remaining tasks into different regions based on their closeness and then performs utility-based optimized user-region binding and standardized task density-based path planning for the participatory users. It repeats the above process over all possible values of <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> to seek an optimal budget splitting between the two types of users for improved performance. We present the detailed design description of HU-TSA and deduce its computational complexity. Extensive simulations are carried out and the results show the effectiveness of HU-TSA by comparing with existing algorithms. With the rapid growth of Internet of Things and proliferation of handheld smart devices, mobile crowdsensing has been regarded as an effective sensing paradigm due to its high scalability, low cost, and wide coverage. In this article, we study hybrid task assignment where semi-opportunistic and participatory users co-exist for task executions while tasks are delay sensitive and have heterogeneous qualities. The design objective is to maximize the total quality of completed tasks subject to a total budget shared by both types of users. We formulate this problem as an integer programming problem. We propose an efficient hybrid users-based task assignment algorithm (referred to as HU-TSA), which works in an iterative way as follows. It first selects the top [Formula Omitted] (initially, [Formula Omitted]) semi-opportunistic users in terms of quality-cost ratio for task assignment. It then clusters the remaining tasks into different regions based on their closeness and then performs utility-based optimized user-region binding and standardized task density-based path planning for the participatory users. It repeats the above process over all possible values of [Formula Omitted] to seek an optimal budget splitting between the two types of users for improved performance. We present the detailed design description of HU-TSA and deduce its computational complexity. Extensive simulations are carried out and the results show the effectiveness of HU-TSA by comparing with existing algorithms. |
| Author | Liu, Kun Li, Cheng Peng, Shuo Zhang, Baoxian Gong, Wei |
| Author_xml | – sequence: 1 givenname: Kun surname: Liu fullname: Liu, Kun email: liukun181@mails.ucas.ac.cn organization: Research Center of Ubiquitous Sensor Networks, University of Chinese Academy of Sciences, Beijing, China – sequence: 2 givenname: Shuo surname: Peng fullname: Peng, Shuo email: pengshuo17@mails.ucas.ac.cn organization: Research Center of Ubiquitous Sensor Networks, University of Chinese Academy of Sciences, Beijing, China – sequence: 3 givenname: Wei orcidid: 0000-0003-4030-4968 surname: Gong fullname: Gong, Wei email: weigong@tongji.edu.cn organization: Department of Control Science and Engineering, Tongji University, Shanghai, China – sequence: 4 givenname: Baoxian orcidid: 0000-0001-9140-6898 surname: Zhang fullname: Zhang, Baoxian email: bxzhang@ucas.ac.cn organization: Research Center of Ubiquitous Sensor Networks, University of Chinese Academy of Sciences, Beijing, China – sequence: 5 givenname: Cheng orcidid: 0000-0003-3424-2414 surname: Li fullname: Li, Cheng email: li_cheng@sfu.ca organization: School of Engineering Science, Simon Fraser University, Burnaby, BC, Canada |
| BookMark | eNp9kE1PAjEQhhujiYj8ABMPTTwv9mu3W29IVDAYOMB506WzWFxabJcY_r1L4EA8eJrJ5H1mJs8NunTeAUJ3lPQpJerxfTyd9xlhos95JlWaX6AO40wmIsvY5Vl_jXoxrgkhLZZSlXXQbLQvgzV4ESEkzzqCwXMdv_AgRrtyG3ANrnzAH760NeBh8D8mgovWrZ7wLPiyhg3WzuBBvfLBNp-bW3RV6TpC71S7aPH6Mh-Oksn0bTwcTJIlU6JJypSLjBspoTK5VqwESAkYZnJpVPubFIpIKqkSqtIVEXlKScWXvB0KZojkXfRw3LsN_nsHsSnWfhdce7LgJM2ZYjzL2pQ8ppbBxxigKpa20Y31rgna1gUlxcFgcTBYHAwWJ4MtSf-Q22A3Ouz_Ze6PjAWAs7wQRBDCfwGfE3xb |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3523948 crossref_primary_10_3390_electronics14051038 crossref_primary_10_1109_JIOT_2024_3481637 |
| Cites_doi | 10.1109/TKDE.2020.2965932 10.1007/s12083-023-01454-4 10.1145/3131672.3136958 10.1109/TMC.2018.2879098 10.1109/TMC.2020.2983688 10.1109/TVT.2019.2962064 10.1109/MCOM.2011.6069707 10.1109/JIOT.2022.3150804 10.1007/s11036-020-01579-3 10.1007/s11036-019-01299-3 10.1109/TMC.2019.2898950 10.1109/JIOT.2023.3236679 10.1109/TMC.2018.2793908 10.1109/JIOT.2018.2866973 10.1109/TMC.2018.2878821 10.1016/j.pmcj.2014.02.001 10.1109/MNET.2018.1700331 10.1145/3139256 10.1016/j.adhoc.2023.103282 10.1109/TMC.2017.2702613 10.1109/TMC.2016.2616473 10.1109/TMC.2017.2771259 10.1109/PIMRC.2018.8580783 10.1137/0105003 10.1109/TVT.2017.2787750 10.1109/TITS.2023.3276162 10.1016/j.future.2020.06.043 10.1109/TVT.2018.2884318 10.1109/COMST.2017.2726686 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2024.3367958 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 19601 |
| ExternalDocumentID | 10_1109_JIOT_2024_3367958 10440400 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: SFU University grantid: N001210 – fundername: National Natural Science Foundation of China grantid: 61872331; 61531006 funderid: 10.13039/501100001809 – fundername: National Key Research and Development Program of China grantid: 2022YFA1004700 – fundername: Shanghai Pujiang Program grantid: 21PJD076 – fundername: Fundamental Research Funds for the Central Universities grantid: 22120220613 funderid: 10.13039/501100012226 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-b53463d77efd8a92bee50ed2d87d905174907171949faf048510f3c307142d073 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 02:18:45 EDT 2025 Thu Apr 24 22:59:52 EDT 2025 Wed Oct 01 01:03:55 EDT 2025 Wed Aug 27 02:05:17 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-b53463d77efd8a92bee50ed2d87d905174907171949faf048510f3c307142d073 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3424-2414 0000-0003-4030-4968 0000-0001-9140-6898 |
| PQID | 3058292366 |
| PQPubID | 2040421 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1109_JIOT_2024_3367958 ieee_primary_10440400 proquest_journals_3058292366 crossref_primary_10_1109_JIOT_2024_3367958 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-01 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 Arthur (ref29); 8 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref15 doi: 10.1109/TKDE.2020.2965932 – ident: ref26 doi: 10.1007/s12083-023-01454-4 – ident: ref6 doi: 10.1145/3131672.3136958 – ident: ref8 doi: 10.1109/TMC.2018.2879098 – ident: ref17 doi: 10.1109/TMC.2020.2983688 – ident: ref18 doi: 10.1109/TVT.2019.2962064 – ident: ref1 doi: 10.1109/MCOM.2011.6069707 – ident: ref21 doi: 10.1109/JIOT.2022.3150804 – ident: ref23 doi: 10.1007/s11036-020-01579-3 – ident: ref9 doi: 10.1007/s11036-019-01299-3 – ident: ref20 doi: 10.1109/TMC.2019.2898950 – ident: ref27 doi: 10.1109/JIOT.2023.3236679 – ident: ref10 doi: 10.1109/TMC.2018.2793908 – ident: ref14 doi: 10.1109/JIOT.2018.2866973 – ident: ref11 doi: 10.1109/TMC.2018.2878821 – ident: ref7 doi: 10.1016/j.pmcj.2014.02.001 – ident: ref2 doi: 10.1109/MNET.2018.1700331 – ident: ref4 doi: 10.1145/3139256 – ident: ref24 doi: 10.1016/j.adhoc.2023.103282 – ident: ref13 doi: 10.1109/TMC.2017.2702613 – ident: ref22 doi: 10.1109/TMC.2016.2616473 – ident: ref12 doi: 10.1109/TMC.2017.2771259 – ident: ref5 doi: 10.1109/PIMRC.2018.8580783 – ident: ref30 doi: 10.1137/0105003 – volume: 8 start-page: 1027 volume-title: Proc. Annu. ACM-SIAM Symp. Discrete Algorithm. ident: ref29 article-title: K-means++: The advantages of careful seeding – ident: ref25 doi: 10.1109/TVT.2017.2787750 – ident: ref28 doi: 10.1109/TITS.2023.3276162 – ident: ref19 doi: 10.1016/j.future.2020.06.043 – ident: ref16 doi: 10.1109/TVT.2018.2884318 – ident: ref3 doi: 10.1109/COMST.2017.2726686 |
| SSID | ssj0001105196 |
| Score | 2.365689 |
| Snippet | With the rapid growth of Internet of Things and proliferation of handheld smart devices, mobile crowdsensing has been regarded as an effective sensing paradigm... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 19589 |
| SubjectTerms | Algorithms Budgets Costs Crowdsensing Integer programming Internet of Things Mobile crowdsensing (MCS) participatory sensing path planning Recruitment semi-opportunistic sensing Sensors System performance Task analysis task assignment |
| Title | Hybrid User-Based Task Assignment for Mobile Crowdsensing: Problem and Algorithm |
| URI | https://ieeexplore.ieee.org/document/10440400 https://www.proquest.com/docview/3058292366 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELagEwtvRHnJAxNSQmo7js0GFVVBAjq0ElvkV0rVkqA2HeDXYzsJIBCILYMdWfc---4-AE4FE1GMmApce15AlIgCFqMkIAxljDNmEuku9O_uaX9Ebh_jx7pZ3ffCGGN88ZkJ3ad_y9eFWrqrMqvhbppdZDP01YTRqlnr80Kl46IRWr9cdiJ-fnvzMLQZICIhxjThDtX9i-_xYCo_LLB3K70NcN8cqKommYbLUobq7dusxn-feBOs1wEmvKwkYgusmHwbbDTgDbDW5R0w6L-6Zi04sjIYXFlfpuFQLKbQ8msy9iUC0Maz8K6Q1m7Ars3W9cIVu-fjCzioUGigyDW8nI2L-aR8et4Fo971sNsPaniFQCFOykDGmFCsk8RkmgmOpDFxZDTSLNHcT7DmLtnrcMIzkVlNt-qbYYVdyxPS1jTsgVZe5GYfQN4RPBJUcUkVwTTjWBokscHC2OCdqDaIGsKnqp497iAwZqnPQSKeOl6ljldpzas2OPvY8lIN3vhr8a6j_ZeFFdnb4Khhb1rr5iK1Fo4hG9dSevDLtkOw5v5eVYQdgVY5X5pjG3uU8sTL3DviPdPy |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFG-MHvTiJ0YUtQdPJsPRdl3rTY0EEZADJN6Wfg2NOgyMg_71tt1QotF426HNmvf92vfeD4ATwUQYIaYC154XECXCgEUoDghDKeOMmVi6C_1uj7aGpH0f3ZfN6r4Xxhjji89M3X36t3w9VjN3VWY13E2zC22GvhIRQqKiXevrSqXh4hFavl02Qn7Wvrkb2BwQkTrGNOYO133B-3g4lR822DuW5gbozY9U1JM81We5rKv3b9Ma_33mTbBehpjwopCJLbBksm2wMYdvgKU274B-6821a8GhlcLg0nozDQdi-gQtxx5HvkgA2ogWdsfSWg54ZfN1PXXl7tnoHPYLHBooMg0vnkfjyWP-8FIBw-b14KoVlAALgUKc5IGMMKFYx7FJNRMcSWOi0GikWay5n2HNXbrX4ISnIrW6bhU4xQq7piekrXHYBcvZODN7APKG4KGgikuqCKYpx9IgiQ0WxobvRFVBOCd8osrp4w4E4znxWUjIE8erxPEqKXlVBaefW16L0Rt_La442i8sLMheBbU5e5NSO6eJtXEM2ciW0v1fth2D1dag20k6N73bA7Dm_lTUh9XAcj6ZmUMbieTyyMvfByWe1z8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+User-Based+Task+Assignment+for+Mobile+Crowdsensing%3A+Problem+and+Algorithm&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Liu%2C+Kun&rft.au=Peng%2C+Shuo&rft.au=Gong%2C+Wei&rft.au=Zhang%2C+Baoxian&rft.date=2024-06-01&rft.pub=IEEE&rft.eissn=2327-4662&rft.volume=11&rft.issue=11&rft.spage=19589&rft.epage=19601&rft_id=info:doi/10.1109%2FJIOT.2024.3367958&rft.externalDocID=10440400 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |