A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT
Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidim...
        Saved in:
      
    
          | Published in | IEEE internet of things journal Vol. 11; no. 3; p. 1 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Piscataway
          IEEE
    
        01.02.2024
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2327-4662 2327-4662  | 
| DOI | 10.1109/JIOT.2023.3306003 | 
Cover
| Abstract | Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2. | 
    
|---|---|
| AbstractList | Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a local differential privacy-based (LDP) privacy-preserving scheme called the privacy-preserving longitudinal and multidimensional range query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). First, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Second, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying [Formula Omitted]-LDP with an upper bound of [Formula Omitted] and a lower bound of [Formula Omitted]. Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and personalized services to users. In IoT environments, diverse types of data are generated, necessitating the design of range query schemes for multidimensional data. Privacy preservation is a key concern for range queries, leading to the proposal of several privacy-preserving solutions. However, most of these solutions are either inefficient or impractical. Moreover, existing approaches often suffer from the problem of longitudinal data privacy leakage, posing a serious threat to user privacy. Although some efforts have addressed the privacy issues of longitudinal data, practical implementations have been hesitant. To tackle these challenges, we propose a Local Differential Privacy-based (LDP) privacy-preserving scheme called the Privacy-Preserving Longitudinal and Multidimensional Range Query (PLMRQ) for IoT. Our scheme focuses on lightweight privacy preservation and eliminates the need for a trusted third party (TTP). Firstly, it is designed based on a double randomizer, ensuring effective privacy preservation of longitudinal data over time. Secondly, to mitigate excessive noise injection, PLMRQ dynamically constructs a binary tree structure by hierarchically decomposing the entire domain. Finally, through the utilization of a post-processing technique, the mean square error is efficiently reduced. Theoretical and experimental results demonstrate that the proposed PLMRQ maintains competitive utility while rigorously satisfying lneϵ1+tϵ2+1/eϵ1+etϵ2-LDP with an upper bound of ϵ1 and a lower bound of ϵ2.  | 
    
| Author | Chang, Wenming Ni, Yun Xiao, Jifei Li, Jinguo  | 
    
| Author_xml | – sequence: 1 givenname: Yun surname: Ni fullname: Ni, Yun organization: College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai, China – sequence: 2 givenname: Jinguo orcidid: 0000-0002-7980-0312 surname: Li fullname: Li, Jinguo organization: College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai, China – sequence: 3 givenname: Wenming surname: Chang fullname: Chang, Wenming organization: College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai, China – sequence: 4 givenname: Jifei surname: Xiao fullname: Xiao, Jifei organization: College of Computer Science and Technology, Shanghai University of Electric Power, Shanghai, China  | 
    
| BookMark | eNp9kE1PwkAQhjcGExH5ASYeNvFc3I9-7B4RvzA1oOLFS7PdDrikbHG3JeHf2wYOxoOnmUzeZzLznKOerSwgdEnJiFIib56ns8WIEcZHnJOYEH6C-oyzJAjjmPV-9Wdo6P2aENJiEZVxH32OcXo3D26VhwLPndkpvQ_mDjy4nbErnFZ2ZeqmMFaVWNkCvzRlbQqzAetN1Q3flF0Bfm3A7fG7_oINYGNxe9EFOl2q0sPwWAfo4-F-MXkK0tnjdDJOA81kWAc5TyLIOYulUCxSohBCFFIlnEZKCclpHhNNC6FlGGuSh4wAT0TMuUhySSPNB-j6sHfrqu8GfJ2tq8a1p_mMSSoIJ5yGbSo5pLSrvHewzLSpVd3-UDtlyoySrHOZdS6zzmV2dNmS9A-5dWaj3P5f5urAGAD4lWcsiqjgP5HOfzg | 
    
| CODEN | IITJAU | 
    
| CitedBy_id | crossref_primary_10_1016_j_cose_2023_103517 crossref_primary_10_32604_cmc_2025_059472  | 
    
| Cites_doi | 10.1109/COMST.2020.2988293 10.1109/TDSC.2021.3095933 10.1109/JIOT.2021.3088296 10.1007/978-3-540-30576-7_18 10.1007/bfb0054135 10.1109/JIOT.2018.2871204 10.1109/JIOT.2020.2977253 10.1109/JIOT.2014.2312291 10.1145/3299869.3319891 10.1016/j.eswa.2022.119005 10.1016/j.dcan.2022.01.004 10.1109/JIOT.2020.3029472 10.14778/3339490.3339496 10.1109/JIOT.2022.3203182 10.1109/ICC40277.2020.9148813 10.1137/1.9781611975994.31 10.1515/popets-2016-0015 10.1109/ICASSP.2017.7953309 10.1109/LWC.2022.3225333 10.1145/3460120.3485668 10.1109/JSYST.2021.3090465 10.2307/2283137 10.1109/JSEN.2022.3149901 10.1109/SAM.2016.7569676 10.1145/2660267.2660348 10.1016/j.comnet.2021.108004 10.1016/j.dcan.2022.07.003 10.1109/TIT.2021.3123905 10.1145/362686.362692 10.1109/MWC.2016.1500284WC 10.1007/3-540-48910-X_16 10.1109/JIOT.2022.3149638 10.1109/TDSC.2021.3101120 10.14778/3430915.3430927 10.1109/ICDE.2013.6544872  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.1109/JIOT.2023.3306003 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2327-4662 | 
    
| EndPage | 1 | 
    
| ExternalDocumentID | 10_1109_JIOT_2023_3306003 10225518  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: U1936213 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2327-4662 | 
    
| IngestDate | Mon Jun 30 05:53:06 EDT 2025 Wed Oct 01 04:45:59 EDT 2025 Thu Apr 24 22:52:02 EDT 2025 Wed Aug 27 02:14:13 EDT 2025  | 
    
| IsPeerReviewed | false | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-b375eb32698a25a8d888d9a7315aa8931b60c1d8c946c0b420e37863387b915c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-7980-0312 | 
    
| PQID | 2918030314 | 
    
| PQPubID | 2040421 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | proquest_journals_2918030314 crossref_primary_10_1109_JIOT_2023_3306003 ieee_primary_10225518 crossref_citationtrail_10_1109_JIOT_2023_3306003  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-02-01 | 
    
| PublicationDateYYYYMMDD | 2024-02-01 | 
    
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Piscataway | 
    
| PublicationPlace_xml | – name: Piscataway | 
    
| PublicationTitle | IEEE internet of things journal | 
    
| PublicationTitleAbbrev | JIoT | 
    
| PublicationYear | 2024 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref35 Wang (ref39) 2019 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 (ref28) 2023 ref2 ref1 ref17 ref16 ref19 ref18 Arcolezi (ref32) Ding (ref27); 30 Wang (ref38) ref24 ref23 ref26 ref25 ref20 ref42 ref41 ref22 ref21 Erlingsson (ref30) 2020 ref8 ref7 Naor (ref29) ref9 ref4 ref3 ref6 ref5 ref40  | 
    
| References_xml | – year: 2020 ident: ref30 article-title: Encode, shuffle, analyze privacy revisited: Formalizations and empirical evaluation publication-title: arXiv:2001.03618 – ident: ref4 doi: 10.1109/COMST.2020.2988293 – ident: ref5 doi: 10.1109/TDSC.2021.3095933 – ident: ref35 doi: 10.1109/JIOT.2021.3088296 – ident: ref33 doi: 10.1007/978-3-540-30576-7_18 – ident: ref19 doi: 10.1007/bfb0054135 – start-page: 1 volume-title: Proc. 26th Int. Conf. Extending Database Technol. (EDBT) ident: ref32 article-title: Frequency estimation of evolving data under local differential privacy – ident: ref12 doi: 10.1109/JIOT.2018.2871204 – ident: ref14 doi: 10.1109/JIOT.2020.2977253 – ident: ref2 doi: 10.1109/JIOT.2014.2312291 – ident: ref21 doi: 10.1145/3299869.3319891 – ident: ref8 doi: 10.1016/j.eswa.2022.119005 – ident: ref9 doi: 10.1016/j.dcan.2022.01.004 – ident: ref34 doi: 10.1109/JIOT.2020.3029472 – ident: ref22 doi: 10.14778/3339490.3339496 – ident: ref37 doi: 10.1109/JIOT.2022.3203182 – start-page: 1 volume-title: Proc. 1st Symp. Found. Responsible Comput. ident: ref29 article-title: Can two walk together: Privacy enhancing methods and preventing tracking of users – volume: 30 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref27 article-title: Collecting telemetry data privately – ident: ref13 doi: 10.1109/ICC40277.2020.9148813 – ident: ref41 doi: 10.1137/1.9781611975994.31 – ident: ref26 doi: 10.1515/popets-2016-0015 – ident: ref11 doi: 10.1109/ICASSP.2017.7953309 – ident: ref7 doi: 10.1109/LWC.2022.3225333 – start-page: 729 volume-title: Proc. 26th USENIX Security Symp. (USENIX Security) ident: ref38 article-title: Locally differentially private protocols for frequency estimation – ident: ref24 doi: 10.1145/3460120.3485668 – ident: ref6 doi: 10.1109/JSYST.2021.3090465 – ident: ref25 doi: 10.2307/2283137 – ident: ref15 doi: 10.1109/JSEN.2022.3149901 – ident: ref10 doi: 10.1109/SAM.2016.7569676 – ident: ref36 doi: 10.1145/2660267.2660348 – ident: ref1 doi: 10.1016/j.comnet.2021.108004 – year: 2019 ident: ref39 article-title: Locally differentially private frequency estimation with consistency publication-title: arXiv:1905.08320 – ident: ref31 doi: 10.1016/j.dcan.2022.07.003 – ident: ref40 doi: 10.1109/TIT.2021.3123905 – ident: ref20 doi: 10.1145/362686.362692 – ident: ref3 doi: 10.1109/MWC.2016.1500284WC – ident: ref16 doi: 10.1007/3-540-48910-X_16 – volume-title: Learning with privacy at scale year: 2023 ident: ref28 – ident: ref17 doi: 10.1109/JIOT.2022.3149638 – ident: ref18 doi: 10.1109/TDSC.2021.3101120 – ident: ref23 doi: 10.14778/3430915.3430927 – ident: ref42 doi: 10.1109/ICDE.2013.6544872  | 
    
| SSID | ssj0001105196 | 
    
| Score | 2.3314285 | 
    
| Snippet | Range queries are extensively used in various Internet of Things (IoT) applications as an essential functional requirement to provide intelligent and... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Binary trees Data privacy Error reduction Internet of Things Local differential privacy Lower bounds Multidimensional data Privacy Privacy preserving Queries Randomized response Range query Sensors Servers Temperature sensors Trusted third parties Upper bounds  | 
    
| Title | A LDP-Based Privacy-Preserving Longitudinal and Multidimensional Range Query Scheme in IOT | 
    
| URI | https://ieeexplore.ieee.org/document/10225518 https://www.proquest.com/docview/2918030314  | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JT8QgFCbqyYu7cdzCwZNJa2kpA0fXqHGPJsZLAw_Uidox49REf7082nGNxlsPQEg_eAtv-QhZ0UxaMIJ5y41DxFN9HRmZiygznDnLvTkXWikdHondC75_mV82xeqhFsY5F5LPXIyfIZZvu1DhU9kaeifYQWyYDLelqIu1Ph5UGFojoolcskSt7e8dn8dIDx57p90r9uyL7glkKj8kcFArO-PkaLChOpvkLq76JobXb70a_73jCTLWGJh0vT4Rk2TIlVNkfEDeQJu7PE2u1unB1km04bWYpSe9zrOGlwgTMlB4lDf0oItMRpVF1iyqS0tDqa5FMoC6kQc9w7oEelq53otf9tY9ONopqf8bM-RiZ_t8czdqiBYiSBXvRyZr596pToWSOs21tN4ttkq3M5Zr7Q0aZkQCzEpQXEBieJq4zAPgvdu2USyHbJaMlN3SzRF6DTJjzCagreDKKQkOA325cRbAgGiRZABBAU0XciTDuC-CN5KoAlErELWiQa1FVt-nPNYtOP4aPIMofBpYA9AiiwOgi-aWPhWpYtILuYzx-V-mLZBRvzqv07QXyUi_V7klb4X0zXI4fW9mstf6 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcoALLVDUhZb6wAkpaZzYXvvYAtW2bJeCtlLFJbLHLlRAFi0bpPLr63GyPIqKuOVgJ1Y-ex6exwfwzHLt0SkeLTeBmSjteea0VFnlBA9eRHMutVI6nqjRqTg6k2d9sXqqhQkhpOSzkNNjiuX7GbZ0VbZL3gl1ELsFt6UQQnblWr-uVDjZI6qPXfLC7B4dvpnmRBCeR7c9qvbqD-2T6FT-ksFJsRyswWS5pC6f5FPeLlyOP651a_zvNa_Dvd7EZHvdnrgPK6F5AGtL-gbWn-aH8H6PjV-eZPtRj3l2Mr_4bvEyo5QMEh_NBzaeEZdR64k3i9nGs1Ss64kOoGvlwd5RZQJ724b5ZXztx_AlsIuGxb-xAacHr6YvRllPtZBhacQic9VQRre6VEbbUlrto2PsjR1WXFobTRruVIHcazRCYeFEWYRqqFX0b4fOcInVI1htZk3YBHaOuuLcF2i9EiYYjYFCfdIFj-hQDaBYQlBj34ec6DA-18kfKUxNqNWEWt2jNoDnP6d87Zpw_GvwBqHw28AOgAFsLYGu-3P6rS4N11HMVVw8vmHaDtwZTY_H9fhw8voJ3I1fEl3S9hasLuZt2I42ycI9TTvxCt-C20c | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+LDP-Based+Privacy-Preserving+Longitudinal+and+Multidimensional+Range+Query+Scheme+in+IoT&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Ni%2C+Yun&rft.au=Li%2C+Jinguo&rft.au=Chang%2C+Wenming&rft.au=Xiao%2C+Jifei&rft.date=2024-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=11&rft.issue=3&rft.spage=5210&rft_id=info:doi/10.1109%2FJIOT.2023.3306003&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |