FPMRQ: Fully Privacy-Preserving Multidimensional Range Queries on Encrypted Data

Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and queries to a cloud server is an attractive choice for data owners; however, this choice involves well-known privacy issues. To preserve data pri...

Full description

Saved in:
Bibliographic Details
Published inIEEE internet of things journal Vol. 11; no. 7; p. 1
Main Authors Wang, Wenli, Jia, Zhuliang, Xu, Mengfan, Li, Shundong
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2327-4662
2327-4662
DOI10.1109/JIOT.2023.3334615

Cover

Abstract Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and queries to a cloud server is an attractive choice for data owners; however, this choice involves well-known privacy issues. To preserve data privacy, data should be encrypted before they are outsourced to the cloud. Therefore, exploring multidimensional range queries on encrypted data has important theoretical and practical significance. Certain privacy-preserving schemes have been proposed to support multidimensional range queries on encrypted data. However, these schemes exhibit either poor privacy performance or poor computational or communication performance. This makes such schemes impractical for resource-constrained scenarios such as Internet of Things (IoT) environments. To improve security and efficiency in making them applicable to IoT environments, we propose lightweight secure vector comparison and secure double-blind protocols as building blocks to construct an efficient scheme, named the Fully Privacy-preserving Multidimensional Range Queries scheme (FPMRQ), and prove that FPMRQ can resist database reconstruction and query-recovery attacks. To improve communication efficiency, we adopt methods to pack multidimensional data into single-dimensional data and aggregate multiple data records into a single record of data. Finally, we conducted numerous experiments on real-world datasets to examine the efficiency of FPMRQ, and the experimental results show that FPMRQ significantly improves the computational efficiency (almost three orders of magnitude faster) and communication efficiency (at least 7.15× faster) in comparison with existing schemes with the same security level. These results demonstrate the practicality of the FPMRQ for resource-restrained environments, such as IoT.
AbstractList Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and queries to a cloud server is an attractive choice for data owners; however, this choice involves well-known privacy issues. To preserve data privacy, data should be encrypted before they are outsourced to the cloud. Therefore, exploring multidimensional range queries on encrypted data has important theoretical and practical significance. Certain privacy-preserving schemes have been proposed to support multidimensional range queries on encrypted data. However, these schemes exhibit either poor privacy performance or poor computational or communication performance. This makes such schemes impractical for resource-constrained scenarios such as Internet of Things (IoT) environments. To improve security and efficiency in making them applicable to IoT environments, we propose lightweight secure vector comparison and secure double-blind protocols as building blocks to construct an efficient scheme, named the Fully Privacy-preserving Multidimensional Range Queries scheme (FPMRQ), and prove that FPMRQ can resist database reconstruction and query-recovery attacks. To improve communication efficiency, we adopt methods to pack multidimensional data into single-dimensional data and aggregate multiple data records into a single record of data. Finally, we conducted numerous experiments on real-world datasets to examine the efficiency of FPMRQ, and the experimental results show that FPMRQ significantly improves the computational efficiency (almost three orders of magnitude faster) and communication efficiency (at least 7.15× faster) in comparison with existing schemes with the same security level. These results demonstrate the practicality of the FPMRQ for resource-restrained environments, such as IoT.
Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and queries to a cloud server is an attractive choice for data owners; however, this choice involves well-known privacy issues. To preserve data privacy, data should be encrypted before they are outsourced to the cloud. Therefore, exploring multidimensional range queries on encrypted data has important theoretical and practical significance. Certain privacy-preserving schemes have been proposed to support multidimensional range queries on encrypted data. However, these schemes exhibit either poor privacy performance or poor computational or communication performance. This makes such schemes impractical for resource-constrained scenarios such as Internet of Things (IoT) environments. To improve security and efficiency in making them applicable to IoT environments, we propose lightweight secure vector comparison and secure double-blind protocols as building blocks to construct an efficient scheme, named the fully privacy-preserving multidimensional range queries scheme (FPMRQ), and prove that FPMRQ can resist database reconstruction and query-recovery attacks. To improve communication efficiency, we adopt methods to pack multidimensional data into single-dimensional data and aggregate multiple data records into a single record of data. Finally, we conducted numerous experiments on real-world data sets to examine the efficiency of FPMRQ, and the experimental results show that FPMRQ significantly improves the computational efficiency (almost three orders of magnitude faster) and communication efficiency (at least [Formula Omitted] faster) in comparison with existing schemes with the same security level. These results demonstrate the practicality of the FPMRQ for resource-restrained environments, such as IoT.
Author Jia, Zhuliang
Wang, Wenli
Li, Shundong
Xu, Mengfan
Author_xml – sequence: 1
  givenname: Wenli
  orcidid: 0000-0001-8718-9595
  surname: Wang
  fullname: Wang, Wenli
  organization: School of Computer Science, Shaanxi Normal University, Xi'an, China
– sequence: 2
  givenname: Zhuliang
  orcidid: 0000-0002-3049-9012
  surname: Jia
  fullname: Jia, Zhuliang
  organization: School of Computer Science, Shaanxi Normal University, Xi'an, China
– sequence: 3
  givenname: Mengfan
  orcidid: 0000-0002-7966-404X
  surname: Xu
  fullname: Xu, Mengfan
  organization: School of Computer Science, Shaanxi Normal University, Xi'an, China
– sequence: 4
  givenname: Shundong
  orcidid: 0000-0002-2337-0341
  surname: Li
  fullname: Li, Shundong
  organization: School of Computer Science, Shaanxi Normal University, Xi'an, China
BookMark eNp9kEtPAjEUhRujiYj8ABMXTVwP9jWdqTuDoBgIj-C66cwUUjJ0sO2QzL93EBbEhat7F-c799xzB65tZTUADxj1MUbi-XM8W_UJIrRPKWUcx1egQyhJIsY5ub7Yb0HP-y1CqMViLHgHzEfz6XLxAkd1WTZw7sxB5U00d9prdzB2A6d1GUxhdtp6U1lVwqWyGw0XtXZGe1hZOLS5a_ZBF_BNBXUPbtaq9Lp3nl3wNRquBh_RZPY-HrxOopwIFqKMIoExLdAai5ipLGZZUqBM8JQgygrO0phxVpBcZTpJUEoykjKNEpFSykmS0i54OvnuXfVdax_ktqpdG9BLIkRMMWutWhU-qXJXee_0Wu6d2SnXSIzksTt57E4eu5Pn7lom-cPkJqjQfh-cMuW_5OOJNFrri0v0NxH9Aeohe78
CODEN IITJAU
CitedBy_id crossref_primary_10_1088_1402_4896_ad69e0
Cites_doi 10.1145/2810103.2813700
10.1109/TIFS.2017.2774451
10.14778/3342263.3342641
10.1109/ICDE.2013.6544835
10.1016/j.adhoc.2022.102820
10.1007/978-3-319-23829-6_26
10.1145/3243734.3243864
10.1109/SP.2019.00015
10.1016/j.ins.2022.03.001
10.1007/978-3-319-55753-3_35
10.1109/PST55820.2022.9851989
10.1145/971697.602266
10.1007/978-3-319-91458-9_8
10.1109/TKDE.2020.2983030
10.1016/j.ins.2017.11.065
10.1145/2590296.2590305
10.1109/JIOT.2020.3029472
10.1007/978-3-319-21042-1_54
10.1109/TNET.2015.2457493
10.1007/978-3-642-01001-9_13
10.1145/2671188.2749286
10.1109/TIT.1985.1057074
10.1109/TDSC.2021.3101120
10.1109/SP40000.2020.00029
10.1109/JIOT.2021.3117933
10.1109/GLOCOM.2017.8254968
10.1142/S0218126622501572
10.1007/BFb0054135
10.1109/JIOT.2022.3158321
10.1109/TIFS.2021.3109459
10.1145/2043556.2043566
10.1007/s11280-019-00726-5
10.1109/ICDE.2015.7113273
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/JIOT.2023.3334615
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Digital Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2327-4662
EndPage 1
ExternalDocumentID 10_1109_JIOT_2023_3334615
10329953
Genre orig-research
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFB2703001
GroupedDBID 0R~
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-b309113d0f1954ab54b7d0b9682034d6485464d2cabe77082b284e07983362783
IEDL.DBID RIE
ISSN 2327-4662
IngestDate Mon Jun 30 14:21:14 EDT 2025
Wed Oct 01 01:03:52 EDT 2025
Thu Apr 24 22:50:58 EDT 2025
Wed Aug 27 02:17:11 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-b309113d0f1954ab54b7d0b9682034d6485464d2cabe77082b284e07983362783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8718-9595
0000-0002-2337-0341
0000-0002-3049-9012
0000-0002-7966-404X
PQID 2995314682
PQPubID 2040421
PageCount 1
ParticipantIDs crossref_primary_10_1109_JIOT_2023_3334615
ieee_primary_10329953
crossref_citationtrail_10_1109_JIOT_2023_3334615
proquest_journals_2995314682
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE internet of things journal
PublicationTitleAbbrev JIoT
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref34
ref15
ref14
ref31
ref30
ref11
ref33
ref10
ref32
ref2
Oya (ref20)
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
Zheng (ref4)
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref3
ref6
ref5
References_xml – ident: ref16
  doi: 10.1145/2810103.2813700
– ident: ref35
  doi: 10.1109/TIFS.2017.2774451
– ident: ref2
  doi: 10.14778/3342263.3342641
– ident: ref5
  doi: 10.1109/ICDE.2013.6544835
– start-page: 127
  volume-title: Proc. USENIX Secur. Symp.
  ident: ref20
  article-title: Hiding the access pattern is not enough: Exploiting search pattern leakage in searchable encryption
– ident: ref31
  doi: 10.1016/j.adhoc.2022.102820
– ident: ref9
  doi: 10.1007/978-3-319-23829-6_26
– ident: ref17
  doi: 10.1145/3243734.3243864
– ident: ref18
  doi: 10.1109/SP.2019.00015
– ident: ref6
  doi: 10.1016/j.ins.2022.03.001
– ident: ref10
  doi: 10.1007/978-3-319-55753-3_35
– ident: ref11
  doi: 10.1109/PST55820.2022.9851989
– ident: ref32
  doi: 10.1145/971697.602266
– ident: ref7
  doi: 10.1007/978-3-319-91458-9_8
– ident: ref15
  doi: 10.1109/TKDE.2020.2983030
– ident: ref14
  doi: 10.1016/j.ins.2017.11.065
– ident: ref8
  doi: 10.1145/2590296.2590305
– ident: ref27
  doi: 10.1109/JIOT.2020.3029472
– ident: ref28
  doi: 10.1007/978-3-319-21042-1_54
– ident: ref26
  doi: 10.1109/TNET.2015.2457493
– ident: ref1
  doi: 10.1007/978-3-642-01001-9_13
– start-page: 283
  volume-title: Proc. USENIX Symp. Netw. Syst. Des. Implementation
  ident: ref4
  article-title: Opaque: An oblivious and encrypted distributed analytics platform
– ident: ref24
  doi: 10.1145/2671188.2749286
– ident: ref34
  doi: 10.1109/TIT.1985.1057074
– ident: ref12
  doi: 10.1109/TDSC.2021.3101120
– ident: ref19
  doi: 10.1109/SP40000.2020.00029
– ident: ref23
  doi: 10.1109/JIOT.2021.3117933
– ident: ref29
  doi: 10.1109/GLOCOM.2017.8254968
– ident: ref30
  doi: 10.1142/S0218126622501572
– ident: ref33
  doi: 10.1007/BFb0054135
– ident: ref13
  doi: 10.1109/JIOT.2022.3158321
– ident: ref22
  doi: 10.1109/TIFS.2021.3109459
– ident: ref3
  doi: 10.1145/2043556.2043566
– ident: ref21
  doi: 10.1007/s11280-019-00726-5
– ident: ref25
  doi: 10.1109/ICDE.2015.7113273
SSID ssj0001105196
Score 2.311671
Snippet Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Cloud computing
Communication
Cryptography
Cybersecurity
Data privacy
Data storage
Efficiency
encrypted data
Internet of Things
Multidimensional data
Multidimensional methods
multiple dimensions
Outsourcing
Privacy
Privacy-preserving
Protocols
Queries
range query
Servers
Title FPMRQ: Fully Privacy-Preserving Multidimensional Range Queries on Encrypted Data
URI https://ieeexplore.ieee.org/document/10329953
https://www.proquest.com/docview/2995314682
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Digital Library
  customDbUrl:
  eissn: 2327-4662
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001105196
  issn: 2327-4662
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kxfnT5xOycGT0K5r0jT1Jrqhgjplg91K82MiSje2Vph_vXlpqqIo3grtKyEvyfuSvO97CB3TmEnNY-GZeaQ8qiTxsjBUnuJRmIlkEnHLkLu5ZZcjej2Oxo6sbrkwWmubfKZ9eLR3-WoqSzgq64D4W5JEZBWtxpxVZK3PA5UuoBHmbi67QdK5vrob-lAe3CeEUAaVb7_EHltM5ccKbMNKv4lu6wZV2STPflkIX75902r8d4s30LoDmPisGhGbaEXnW6hZF2_Abi5vo0F_cPNwf4phD7rEg_nTayaXHmRkwOqRP2JLzVUg_l8Jd-AH4CHg-xKkkRd4muNeLufLmYGs-CIrsh006veG55eeK6_gyTChhSeIwQpdooIJqL5lIqIiVoFImAEFhCpGeUQZVaHMhI5jAxWECWU6iBNOTNSLOdlFjXya6z2EDY7LlAhVEGjQm1PcmERMh2YF48aYtFBQd3wqnfY4lMB4Se0eJEhS8FUKvkqdr1ro5MNkVglv_PXxDvT9lw-rbm-hdu3e1M3NRWrfAOMs3P_F7ACtmb-7BJ02ahTzUh8a7FGIIzvm3gFO4dQW
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCjiirD5yQEtLYzsINQatSaCmoSNyieAEhUIpKilS-Ho_jAgKBuEVKRrE8tufZnvcGYJ_FkdRJLDwzj5THlKReHobKUwkPc5He8cQy5DrdqHXD2rf81pHVLRdGa22Tz7SPj_YuXw3kCI_KDlH8LU05nYZZzhjjFV3r80iljngkcneX9SA9bJ9d9n0sEO5TSlmEtW-_RB9bTuXHGmwDS3MRupMmVfkkj_6oFL58-6bW-O82L8GCg5jkuBoTyzClixVYnJRvIG42r0Kv2etcXx0R3IWOSW_48JrLsYc5Gbh-FPfEknMVyv9X0h3kGpkI5GqE4sgvZFCQRiGH42cDWslpXuZrcNNs9E9aniuw4MkwZaUnqEELdaqCO9R9ywVnIlaBSCMDCyhTEUs4i5gKZS50HBuwIEww00GcJtTEvTih6zBTDAq9AcQguVyJUAWBRsU5lRgTHunQrGGJMaY1CCYdn0mnPo5FMJ4yuwsJ0gx9laGvMuerGhx8mDxX0ht_fbyGff_lw6rba7A9cW_mZudLZt8g5yzc_MVsD-Za_c5FdnHWPd-CefMnl66zDTPlcKR3DBIpxa4df--Vkddj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FPMRQ%3A+Fully+Privacy-Preserving+Multidimensional+Range+Queries+on+Encrypted+Data&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Wang%2C+Wenli&rft.au=Zhuliang+Jia&rft.au=Xu%2C+Mengfan&rft.au=Li%2C+Shundong&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=11&rft.issue=7&rft.spage=12362&rft_id=info:doi/10.1109%2FJIOT.2023.3334615&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon