FPMRQ: Fully Privacy-Preserving Multidimensional Range Queries on Encrypted Data
Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and queries to a cloud server is an attractive choice for data owners; however, this choice involves well-known privacy issues. To preserve data pri...
Saved in:
| Published in | IEEE internet of things journal Vol. 11; no. 7; p. 1 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Piscataway
IEEE
01.04.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2327-4662 2327-4662 |
| DOI | 10.1109/JIOT.2023.3334615 |
Cover
| Abstract | Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and queries to a cloud server is an attractive choice for data owners; however, this choice involves well-known privacy issues. To preserve data privacy, data should be encrypted before they are outsourced to the cloud. Therefore, exploring multidimensional range queries on encrypted data has important theoretical and practical significance. Certain privacy-preserving schemes have been proposed to support multidimensional range queries on encrypted data. However, these schemes exhibit either poor privacy performance or poor computational or communication performance. This makes such schemes impractical for resource-constrained scenarios such as Internet of Things (IoT) environments. To improve security and efficiency in making them applicable to IoT environments, we propose lightweight secure vector comparison and secure double-blind protocols as building blocks to construct an efficient scheme, named the Fully Privacy-preserving Multidimensional Range Queries scheme (FPMRQ), and prove that FPMRQ can resist database reconstruction and query-recovery attacks. To improve communication efficiency, we adopt methods to pack multidimensional data into single-dimensional data and aggregate multiple data records into a single record of data. Finally, we conducted numerous experiments on real-world datasets to examine the efficiency of FPMRQ, and the experimental results show that FPMRQ significantly improves the computational efficiency (almost three orders of magnitude faster) and communication efficiency (at least 7.15× faster) in comparison with existing schemes with the same security level. These results demonstrate the practicality of the FPMRQ for resource-restrained environments, such as IoT. |
|---|---|
| AbstractList | Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and queries to a cloud server is an attractive choice for data owners; however, this choice involves well-known privacy issues. To preserve data privacy, data should be encrypted before they are outsourced to the cloud. Therefore, exploring multidimensional range queries on encrypted data has important theoretical and practical significance. Certain privacy-preserving schemes have been proposed to support multidimensional range queries on encrypted data. However, these schemes exhibit either poor privacy performance or poor computational or communication performance. This makes such schemes impractical for resource-constrained scenarios such as Internet of Things (IoT) environments. To improve security and efficiency in making them applicable to IoT environments, we propose lightweight secure vector comparison and secure double-blind protocols as building blocks to construct an efficient scheme, named the Fully Privacy-preserving Multidimensional Range Queries scheme (FPMRQ), and prove that FPMRQ can resist database reconstruction and query-recovery attacks. To improve communication efficiency, we adopt methods to pack multidimensional data into single-dimensional data and aggregate multiple data records into a single record of data. Finally, we conducted numerous experiments on real-world datasets to examine the efficiency of FPMRQ, and the experimental results show that FPMRQ significantly improves the computational efficiency (almost three orders of magnitude faster) and communication efficiency (at least 7.15× faster) in comparison with existing schemes with the same security level. These results demonstrate the practicality of the FPMRQ for resource-restrained environments, such as IoT. Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and queries to a cloud server is an attractive choice for data owners; however, this choice involves well-known privacy issues. To preserve data privacy, data should be encrypted before they are outsourced to the cloud. Therefore, exploring multidimensional range queries on encrypted data has important theoretical and practical significance. Certain privacy-preserving schemes have been proposed to support multidimensional range queries on encrypted data. However, these schemes exhibit either poor privacy performance or poor computational or communication performance. This makes such schemes impractical for resource-constrained scenarios such as Internet of Things (IoT) environments. To improve security and efficiency in making them applicable to IoT environments, we propose lightweight secure vector comparison and secure double-blind protocols as building blocks to construct an efficient scheme, named the fully privacy-preserving multidimensional range queries scheme (FPMRQ), and prove that FPMRQ can resist database reconstruction and query-recovery attacks. To improve communication efficiency, we adopt methods to pack multidimensional data into single-dimensional data and aggregate multiple data records into a single record of data. Finally, we conducted numerous experiments on real-world data sets to examine the efficiency of FPMRQ, and the experimental results show that FPMRQ significantly improves the computational efficiency (almost three orders of magnitude faster) and communication efficiency (at least [Formula Omitted] faster) in comparison with existing schemes with the same security level. These results demonstrate the practicality of the FPMRQ for resource-restrained environments, such as IoT. |
| Author | Jia, Zhuliang Wang, Wenli Li, Shundong Xu, Mengfan |
| Author_xml | – sequence: 1 givenname: Wenli orcidid: 0000-0001-8718-9595 surname: Wang fullname: Wang, Wenli organization: School of Computer Science, Shaanxi Normal University, Xi'an, China – sequence: 2 givenname: Zhuliang orcidid: 0000-0002-3049-9012 surname: Jia fullname: Jia, Zhuliang organization: School of Computer Science, Shaanxi Normal University, Xi'an, China – sequence: 3 givenname: Mengfan orcidid: 0000-0002-7966-404X surname: Xu fullname: Xu, Mengfan organization: School of Computer Science, Shaanxi Normal University, Xi'an, China – sequence: 4 givenname: Shundong orcidid: 0000-0002-2337-0341 surname: Li fullname: Li, Shundong organization: School of Computer Science, Shaanxi Normal University, Xi'an, China |
| BookMark | eNp9kEtPAjEUhRujiYj8ABMXTVwP9jWdqTuDoBgIj-C66cwUUjJ0sO2QzL93EBbEhat7F-c799xzB65tZTUADxj1MUbi-XM8W_UJIrRPKWUcx1egQyhJIsY5ub7Yb0HP-y1CqMViLHgHzEfz6XLxAkd1WTZw7sxB5U00d9prdzB2A6d1GUxhdtp6U1lVwqWyGw0XtXZGe1hZOLS5a_ZBF_BNBXUPbtaq9Lp3nl3wNRquBh_RZPY-HrxOopwIFqKMIoExLdAai5ipLGZZUqBM8JQgygrO0phxVpBcZTpJUEoykjKNEpFSykmS0i54OvnuXfVdax_ktqpdG9BLIkRMMWutWhU-qXJXee_0Wu6d2SnXSIzksTt57E4eu5Pn7lom-cPkJqjQfh-cMuW_5OOJNFrri0v0NxH9Aeohe78 |
| CODEN | IITJAU |
| CitedBy_id | crossref_primary_10_1088_1402_4896_ad69e0 |
| Cites_doi | 10.1145/2810103.2813700 10.1109/TIFS.2017.2774451 10.14778/3342263.3342641 10.1109/ICDE.2013.6544835 10.1016/j.adhoc.2022.102820 10.1007/978-3-319-23829-6_26 10.1145/3243734.3243864 10.1109/SP.2019.00015 10.1016/j.ins.2022.03.001 10.1007/978-3-319-55753-3_35 10.1109/PST55820.2022.9851989 10.1145/971697.602266 10.1007/978-3-319-91458-9_8 10.1109/TKDE.2020.2983030 10.1016/j.ins.2017.11.065 10.1145/2590296.2590305 10.1109/JIOT.2020.3029472 10.1007/978-3-319-21042-1_54 10.1109/TNET.2015.2457493 10.1007/978-3-642-01001-9_13 10.1145/2671188.2749286 10.1109/TIT.1985.1057074 10.1109/TDSC.2021.3101120 10.1109/SP40000.2020.00029 10.1109/JIOT.2021.3117933 10.1109/GLOCOM.2017.8254968 10.1142/S0218126622501572 10.1007/BFb0054135 10.1109/JIOT.2022.3158321 10.1109/TIFS.2021.3109459 10.1145/2043556.2043566 10.1007/s11280-019-00726-5 10.1109/ICDE.2015.7113273 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/JIOT.2023.3334615 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Digital Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2327-4662 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_JIOT_2023_3334615 10329953 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2022YFB2703001 |
| GroupedDBID | 0R~ 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c294t-b309113d0f1954ab54b7d0b9682034d6485464d2cabe77082b284e07983362783 |
| IEDL.DBID | RIE |
| ISSN | 2327-4662 |
| IngestDate | Mon Jun 30 14:21:14 EDT 2025 Wed Oct 01 01:03:52 EDT 2025 Thu Apr 24 22:50:58 EDT 2025 Wed Aug 27 02:17:11 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-b309113d0f1954ab54b7d0b9682034d6485464d2cabe77082b284e07983362783 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8718-9595 0000-0002-2337-0341 0000-0002-3049-9012 0000-0002-7966-404X |
| PQID | 2995314682 |
| PQPubID | 2040421 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1109_JIOT_2023_3334615 ieee_primary_10329953 crossref_citationtrail_10_1109_JIOT_2023_3334615 proquest_journals_2995314682 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Piscataway |
| PublicationPlace_xml | – name: Piscataway |
| PublicationTitle | IEEE internet of things journal |
| PublicationTitleAbbrev | JIoT |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref34 ref15 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 Oya (ref20) ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 Zheng (ref4) ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref3 ref6 ref5 |
| References_xml | – ident: ref16 doi: 10.1145/2810103.2813700 – ident: ref35 doi: 10.1109/TIFS.2017.2774451 – ident: ref2 doi: 10.14778/3342263.3342641 – ident: ref5 doi: 10.1109/ICDE.2013.6544835 – start-page: 127 volume-title: Proc. USENIX Secur. Symp. ident: ref20 article-title: Hiding the access pattern is not enough: Exploiting search pattern leakage in searchable encryption – ident: ref31 doi: 10.1016/j.adhoc.2022.102820 – ident: ref9 doi: 10.1007/978-3-319-23829-6_26 – ident: ref17 doi: 10.1145/3243734.3243864 – ident: ref18 doi: 10.1109/SP.2019.00015 – ident: ref6 doi: 10.1016/j.ins.2022.03.001 – ident: ref10 doi: 10.1007/978-3-319-55753-3_35 – ident: ref11 doi: 10.1109/PST55820.2022.9851989 – ident: ref32 doi: 10.1145/971697.602266 – ident: ref7 doi: 10.1007/978-3-319-91458-9_8 – ident: ref15 doi: 10.1109/TKDE.2020.2983030 – ident: ref14 doi: 10.1016/j.ins.2017.11.065 – ident: ref8 doi: 10.1145/2590296.2590305 – ident: ref27 doi: 10.1109/JIOT.2020.3029472 – ident: ref28 doi: 10.1007/978-3-319-21042-1_54 – ident: ref26 doi: 10.1109/TNET.2015.2457493 – ident: ref1 doi: 10.1007/978-3-642-01001-9_13 – start-page: 283 volume-title: Proc. USENIX Symp. Netw. Syst. Des. Implementation ident: ref4 article-title: Opaque: An oblivious and encrypted distributed analytics platform – ident: ref24 doi: 10.1145/2671188.2749286 – ident: ref34 doi: 10.1109/TIT.1985.1057074 – ident: ref12 doi: 10.1109/TDSC.2021.3101120 – ident: ref19 doi: 10.1109/SP40000.2020.00029 – ident: ref23 doi: 10.1109/JIOT.2021.3117933 – ident: ref29 doi: 10.1109/GLOCOM.2017.8254968 – ident: ref30 doi: 10.1142/S0218126622501572 – ident: ref33 doi: 10.1007/BFb0054135 – ident: ref13 doi: 10.1109/JIOT.2022.3158321 – ident: ref22 doi: 10.1109/TIFS.2021.3109459 – ident: ref3 doi: 10.1145/2043556.2043566 – ident: ref21 doi: 10.1007/s11280-019-00726-5 – ident: ref25 doi: 10.1109/ICDE.2015.7113273 |
| SSID | ssj0001105196 |
| Score | 2.311671 |
| Snippet | Multidimensional range queries are typical database operations used to retrieve data. With the development of cloud computing, outsourcing data storage and... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Cloud computing Communication Cryptography Cybersecurity Data privacy Data storage Efficiency encrypted data Internet of Things Multidimensional data Multidimensional methods multiple dimensions Outsourcing Privacy Privacy-preserving Protocols Queries range query Servers |
| Title | FPMRQ: Fully Privacy-Preserving Multidimensional Range Queries on Encrypted Data |
| URI | https://ieeexplore.ieee.org/document/10329953 https://www.proquest.com/docview/2995314682 |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library customDbUrl: eissn: 2327-4662 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001105196 issn: 2327-4662 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA66kxfnT5xOycGT0K5r0jT1Jrqhgjplg91K82MiSje2Vph_vXlpqqIo3grtKyEvyfuSvO97CB3TmEnNY-GZeaQ8qiTxsjBUnuJRmIlkEnHLkLu5ZZcjej2Oxo6sbrkwWmubfKZ9eLR3-WoqSzgq64D4W5JEZBWtxpxVZK3PA5UuoBHmbi67QdK5vrob-lAe3CeEUAaVb7_EHltM5ccKbMNKv4lu6wZV2STPflkIX75902r8d4s30LoDmPisGhGbaEXnW6hZF2_Abi5vo0F_cPNwf4phD7rEg_nTayaXHmRkwOqRP2JLzVUg_l8Jd-AH4CHg-xKkkRd4muNeLufLmYGs-CIrsh006veG55eeK6_gyTChhSeIwQpdooIJqL5lIqIiVoFImAEFhCpGeUQZVaHMhI5jAxWECWU6iBNOTNSLOdlFjXya6z2EDY7LlAhVEGjQm1PcmERMh2YF48aYtFBQd3wqnfY4lMB4Se0eJEhS8FUKvkqdr1ro5MNkVglv_PXxDvT9lw-rbm-hdu3e1M3NRWrfAOMs3P_F7ACtmb-7BJ02ahTzUh8a7FGIIzvm3gFO4dQW |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2xHODCjiirD5yQEtLYzsINQatSaCmoSNyieAEhUIpKilS-Ho_jAgKBuEVKRrE8tufZnvcGYJ_FkdRJLDwzj5THlKReHobKUwkPc5He8cQy5DrdqHXD2rf81pHVLRdGa22Tz7SPj_YuXw3kCI_KDlH8LU05nYZZzhjjFV3r80iljngkcneX9SA9bJ9d9n0sEO5TSlmEtW-_RB9bTuXHGmwDS3MRupMmVfkkj_6oFL58-6bW-O82L8GCg5jkuBoTyzClixVYnJRvIG42r0Kv2etcXx0R3IWOSW_48JrLsYc5Gbh-FPfEknMVyv9X0h3kGpkI5GqE4sgvZFCQRiGH42cDWslpXuZrcNNs9E9aniuw4MkwZaUnqEELdaqCO9R9ywVnIlaBSCMDCyhTEUs4i5gKZS50HBuwIEww00GcJtTEvTih6zBTDAq9AcQguVyJUAWBRsU5lRgTHunQrGGJMaY1CCYdn0mnPo5FMJ4yuwsJ0gx9laGvMuerGhx8mDxX0ht_fbyGff_lw6rba7A9cW_mZudLZt8g5yzc_MVsD-Za_c5FdnHWPd-CefMnl66zDTPlcKR3DBIpxa4df--Vkddj |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FPMRQ%3A+Fully+Privacy-Preserving+Multidimensional+Range+Queries+on+Encrypted+Data&rft.jtitle=IEEE+internet+of+things+journal&rft.au=Wang%2C+Wenli&rft.au=Zhuliang+Jia&rft.au=Xu%2C+Mengfan&rft.au=Li%2C+Shundong&rft.date=2024-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2327-4662&rft.volume=11&rft.issue=7&rft.spage=12362&rft_id=info:doi/10.1109%2FJIOT.2023.3334615&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2327-4662&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2327-4662&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2327-4662&client=summon |