GraphSAGE-Based Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy. Recently, many deep learning models have been proposed for spatial-temporal dependency modeling. While numerous deep learning models have been deve...
        Saved in:
      
    
          | Published in | IEEE transactions on intelligent transportation systems Vol. 24; no. 10; pp. 1 - 15 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          IEEE
    
        01.10.2023
     The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1524-9050 1558-0016  | 
| DOI | 10.1109/TITS.2023.3279929 | 
Cover
| Abstract | Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy. Recently, many deep learning models have been proposed for spatial-temporal dependency modeling. While numerous deep learning models have been developed for spatial-temporal dependency modeling, most rely on different types of convolutions to extract spatial and temporal correlations separately. To address this limitation, we propose a novel deep learning framework for traffic prediction called GraphSAGE-based Dynamic Spatial-Temporal Graph Convolutional Network (DST-GraphSAGE), which can capture dynamic spatial and temporal dependencies simultaneously. Our model utilizes a spatial-temporal GraphSAGE module to extract localized spatial-temporal correlations from past observations of a node's spatial neighbors. Meanwhile, the attention mechanism is incorporated to dynamically learn weights between traffic nodes based on graph features. Additionally, to capture long-term trends in traffic data, we employ dilated causal convolution as the temporal convolution layer. A series of numerical experiments are conducted on five real-world datasets, which demonstrates the effectiveness of our model for spatial-temporal dependency modeling. | 
    
|---|---|
| AbstractList | Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy. Recently, many deep learning models have been proposed for spatial-temporal dependency modeling. While numerous deep learning models have been developed for spatial-temporal dependency modeling, most rely on different types of convolutions to extract spatial and temporal correlations separately. To address this limitation, we propose a novel deep learning framework for traffic prediction called GraphSAGE-based Dynamic Spatial-Temporal Graph Convolutional Network (DST-GraphSAGE), which can capture dynamic spatial and temporal dependencies simultaneously. Our model utilizes a spatial-temporal GraphSAGE module to extract localized spatial-temporal correlations from past observations of a node's spatial neighbors. Meanwhile, the attention mechanism is incorporated to dynamically learn weights between traffic nodes based on graph features. Additionally, to capture long-term trends in traffic data, we employ dilated causal convolution as the temporal convolution layer. A series of numerical experiments are conducted on five real-world datasets, which demonstrates the effectiveness of our model for spatial-temporal dependency modeling. | 
    
| Author | Li, Min Liu, Tao Jiang, Aimin Zhou, Jia Kwan, Hon Keung  | 
    
| Author_xml | – sequence: 1 givenname: Tao orcidid: 0000-0003-1935-168X surname: Liu fullname: Liu, Tao organization: College of Information Science and Engineering, Hohai University, Changzhou, China – sequence: 2 givenname: Aimin orcidid: 0000-0002-9181-934X surname: Jiang fullname: Jiang, Aimin organization: College of Information Science and Engineering, Hohai University, Changzhou, China – sequence: 3 givenname: Jia surname: Zhou fullname: Zhou, Jia organization: College of Information Science and Engineering, Hohai University, Changzhou, China – sequence: 4 givenname: Min surname: Li fullname: Li, Min organization: College of Information Science and Engineering, Hohai University, Changzhou, China – sequence: 5 givenname: Hon Keung orcidid: 0000-0003-0173-1625 surname: Kwan fullname: Kwan, Hon Keung organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada  | 
    
| BookMark | eNp9kE1Lw0AQhhepYFv9AYKHgOfUnf3IZo-11looKjSePIRNsotb02zcpEr_vYntQTx4muHleYbhHaFB5SqN0CXgCQCWN8kyWU8IJnRCiZCSyBM0BM7jEGOIBv1OWCgxx2do1DSbLmUcYIheF17Vb-vpYh7eqkYXwd2-UlubB-tatVaVYaK3tfOqDH7AYOaqT1fuWuuqLnvU7Zfz74FxPki8MqYTn70ubN4D5-jUqLLRF8c5Ri_382T2EK6eFsvZdBXmRLI2zDDjIhOFFCAJEE5lYUAxQ6QEDUaRjBQSi4gCz1WeZREXOmIdz6TBcWHoGF0f7tbefex006Ybt_Pdf01KYkEYJSBIR4kDlXvXNF6bNLet6v9svbJlCjjtm0z7JtO-yfTYZGfCH7P2dqv8_l_n6uBYrfUvHhilMaffieqArg | 
    
| CODEN | ITISFG | 
    
| CitedBy_id | crossref_primary_10_1038_s41598_024_73639_7 crossref_primary_10_1016_j_neucom_2024_129193 crossref_primary_10_1016_j_aei_2025_103261 crossref_primary_10_1038_s41598_025_91418_w crossref_primary_10_3390_math12213338 crossref_primary_10_1109_TAFFC_2024_3394873 crossref_primary_10_1145_3636459 crossref_primary_10_1007_s11761_024_00437_4 crossref_primary_10_7717_peerj_cs_1913 crossref_primary_10_3390_electronics13050994 crossref_primary_10_1007_s10489_024_05970_5 crossref_primary_10_1007_s00521_025_11054_3 crossref_primary_10_1007_s42488_025_00141_8 crossref_primary_10_1016_j_engappai_2024_108135 crossref_primary_10_1093_comjnl_bxae060 crossref_primary_10_1109_ACCESS_2024_3524676 crossref_primary_10_1016_j_jag_2024_103709 crossref_primary_10_1007_s13042_024_02413_y crossref_primary_10_3390_app14114481  | 
    
| Cites_doi | 10.1016/j.ins.2021.07.007 10.1016/j.trc.2015.03.014 10.1016/j.trc.2014.02.009 10.1109/TITS.2021.3054840 10.3141/1678-22 10.1109/TITS.2015.2457240 10.1007/s10109-011-0149-5 10.1109/ITSC.2009.5309741 10.21437/SSW.2016 10.1609/aaai.v34i01.5438 10.1016/S0377-2217(00)00125-9 10.1016/j.cageo.2004.05.012 10.3141/1776-25 10.1145/3394486.3403320 10.24963/ijcai.2018/505 10.1109/NOMS54207.2022.9789878 10.1609/aaai.v34i01.5470 10.1145/3534678.3539300 10.2307/1268381 10.1080/15472450.2013.771107 10.1609/aaai.v34i01.5477 10.1016/j.neucom.2020.11.038 10.1145/3532611 10.24963/ijcai.2020/326 10.1109/MSP.2012.2235192 10.1109/ITSC.2010.5625123 10.3141/1811-04 10.1016/S0968-090X(97)82903-8 10.1016/j.proeng.2016.01.290 10.1109/ICMLC.2009.5212785 10.1109/JSEN.2019.2923982 10.1109/ISCID.2019.10128 10.1109/tkde.2023.3284156 10.1109/IJCNN55064.2022.9892191 10.1016/j.ins.2020.01.043 10.1016/S0169-2070(96)00697-8 10.1016/j.trc.2020.01.010 10.1111/gean.12026 10.3390/app10041509 10.1109/TITS.2014.2345663 10.1109/TITS.2020.3026025 10.1145/3292500.3330884 10.1088/1742-6596/1549/4/042070 10.1109/TITS.2019.2950416 10.1002/for.3980140302 10.1080/21680566.2020.1822765 10.1109/JSEN.2021.3124818 10.24963/ijcai.2019/264 10.1609/aaai.v35i5.16542 10.1007/s11432-012-4725-1 10.1109/TITS.2019.2935152 10.3390/s17040818 10.1609/aaai.v33i01.3301922 10.1109/ACCESS.2019.2953888 10.1609/aaai.v33i01.33015668 10.1109/IEMCON53756.2021.9623238 10.2478/jaiscr-2019-0006 10.1016/j.patcog.2022.108696 10.1109/TITS.2020.3025076 10.1109/TITS.2020.3019497 10.1061/(asce)0733-947x(2003)129:6(664) 10.1109/TITS.2014.2311123 10.48550/ARXIV.1706.03762 10.1109/YAC.2016.7804912  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 | 
    
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| DOI | 10.1109/TITS.2023.3279929 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Civil Engineering Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-0016 | 
    
| EndPage | 15 | 
    
| ExternalDocumentID | 10_1109_TITS_2023_3279929 10143385  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 2018B23014 funderid: 10.13039/501100012226 – fundername: National Natural Science Foundation of China grantid: 61801055 funderid: 10.13039/501100001809  | 
    
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS AAYXX AETIX AGSQL AIBXA CITATION EJD H~9 ZY4 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c294t-b0457b7d9719212539df1a4f2991e1fa2b2d9076315cacbb657e647d949f08df3 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1524-9050 | 
    
| IngestDate | Sun Jun 29 13:21:32 EDT 2025 Thu Apr 24 23:03:48 EDT 2025 Wed Oct 01 05:03:17 EDT 2025 Wed Aug 27 02:57:13 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c294t-b0457b7d9719212539df1a4f2991e1fa2b2d9076315cacbb657e647d949f08df3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-1935-168X 0000-0002-9181-934X 0000-0003-0173-1625  | 
    
| PQID | 2872432172 | 
    
| PQPubID | 75735 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TITS_2023_3279929 crossref_primary_10_1109_TITS_2023_3279929 proquest_journals_2872432172 ieee_primary_10143385  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-01 | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | IEEE transactions on intelligent transportation systems | 
    
| PublicationTitleAbbrev | TITS | 
    
| PublicationYear | 2023 | 
    
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  | 
    
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 Veličković (ref28) ref52 ref11 ref55 ref10 ref54 Defferrard (ref35) ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref41 ref44 ref43 ref49 Gehring (ref58) ref8 ref7 Zhang (ref40) 2018 ref9 Xu (ref36) ref4 ref3 Ashwini (ref2) ref5 Hamilton (ref25) Bruna (ref34) ref37 Kipf (ref23) 2016 ref31 ref75 ref30 ref74 ref33 ref32 ref76 ref1 ref39 ref38 ref71 ref70 ref73 ref72 Chung (ref77) ref24 ref68 ref67 ref26 ref69 ref20 ref64 ref63 ref22 ref66 ref21 Bai (ref42); 33 ref65 Li (ref6) ref27 ref29 ref60 ref62 ref61 Erhan (ref53)  | 
    
| References_xml | – ident: ref49 doi: 10.1016/j.ins.2021.07.007 – ident: ref55 doi: 10.1016/j.trc.2015.03.014 – ident: ref17 doi: 10.1016/j.trc.2014.02.009 – ident: ref32 doi: 10.1109/TITS.2021.3054840 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref34 article-title: Spectral networks and locally connected networks on graphs – ident: ref7 doi: 10.3141/1678-22 – volume: 33 start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref42 article-title: Adaptive graph convolutional recurrent network for traffic forecasting – ident: ref5 doi: 10.1109/TITS.2015.2457240 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref36 article-title: Graph wavelet neural network – ident: ref4 doi: 10.1007/s10109-011-0149-5 – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref6 article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting – ident: ref13 doi: 10.1109/ITSC.2009.5309741 – ident: ref74 doi: 10.21437/SSW.2016 – ident: ref26 doi: 10.1609/aaai.v34i01.5438 – ident: ref54 doi: 10.1016/S0377-2217(00)00125-9 – ident: ref15 doi: 10.1016/j.cageo.2004.05.012 – ident: ref10 doi: 10.3141/1776-25 – ident: ref67 doi: 10.1145/3394486.3403320 – ident: ref24 doi: 10.24963/ijcai.2018/505 – ident: ref72 doi: 10.1109/NOMS54207.2022.9789878 – year: 2018 ident: ref40 article-title: Multistep speed prediction on traffic networks: A graph convolutional sequence-to-sequence learning approach with attention mechanism publication-title: arXiv:1810.10237 – ident: ref43 doi: 10.1609/aaai.v34i01.5470 – ident: ref48 doi: 10.1145/3534678.3539300 – ident: ref11 doi: 10.2307/1268381 – ident: ref18 doi: 10.1080/15472450.2013.771107 – ident: ref29 doi: 10.1609/aaai.v34i01.5477 – ident: ref63 doi: 10.1016/j.neucom.2020.11.038 – ident: ref44 doi: 10.1145/3532611 – ident: ref59 doi: 10.24963/ijcai.2020/326 – ident: ref33 doi: 10.1109/MSP.2012.2235192 – ident: ref16 doi: 10.1109/ITSC.2010.5625123 – start-page: 1243 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref58 article-title: Convolutional sequence to sequence learning – ident: ref20 doi: 10.3141/1811-04 – ident: ref9 doi: 10.1016/S0968-090X(97)82903-8 – ident: ref3 doi: 10.1016/j.proeng.2016.01.290 – ident: ref12 doi: 10.1109/ICMLC.2009.5212785 – ident: ref57 doi: 10.1109/JSEN.2019.2923982 – ident: ref71 doi: 10.1109/ISCID.2019.10128 – ident: ref66 doi: 10.1109/tkde.2023.3284156 – ident: ref45 doi: 10.1109/IJCNN55064.2022.9892191 – ident: ref50 doi: 10.1016/j.ins.2020.01.043 – start-page: 153 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref53 article-title: The difficulty of training deep architectures and the effect of unsupervised pre-training – start-page: 1 volume-title: Proc. Int. Conf. Learn. Represent. ident: ref28 article-title: Graph attention networks – year: 2016 ident: ref23 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv:1609.02907 – ident: ref19 doi: 10.1016/S0169-2070(96)00697-8 – ident: ref31 doi: 10.1016/j.trc.2020.01.010 – ident: ref14 doi: 10.1111/gean.12026 – ident: ref61 doi: 10.3390/app10041509 – start-page: 3837 volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst. ident: ref35 article-title: Convolutional neural networks on graphs with fast localized spectral filtering – ident: ref52 doi: 10.1109/TITS.2014.2345663 – ident: ref73 doi: 10.1109/TITS.2020.3026025 – ident: ref38 doi: 10.1145/3292500.3330884 – ident: ref37 doi: 10.1088/1742-6596/1549/4/042070 – ident: ref41 doi: 10.1109/TITS.2019.2950416 – ident: ref76 doi: 10.1002/for.3980140302 – ident: ref39 doi: 10.1080/21680566.2020.1822765 – ident: ref27 doi: 10.1109/JSEN.2021.3124818 – ident: ref60 doi: 10.24963/ijcai.2019/264 – ident: ref65 doi: 10.1609/aaai.v35i5.16542 – ident: ref1 doi: 10.1007/s11432-012-4725-1 – ident: ref75 doi: 10.1109/TITS.2019.2935152 – start-page: 1 volume-title: Proc. NIPS ident: ref77 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling – ident: ref22 doi: 10.3390/s17040818 – ident: ref30 doi: 10.1609/aaai.v33i01.3301922 – ident: ref46 doi: 10.1109/ACCESS.2019.2953888 – ident: ref64 doi: 10.1609/aaai.v33i01.33015668 – ident: ref70 doi: 10.1109/IEMCON53756.2021.9623238 – ident: ref56 doi: 10.2478/jaiscr-2019-0006 – ident: ref69 doi: 10.1016/j.patcog.2022.108696 – start-page: 1025 volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst. ident: ref25 article-title: Inductive representation learning on large graphs – ident: ref62 doi: 10.1109/TITS.2020.3025076 – start-page: 628 volume-title: Proc. 3rd Int. Conf. Intell. Sustain. Syst. (ICISS) ident: ref2 article-title: Data sources for urban traffic prediction: A review on classification, comparison and technologies – ident: ref47 doi: 10.1109/TITS.2020.3019497 – ident: ref8 doi: 10.1061/(asce)0733-947x(2003)129:6(664) – ident: ref51 doi: 10.1109/TITS.2014.2311123 – ident: ref68 doi: 10.48550/ARXIV.1706.03762 – ident: ref21 doi: 10.1109/YAC.2016.7804912  | 
    
| SSID | ssj0014511 | 
    
| Score | 2.5684931 | 
    
| Snippet | Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy.... | 
    
| SourceID | proquest crossref ieee  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Artificial neural networks Computational modeling Convolution Correlation Data models Deep learning Feature extraction GraphSAGE Predictive models Roads spatial correlations spatial–temporal embedding Traffic information traffic prediction urban road networks weights learning  | 
    
| Title | GraphSAGE-Based Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction | 
    
| URI | https://ieeexplore.ieee.org/document/10143385 https://www.proquest.com/docview/2872432172  | 
    
| Volume | 24 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4YJzjwHGK8lAMnpHZtmibNkdd4SExIbNIkDtXSJhemDY2OA78eO-nGBAJxqyonrWI3dmr7-wg55ZliaaJ4oLIsDTjXJgCnAJuhTjJmuCxthP3OD11x2-f3g3RQN6u7XhhjjCs-MyFeulx-OSlm-KusjbyycKRKG6QhM-GbtRYpAwTacuCoDB4cpfMUZhypdu-u9xQiT3iYMKmUCye_nJBjVfmxFTv_0tkk3fmb-bKSl3BW6bD4-Aba-O9X3yIbdaRJz71pbJMVM94h60v4g7vk-QbhqjGpFFyANyvpleenp0hUDIYZ9Dxw1Yg6QXo5Gb_Xpgr3ur6CnELYS8HlIRYFfZxi4gcFmqTfue5d3gY120JQMMWrQENwJ7UslUSINFRgaeMht-CvYhPbIdOshJO0SOK0GBZai1QaAcpUXNkoK22yR1bHk7HZJ1RaiAIMzAo7GBdcaB0bnjEdaSusFMMWiebLnxc1FDkyYoxydySJVI4ay1Fjea2xFjlbDHn1OBx_CTdRA0uCfvFb5Giu5Lz-VN9yODIyniBP18Evww7JGs7uS_iOyGo1nZljCEUqfeJM8BMPxNfj | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLZ4DMDAG3E8MzAhtbRp0jYj7-N1QqJISAzVpU0W0B2COwZ-PXbSAwQCsVVV0lSxG9u1_X0AOyJXXCZKBCrPZSCENgEaBTwMdZJzI7LaRtTvfNVJ27fi_E7eNc3qrhfGGOOKz0xIly6XX_erIf0q2yNeWQyp5DhMSiGE9O1aH0kDgtpy8Kgcl47kKIkZR2qvOCtuQmIKDxOeKeUcyk8z5HhVfhzGzsKczEFn9G6-sOQhHA50WL19g23898vPw2zja7J9rxwLMGZ6izDzBYFwCe5PCbCa0krBAdqzmh15hnpGVMWomkHhoasemRvIDvu910ZZ8V7H15AzdHwZGj1Co2DXz5T6oQHLcHtyXBy2g4ZvIai4EoNAo3uX6axWGYGkkQhrG3eFRYsVm9h2ueY1xtJpEsuqW2mdysykKE4llI3y2iYrMNHr98wqsMyiH2DwqXiGiVSkWsdG5FxH2qY2S7stiEbbX1YNGDlxYjyWLiiJVEkSK0liZSOxFux-THnySBx_DV4mCXwZ6De_BRsjIZfNx_pSYtDIRUJMXWu_TNuGqXZxdVlennUu1mGaVvIFfRswMXgemk10TAZ6y6njO4hR2zA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraphSAGE-Based+Dynamic+Spatial%E2%80%93Temporal+Graph+Convolutional+Network+for+Traffic+Prediction&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Liu%2C+Tao&rft.au=Jiang%2C+Aimin&rft.au=Zhou%2C+Jia&rft.au=Li%2C+Min&rft.date=2023-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=10&rft.spage=11210&rft_id=info:doi/10.1109%2FTITS.2023.3279929&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |