GraphSAGE-Based Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction

Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy. Recently, many deep learning models have been proposed for spatial-temporal dependency modeling. While numerous deep learning models have been deve...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 24; no. 10; pp. 1 - 15
Main Authors Liu, Tao, Jiang, Aimin, Zhou, Jia, Li, Min, Kwan, Hon Keung
Format Journal Article
LanguageEnglish
Published New York IEEE 01.10.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2023.3279929

Cover

Abstract Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy. Recently, many deep learning models have been proposed for spatial-temporal dependency modeling. While numerous deep learning models have been developed for spatial-temporal dependency modeling, most rely on different types of convolutions to extract spatial and temporal correlations separately. To address this limitation, we propose a novel deep learning framework for traffic prediction called GraphSAGE-based Dynamic Spatial-Temporal Graph Convolutional Network (DST-GraphSAGE), which can capture dynamic spatial and temporal dependencies simultaneously. Our model utilizes a spatial-temporal GraphSAGE module to extract localized spatial-temporal correlations from past observations of a node's spatial neighbors. Meanwhile, the attention mechanism is incorporated to dynamically learn weights between traffic nodes based on graph features. Additionally, to capture long-term trends in traffic data, we employ dilated causal convolution as the temporal convolution layer. A series of numerical experiments are conducted on five real-world datasets, which demonstrates the effectiveness of our model for spatial-temporal dependency modeling.
AbstractList Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy. Recently, many deep learning models have been proposed for spatial-temporal dependency modeling. While numerous deep learning models have been developed for spatial-temporal dependency modeling, most rely on different types of convolutions to extract spatial and temporal correlations separately. To address this limitation, we propose a novel deep learning framework for traffic prediction called GraphSAGE-based Dynamic Spatial-Temporal Graph Convolutional Network (DST-GraphSAGE), which can capture dynamic spatial and temporal dependencies simultaneously. Our model utilizes a spatial-temporal GraphSAGE module to extract localized spatial-temporal correlations from past observations of a node's spatial neighbors. Meanwhile, the attention mechanism is incorporated to dynamically learn weights between traffic nodes based on graph features. Additionally, to capture long-term trends in traffic data, we employ dilated causal convolution as the temporal convolution layer. A series of numerical experiments are conducted on five real-world datasets, which demonstrates the effectiveness of our model for spatial-temporal dependency modeling.
Author Li, Min
Liu, Tao
Jiang, Aimin
Zhou, Jia
Kwan, Hon Keung
Author_xml – sequence: 1
  givenname: Tao
  orcidid: 0000-0003-1935-168X
  surname: Liu
  fullname: Liu, Tao
  organization: College of Information Science and Engineering, Hohai University, Changzhou, China
– sequence: 2
  givenname: Aimin
  orcidid: 0000-0002-9181-934X
  surname: Jiang
  fullname: Jiang, Aimin
  organization: College of Information Science and Engineering, Hohai University, Changzhou, China
– sequence: 3
  givenname: Jia
  surname: Zhou
  fullname: Zhou, Jia
  organization: College of Information Science and Engineering, Hohai University, Changzhou, China
– sequence: 4
  givenname: Min
  surname: Li
  fullname: Li, Min
  organization: College of Information Science and Engineering, Hohai University, Changzhou, China
– sequence: 5
  givenname: Hon Keung
  orcidid: 0000-0003-0173-1625
  surname: Kwan
  fullname: Kwan, Hon Keung
  organization: Department of Electrical and Computer Engineering, University of Windsor, Windsor, Canada
BookMark eNp9kE1Lw0AQhhepYFv9AYKHgOfUnf3IZo-11looKjSePIRNsotb02zcpEr_vYntQTx4muHleYbhHaFB5SqN0CXgCQCWN8kyWU8IJnRCiZCSyBM0BM7jEGOIBv1OWCgxx2do1DSbLmUcYIheF17Vb-vpYh7eqkYXwd2-UlubB-tatVaVYaK3tfOqDH7AYOaqT1fuWuuqLnvU7Zfz74FxPki8MqYTn70ubN4D5-jUqLLRF8c5Ri_382T2EK6eFsvZdBXmRLI2zDDjIhOFFCAJEE5lYUAxQ6QEDUaRjBQSi4gCz1WeZREXOmIdz6TBcWHoGF0f7tbefex006Ybt_Pdf01KYkEYJSBIR4kDlXvXNF6bNLet6v9svbJlCjjtm0z7JtO-yfTYZGfCH7P2dqv8_l_n6uBYrfUvHhilMaffieqArg
CODEN ITISFG
CitedBy_id crossref_primary_10_1038_s41598_024_73639_7
crossref_primary_10_1016_j_neucom_2024_129193
crossref_primary_10_1016_j_aei_2025_103261
crossref_primary_10_1038_s41598_025_91418_w
crossref_primary_10_3390_math12213338
crossref_primary_10_1109_TAFFC_2024_3394873
crossref_primary_10_1145_3636459
crossref_primary_10_1007_s11761_024_00437_4
crossref_primary_10_7717_peerj_cs_1913
crossref_primary_10_3390_electronics13050994
crossref_primary_10_1007_s10489_024_05970_5
crossref_primary_10_1007_s00521_025_11054_3
crossref_primary_10_1007_s42488_025_00141_8
crossref_primary_10_1016_j_engappai_2024_108135
crossref_primary_10_1093_comjnl_bxae060
crossref_primary_10_1109_ACCESS_2024_3524676
crossref_primary_10_1016_j_jag_2024_103709
crossref_primary_10_1007_s13042_024_02413_y
crossref_primary_10_3390_app14114481
Cites_doi 10.1016/j.ins.2021.07.007
10.1016/j.trc.2015.03.014
10.1016/j.trc.2014.02.009
10.1109/TITS.2021.3054840
10.3141/1678-22
10.1109/TITS.2015.2457240
10.1007/s10109-011-0149-5
10.1109/ITSC.2009.5309741
10.21437/SSW.2016
10.1609/aaai.v34i01.5438
10.1016/S0377-2217(00)00125-9
10.1016/j.cageo.2004.05.012
10.3141/1776-25
10.1145/3394486.3403320
10.24963/ijcai.2018/505
10.1109/NOMS54207.2022.9789878
10.1609/aaai.v34i01.5470
10.1145/3534678.3539300
10.2307/1268381
10.1080/15472450.2013.771107
10.1609/aaai.v34i01.5477
10.1016/j.neucom.2020.11.038
10.1145/3532611
10.24963/ijcai.2020/326
10.1109/MSP.2012.2235192
10.1109/ITSC.2010.5625123
10.3141/1811-04
10.1016/S0968-090X(97)82903-8
10.1016/j.proeng.2016.01.290
10.1109/ICMLC.2009.5212785
10.1109/JSEN.2019.2923982
10.1109/ISCID.2019.10128
10.1109/tkde.2023.3284156
10.1109/IJCNN55064.2022.9892191
10.1016/j.ins.2020.01.043
10.1016/S0169-2070(96)00697-8
10.1016/j.trc.2020.01.010
10.1111/gean.12026
10.3390/app10041509
10.1109/TITS.2014.2345663
10.1109/TITS.2020.3026025
10.1145/3292500.3330884
10.1088/1742-6596/1549/4/042070
10.1109/TITS.2019.2950416
10.1002/for.3980140302
10.1080/21680566.2020.1822765
10.1109/JSEN.2021.3124818
10.24963/ijcai.2019/264
10.1609/aaai.v35i5.16542
10.1007/s11432-012-4725-1
10.1109/TITS.2019.2935152
10.3390/s17040818
10.1609/aaai.v33i01.3301922
10.1109/ACCESS.2019.2953888
10.1609/aaai.v33i01.33015668
10.1109/IEMCON53756.2021.9623238
10.2478/jaiscr-2019-0006
10.1016/j.patcog.2022.108696
10.1109/TITS.2020.3025076
10.1109/TITS.2020.3019497
10.1061/(asce)0733-947x(2003)129:6(664)
10.1109/TITS.2014.2311123
10.48550/ARXIV.1706.03762
10.1109/YAC.2016.7804912
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1109/TITS.2023.3279929
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 15
ExternalDocumentID 10_1109_TITS_2023_3279929
10143385
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 2018B23014
  funderid: 10.13039/501100012226
– fundername: National Natural Science Foundation of China
  grantid: 61801055
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
ZY4
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c294t-b0457b7d9719212539df1a4f2991e1fa2b2d9076315cacbb657e647d949f08df3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Sun Jun 29 13:21:32 EDT 2025
Thu Apr 24 23:03:48 EDT 2025
Wed Oct 01 05:03:17 EDT 2025
Wed Aug 27 02:57:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-b0457b7d9719212539df1a4f2991e1fa2b2d9076315cacbb657e647d949f08df3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1935-168X
0000-0002-9181-934X
0000-0003-0173-1625
PQID 2872432172
PQPubID 75735
PageCount 15
ParticipantIDs crossref_citationtrail_10_1109_TITS_2023_3279929
crossref_primary_10_1109_TITS_2023_3279929
proquest_journals_2872432172
ieee_primary_10143385
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
Veličković (ref28)
ref52
ref11
ref55
ref10
ref54
Defferrard (ref35)
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref41
ref44
ref43
ref49
Gehring (ref58)
ref8
ref7
Zhang (ref40) 2018
ref9
Xu (ref36)
ref4
ref3
Ashwini (ref2)
ref5
Hamilton (ref25)
Bruna (ref34)
ref37
Kipf (ref23) 2016
ref31
ref75
ref30
ref74
ref33
ref32
ref76
ref1
ref39
ref38
ref71
ref70
ref73
ref72
Chung (ref77)
ref24
ref68
ref67
ref26
ref69
ref20
ref64
ref63
ref22
ref66
ref21
Bai (ref42); 33
ref65
Li (ref6)
ref27
ref29
ref60
ref62
ref61
Erhan (ref53)
References_xml – ident: ref49
  doi: 10.1016/j.ins.2021.07.007
– ident: ref55
  doi: 10.1016/j.trc.2015.03.014
– ident: ref17
  doi: 10.1016/j.trc.2014.02.009
– ident: ref32
  doi: 10.1109/TITS.2021.3054840
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref34
  article-title: Spectral networks and locally connected networks on graphs
– ident: ref7
  doi: 10.3141/1678-22
– volume: 33
  start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref42
  article-title: Adaptive graph convolutional recurrent network for traffic forecasting
– ident: ref5
  doi: 10.1109/TITS.2015.2457240
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref36
  article-title: Graph wavelet neural network
– ident: ref4
  doi: 10.1007/s10109-011-0149-5
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref6
  article-title: Diffusion convolutional recurrent neural network: Data-driven traffic forecasting
– ident: ref13
  doi: 10.1109/ITSC.2009.5309741
– ident: ref74
  doi: 10.21437/SSW.2016
– ident: ref26
  doi: 10.1609/aaai.v34i01.5438
– ident: ref54
  doi: 10.1016/S0377-2217(00)00125-9
– ident: ref15
  doi: 10.1016/j.cageo.2004.05.012
– ident: ref10
  doi: 10.3141/1776-25
– ident: ref67
  doi: 10.1145/3394486.3403320
– ident: ref24
  doi: 10.24963/ijcai.2018/505
– ident: ref72
  doi: 10.1109/NOMS54207.2022.9789878
– year: 2018
  ident: ref40
  article-title: Multistep speed prediction on traffic networks: A graph convolutional sequence-to-sequence learning approach with attention mechanism
  publication-title: arXiv:1810.10237
– ident: ref43
  doi: 10.1609/aaai.v34i01.5470
– ident: ref48
  doi: 10.1145/3534678.3539300
– ident: ref11
  doi: 10.2307/1268381
– ident: ref18
  doi: 10.1080/15472450.2013.771107
– ident: ref29
  doi: 10.1609/aaai.v34i01.5477
– ident: ref63
  doi: 10.1016/j.neucom.2020.11.038
– ident: ref44
  doi: 10.1145/3532611
– ident: ref59
  doi: 10.24963/ijcai.2020/326
– ident: ref33
  doi: 10.1109/MSP.2012.2235192
– ident: ref16
  doi: 10.1109/ITSC.2010.5625123
– start-page: 1243
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref58
  article-title: Convolutional sequence to sequence learning
– ident: ref20
  doi: 10.3141/1811-04
– ident: ref9
  doi: 10.1016/S0968-090X(97)82903-8
– ident: ref3
  doi: 10.1016/j.proeng.2016.01.290
– ident: ref12
  doi: 10.1109/ICMLC.2009.5212785
– ident: ref57
  doi: 10.1109/JSEN.2019.2923982
– ident: ref71
  doi: 10.1109/ISCID.2019.10128
– ident: ref66
  doi: 10.1109/tkde.2023.3284156
– ident: ref45
  doi: 10.1109/IJCNN55064.2022.9892191
– ident: ref50
  doi: 10.1016/j.ins.2020.01.043
– start-page: 153
  volume-title: Proc. Int. Conf. Artif. Intell. Stat.
  ident: ref53
  article-title: The difficulty of training deep architectures and the effect of unsupervised pre-training
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref28
  article-title: Graph attention networks
– year: 2016
  ident: ref23
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv:1609.02907
– ident: ref19
  doi: 10.1016/S0169-2070(96)00697-8
– ident: ref31
  doi: 10.1016/j.trc.2020.01.010
– ident: ref14
  doi: 10.1111/gean.12026
– ident: ref61
  doi: 10.3390/app10041509
– start-page: 3837
  volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst.
  ident: ref35
  article-title: Convolutional neural networks on graphs with fast localized spectral filtering
– ident: ref52
  doi: 10.1109/TITS.2014.2345663
– ident: ref73
  doi: 10.1109/TITS.2020.3026025
– ident: ref38
  doi: 10.1145/3292500.3330884
– ident: ref37
  doi: 10.1088/1742-6596/1549/4/042070
– ident: ref41
  doi: 10.1109/TITS.2019.2950416
– ident: ref76
  doi: 10.1002/for.3980140302
– ident: ref39
  doi: 10.1080/21680566.2020.1822765
– ident: ref27
  doi: 10.1109/JSEN.2021.3124818
– ident: ref60
  doi: 10.24963/ijcai.2019/264
– ident: ref65
  doi: 10.1609/aaai.v35i5.16542
– ident: ref1
  doi: 10.1007/s11432-012-4725-1
– ident: ref75
  doi: 10.1109/TITS.2019.2935152
– start-page: 1
  volume-title: Proc. NIPS
  ident: ref77
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
– ident: ref22
  doi: 10.3390/s17040818
– ident: ref30
  doi: 10.1609/aaai.v33i01.3301922
– ident: ref46
  doi: 10.1109/ACCESS.2019.2953888
– ident: ref64
  doi: 10.1609/aaai.v33i01.33015668
– ident: ref70
  doi: 10.1109/IEMCON53756.2021.9623238
– ident: ref56
  doi: 10.2478/jaiscr-2019-0006
– ident: ref69
  doi: 10.1016/j.patcog.2022.108696
– start-page: 1025
  volume-title: Proc. 28th Int. Conf. Neural Inf. Process. Syst.
  ident: ref25
  article-title: Inductive representation learning on large graphs
– ident: ref62
  doi: 10.1109/TITS.2020.3025076
– start-page: 628
  volume-title: Proc. 3rd Int. Conf. Intell. Sustain. Syst. (ICISS)
  ident: ref2
  article-title: Data sources for urban traffic prediction: A review on classification, comparison and technologies
– ident: ref47
  doi: 10.1109/TITS.2020.3019497
– ident: ref8
  doi: 10.1061/(asce)0733-947x(2003)129:6(664)
– ident: ref51
  doi: 10.1109/TITS.2014.2311123
– ident: ref68
  doi: 10.48550/ARXIV.1706.03762
– ident: ref21
  doi: 10.1109/YAC.2016.7804912
SSID ssj0014511
Score 2.5684931
Snippet Traffic networks exhibit complex spatial-temporal dependencies, and accurately capturing such dependencies is critical to improving prediction accuracy....
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Computational modeling
Convolution
Correlation
Data models
Deep learning
Feature extraction
GraphSAGE
Predictive models
Roads
spatial correlations
spatial–temporal embedding
Traffic information
traffic prediction
urban road networks
weights learning
Title GraphSAGE-Based Dynamic Spatial-Temporal Graph Convolutional Network for Traffic Prediction
URI https://ieeexplore.ieee.org/document/10143385
https://www.proquest.com/docview/2872432172
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI4YJzjwHGK8lAMnpHZtmibNkdd4SExIbNIkDtXSJhemDY2OA78eO-nGBAJxqyonrWI3dmr7-wg55ZliaaJ4oLIsDTjXJgCnAJuhTjJmuCxthP3OD11x2-f3g3RQN6u7XhhjjCs-MyFeulx-OSlm-KusjbyycKRKG6QhM-GbtRYpAwTacuCoDB4cpfMUZhypdu-u9xQiT3iYMKmUCye_nJBjVfmxFTv_0tkk3fmb-bKSl3BW6bD4-Aba-O9X3yIbdaRJz71pbJMVM94h60v4g7vk-QbhqjGpFFyANyvpleenp0hUDIYZ9Dxw1Yg6QXo5Gb_Xpgr3ur6CnELYS8HlIRYFfZxi4gcFmqTfue5d3gY120JQMMWrQENwJ7UslUSINFRgaeMht-CvYhPbIdOshJO0SOK0GBZai1QaAcpUXNkoK22yR1bHk7HZJ1RaiAIMzAo7GBdcaB0bnjEdaSusFMMWiebLnxc1FDkyYoxydySJVI4ay1Fjea2xFjlbDHn1OBx_CTdRA0uCfvFb5Giu5Lz-VN9yODIyniBP18Evww7JGs7uS_iOyGo1nZljCEUqfeJM8BMPxNfj
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8QwDLZ4DMDAG3E8MzAhtbRp0jYj7-N1QqJISAzVpU0W0B2COwZ-PXbSAwQCsVVV0lSxG9u1_X0AOyJXXCZKBCrPZSCENgEaBTwMdZJzI7LaRtTvfNVJ27fi_E7eNc3qrhfGGOOKz0xIly6XX_erIf0q2yNeWQyp5DhMSiGE9O1aH0kDgtpy8Kgcl47kKIkZR2qvOCtuQmIKDxOeKeUcyk8z5HhVfhzGzsKczEFn9G6-sOQhHA50WL19g23898vPw2zja7J9rxwLMGZ6izDzBYFwCe5PCbCa0krBAdqzmh15hnpGVMWomkHhoasemRvIDvu910ZZ8V7H15AzdHwZGj1Co2DXz5T6oQHLcHtyXBy2g4ZvIai4EoNAo3uX6axWGYGkkQhrG3eFRYsVm9h2ueY1xtJpEsuqW2mdysykKE4llI3y2iYrMNHr98wqsMyiH2DwqXiGiVSkWsdG5FxH2qY2S7stiEbbX1YNGDlxYjyWLiiJVEkSK0liZSOxFux-THnySBx_DV4mCXwZ6De_BRsjIZfNx_pSYtDIRUJMXWu_TNuGqXZxdVlennUu1mGaVvIFfRswMXgemk10TAZ6y6njO4hR2zA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GraphSAGE-Based+Dynamic+Spatial%E2%80%93Temporal+Graph+Convolutional+Network+for+Traffic+Prediction&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Liu%2C+Tao&rft.au=Jiang%2C+Aimin&rft.au=Zhou%2C+Jia&rft.au=Li%2C+Min&rft.date=2023-10-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=24&rft.issue=10&rft.spage=11210&rft_id=info:doi/10.1109%2FTITS.2023.3279929&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon