A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification

In the past, deep learning (DL) technologies have been widely used in hyperspectral image classification tasks. Among them, convolutional neural networks (CNNs) use fixed size receptive field (RF) to obtain spectral and spatial features of hyperspectral images (HSIs), showing great feature extractio...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 61; p. 1
Main Authors Liao, Diling, Shi, Cuiping, Wang, Liguo
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2023.3286950

Cover

Abstract In the past, deep learning (DL) technologies have been widely used in hyperspectral image classification tasks. Among them, convolutional neural networks (CNNs) use fixed size receptive field (RF) to obtain spectral and spatial features of hyperspectral images (HSIs), showing great feature extraction capabilities, which are one of the most popular DL frameworks. However, the convolution using local extraction and global parameter sharing mechanism pays more attention to spatial content information, which changes the spectral sequence information in the learned features. In addition, CNN is difficult to describe the long-distance correlation between HSI pixels and bands. To solve these problems, a spectral-spatial fusion Transformer network (S 2 FTNet) is proposed for the classification of hyperspectral images. Specifically, S 2 FTNet adopts the Transformer framework to build a spatial Transformer module (SpaFormer) and a spectral Transformer module (SpeFormer) to capture image spatial and spectral long-distance dependencies. In addition, an adaptive spectral-spatial fusion mechanism (AS 2 FM) is proposed to effectively fuse the obtained advanced high-level semantic features. Finally, a large number of experiments were carried out on four datasets, Indian Pines, Pavia, Salinas and WHU-Hi-LongKou, which verified that the proposed S 2 FTNet can provide better classification performance than other the state-of-the-art networks.
AbstractList In the past, deep learning (DL) technologies have been widely used in hyperspectral image (HSI) classification tasks. Among them, convolutional neural networks (CNNs) use fixed-size receptive field (RF) to obtain spectral and spatial features of HSIs, showing great feature extraction capabilities, which are one of the most popular DL frameworks. However, the convolution using local extraction and global parameter sharing mechanism pays more attention to spatial content information, which changes the spectral sequence information in the learned features. In addition, CNN is difficult to describe the long-distance correlation between HSI pixels and bands. To solve these problems, a spectral–spatial fusion Transformer network (S2FTNet) is proposed for the classification of HSIs. Specifically, S2FTNet adopts the Transformer framework to build a spatial Transformer module (SpaFormer) and a spectral Transformer module (SpeFormer) to capture image spatial and spectral long-distance dependencies. In addition, an adaptive spectral–spatial fusion mechanism (AS2FM) is proposed to effectively fuse the obtained advanced high-level semantic features. Finally, a large number of experiments were carried out on four datasets, Indian Pines, Pavia, Salinas, and WHU-Hi-LongKou, which verified that the proposed S2FTNet can provide better classification performance than other the state-of-the-art networks.
In the past, deep learning (DL) technologies have been widely used in hyperspectral image classification tasks. Among them, convolutional neural networks (CNNs) use fixed size receptive field (RF) to obtain spectral and spatial features of hyperspectral images (HSIs), showing great feature extraction capabilities, which are one of the most popular DL frameworks. However, the convolution using local extraction and global parameter sharing mechanism pays more attention to spatial content information, which changes the spectral sequence information in the learned features. In addition, CNN is difficult to describe the long-distance correlation between HSI pixels and bands. To solve these problems, a spectral-spatial fusion Transformer network (S 2 FTNet) is proposed for the classification of hyperspectral images. Specifically, S 2 FTNet adopts the Transformer framework to build a spatial Transformer module (SpaFormer) and a spectral Transformer module (SpeFormer) to capture image spatial and spectral long-distance dependencies. In addition, an adaptive spectral-spatial fusion mechanism (AS 2 FM) is proposed to effectively fuse the obtained advanced high-level semantic features. Finally, a large number of experiments were carried out on four datasets, Indian Pines, Pavia, Salinas and WHU-Hi-LongKou, which verified that the proposed S 2 FTNet can provide better classification performance than other the state-of-the-art networks.
Author Shi, Cuiping
Liao, Diling
Wang, Liguo
Author_xml – sequence: 1
  givenname: Diling
  orcidid: 0000-0002-8979-5246
  surname: Liao
  fullname: Liao, Diling
  organization: Department of Communication Engineering, Qiqihar university, Qiqihar, China
– sequence: 2
  givenname: Cuiping
  orcidid: 0000-0001-5877-1762
  surname: Shi
  fullname: Shi, Cuiping
  organization: Department of Communication Engineering, Qiqihar university, Qiqihar, China
– sequence: 3
  givenname: Liguo
  orcidid: 0000-0001-9373-6233
  surname: Wang
  fullname: Wang, Liguo
  organization: College of Information and Communication Engineering, Dalian Nationalities University, Dalian, China
BookMark eNp9kEtLAzEUhYMo2FZ_gOAi4HpqHpPXshT7gKJgx3XIpImkTmfGZIr03zu1XYgLN_dy4Xzncs4QXNZN7QC4w2iMMVKPxfx1PSaI0DElkiuGLsAAMyYzxPP8EgwQVjwjUpFrMExpixDOGRYDUEzgunW2i6bK1q3pgqngbJ9CU8Mimjr5Ju5chM-u-2riB-xPuDi0LqYzBJc78-7gtDIpBR9s79DUN-DKmyq52_MegbfZUzFdZKuX-XI6WWWWqLzLSoSxxGzjifK0n9YTSnOSl8SUzgqpSlZyaYQnWClhypIbQq2ggiurNoLTEXg4-bax-dy71Olts491_1ITSTEjBDHZq_BJZWOTUnRetzHsTDxojPSxPH0sTx_L0-fyekb8YWzofrL1oUP1L3l_IoNz7tcnzKlglH4Dma1_Gg
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_JSTARS_2024_3383854
crossref_primary_10_3389_fonc_2024_1469293
crossref_primary_10_1109_LGRS_2024_3367171
crossref_primary_10_3390_rs16122152
crossref_primary_10_1109_JSTARS_2024_3432743
crossref_primary_10_1109_TGRS_2024_3493387
crossref_primary_10_1109_TIP_2025_3533205
crossref_primary_10_1109_TGRS_2024_3510625
crossref_primary_10_1109_TGRS_2024_3427769
crossref_primary_10_3390_rs16244653
crossref_primary_10_1109_TGRS_2024_3364573
crossref_primary_10_3390_rs15133378
crossref_primary_10_1109_TGRS_2024_3374081
crossref_primary_10_3390_rs15133338
Cites_doi 10.1109/TGRS.2020.3015157
10.1109/TGRS.2016.2543748
10.1109/TGRS.2022.3169018
10.1109/TGRS.2018.2871782
10.1109/TPAMI.2019.2913372
10.1109/LGRS.2018.2868841
10.1109/TGRS.2022.3207933
10.1109/TGRS.2013.2264508
10.1109/TNNLS.2021.3112268
10.1109/TGRS.2020.3005623
10.1109/TGRS.2022.3185640
10.1109/JBHI.2019.2905623
10.1109/TGRS.2004.831865
10.1109/LGRS.2019.2918719
10.1109/MGRS.2021.3064051
10.1109/TGRS.2022.3144158
10.1109/JSTARS.2020.2983224
10.1109/TGRS.2022.3202036
10.1109/LGRS.2005.857031
10.1109/LGRS.2021.3069202
10.1109/TCYB.2019.2915094
10.1109/CVPR.2019.00326
10.1109/TGRS.2019.2899129
10.1109/TGRS.2018.2818945
10.1109/LGRS.2005.846011
10.1109/WHISPERS.2016.8071711
10.1109/TGRS.2021.3130716
10.1109/IGARSS.2008.4779333
10.1109/TGRS.2019.2925070
10.1109/TGRS.2022.3196661
10.1109/TGRS.2022.3184117
10.3390/rs11070884
10.1109/TGRS.2022.3196771
10.1109/TGRS.2019.2934760
10.1109/TGRS.2022.3163326
10.1109/TGRS.2020.3015843
10.3390/rs13030498
10.1109/TGRS.2016.2584107
10.1109/TGRS.2021.3062372
10.1109/TGRS.2020.3024258
10.1109/TGRS.2019.2933609
10.1109/TGRS.2018.2860125
10.1155/2015/258619
10.1109/TPAMI.2016.2572683
10.1109/TGRS.2021.3102034
10.1109/CVPR.2016.90
10.1109/TGRS.2021.3115699
10.1109/TGRS.2017.2755542
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
DOI 10.1109/TGRS.2023.3286950
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Aerospace Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 1
ExternalDocumentID 10_1109_TGRS_2023_3286950
10163753
Genre orig-research
GrantInformation_xml – fundername: Heilongjiang Science Foundation Project of China
  grantid: LH2021D022
– fundername: National Natural Science Foundation of China
  grantid: 42271409, 62071084
  funderid: 10.13039/501100001809
GroupedDBID -~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AFRAH
AGQYO
AHBIQ
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
Y6R
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
7UA
8FD
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
ID FETCH-LOGICAL-c294t-b011815df29f3df2cf233424b2abec789b5b68a7f21997abb6a23c73769c9d763
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Mon Jun 30 10:11:20 EDT 2025
Wed Oct 01 02:57:53 EDT 2025
Thu Apr 24 23:10:58 EDT 2025
Wed Aug 27 02:56:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c294t-b011815df29f3df2cf233424b2abec789b5b68a7f21997abb6a23c73769c9d763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5877-1762
0000-0002-8979-5246
0000-0001-9373-6233
PQID 2831522058
PQPubID 85465
PageCount 1
ParticipantIDs ieee_primary_10163753
crossref_primary_10_1109_TGRS_2023_3286950
proquest_journals_2831522058
crossref_citationtrail_10_1109_TGRS_2023_3286950
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
sabour (ref13) 2017
woo (ref35) 2018
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
lin (ref54) 2013
ref8
ref7
chen (ref12) 2017
ref9
ref4
ref3
ref6
ref5
ref40
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
dosovitskiy (ref25) 2020
ref23
ref26
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref31
  doi: 10.1109/TGRS.2020.3015157
– ident: ref27
  doi: 10.1109/TGRS.2016.2543748
– ident: ref38
  doi: 10.1109/TGRS.2022.3169018
– ident: ref24
  doi: 10.1109/TGRS.2018.2871782
– ident: ref34
  doi: 10.1109/TPAMI.2019.2913372
– year: 2020
  ident: ref25
  article-title: An image is worth 16×16 words: Transformers for image recognition at scale
  publication-title: arXiv 2010 11929
– start-page: 1
  year: 2017
  ident: ref12
  article-title: Dual path networks
  publication-title: Proc NIPS
– ident: ref43
  doi: 10.1109/LGRS.2018.2868841
– ident: ref53
  doi: 10.1109/TGRS.2022.3207933
– ident: ref42
  doi: 10.1109/TGRS.2013.2264508
– ident: ref23
  doi: 10.1109/TNNLS.2021.3112268
– ident: ref21
  doi: 10.1109/TGRS.2020.3005623
– start-page: 1
  year: 2018
  ident: ref35
  article-title: CBAM: Convolutional block attention module
  publication-title: Proc Eur Conf Comput Vis (ECCV)
– ident: ref52
  doi: 10.1109/TGRS.2022.3185640
– ident: ref1
  doi: 10.1109/JBHI.2019.2905623
– ident: ref8
  doi: 10.1109/TGRS.2004.831865
– ident: ref29
  doi: 10.1109/LGRS.2019.2918719
– ident: ref3
  doi: 10.1109/MGRS.2021.3064051
– ident: ref47
  doi: 10.1109/TGRS.2022.3144158
– ident: ref6
  doi: 10.1109/JSTARS.2020.2983224
– ident: ref49
  doi: 10.1109/TGRS.2022.3202036
– year: 2017
  ident: ref13
  article-title: Dynamic routing between capsules
  publication-title: arXiv 1710 09829
– ident: ref10
  doi: 10.1109/LGRS.2005.857031
– ident: ref41
  doi: 10.1109/LGRS.2021.3069202
– ident: ref18
  doi: 10.1109/TCYB.2019.2915094
– ident: ref36
  doi: 10.1109/CVPR.2019.00326
– ident: ref20
  doi: 10.1109/TGRS.2019.2899129
– ident: ref28
  doi: 10.1109/TGRS.2018.2818945
– ident: ref9
  doi: 10.1109/LGRS.2005.846011
– ident: ref4
  doi: 10.1109/WHISPERS.2016.8071711
– ident: ref46
  doi: 10.1109/TGRS.2021.3130716
– ident: ref2
  doi: 10.1109/IGARSS.2008.4779333
– ident: ref15
  doi: 10.1109/TGRS.2019.2925070
– ident: ref50
  doi: 10.1109/TGRS.2022.3196661
– ident: ref30
  doi: 10.1109/TGRS.2022.3184117
– ident: ref37
  doi: 10.3390/rs11070884
– ident: ref51
  doi: 10.1109/TGRS.2022.3196771
– ident: ref7
  doi: 10.1109/TGRS.2019.2934760
– ident: ref22
  doi: 10.1109/TGRS.2022.3163326
– year: 2013
  ident: ref54
  article-title: Network in network
  publication-title: arXiv 1312 4400
– ident: ref19
  doi: 10.1109/TGRS.2020.3015843
– ident: ref45
  doi: 10.3390/rs13030498
– ident: ref17
  doi: 10.1109/TGRS.2016.2584107
– ident: ref40
  doi: 10.1109/TGRS.2021.3062372
– ident: ref44
  doi: 10.1109/TGRS.2020.3024258
– ident: ref5
  doi: 10.1109/TGRS.2019.2933609
– ident: ref33
  doi: 10.1109/TGRS.2018.2860125
– ident: ref26
  doi: 10.1155/2015/258619
– ident: ref16
  doi: 10.1109/TPAMI.2016.2572683
– ident: ref39
  doi: 10.1109/TGRS.2021.3102034
– ident: ref11
  doi: 10.1109/CVPR.2016.90
– ident: ref48
  doi: 10.1109/TGRS.2021.3115699
– ident: ref32
  doi: 10.1109/TGRS.2017.2755542
– ident: ref14
  doi: 10.1109/TPAMI.2016.2577031
SSID ssj0014517
Score 2.506616
Snippet In the past, deep learning (DL) technologies have been widely used in hyperspectral image classification tasks. Among them, convolutional neural networks...
In the past, deep learning (DL) technologies have been widely used in hyperspectral image (HSI) classification tasks. Among them, convolutional neural networks...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Classification
Convolution
Deep learning
Distance
Feature extraction
fusion
hyperspectral image
Hyperspectral imaging
Image classification
long-distance dependence
Machine learning
Modules
Neural networks
Principal component analysis
Receptive field
Semantics
Task analysis
Transformers
Title A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
URI https://ieeexplore.ieee.org/document/10163753
https://www.proquest.com/docview/2831522058
Volume 61
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4gaAHP-bE6ZQcPAntujRpk-MQ5_Swg3awW2my9KJusrUX_3rz0laGongpLSQl9Pf68vK-fgDXRsXK0Jh7dnMOPKbl0MtigQHXRaR57kgLMdtiGk1m7HHO53WxuquFMca45DPj462L5S9WukRX2QBPmqG1r1vQikVUFWt9hQwYH9a10ZFnTxG0DmEOAzlI7p-efeQJ90MqIok19lubkGNV-aGK3f4yPoRps7IqreTFLwvl649vTRv_vfQjOKgtTTKqROMYdsyyA_tb_Qc7sOvyP_XmBJIRQSZ6dHt4yFJspZKMS_SkkaQxbc2aTKukcWIfycSeYKtCTTuJPLxZxUQcxSYmHzm8uzAb3yW3E68mXPA0lazwlCtD5Yucyjy0V53TMGSUKZpZqGMhFVeRyOKcYnpKplSU0VDHVkdJLRdWU51Ce7lamjMgTFAlQ8GsjAQsz3MZGM7DSCgslI2Z6kHQIJDquhs5kmK8pu5UEsgUQUsRtLQGrQc3X1Peq1Ycfw3uIghbA6vv34N-g3Na_62b1JpY1oyhARfnv0y7gD18e-V76UO7WJfm0lojhbpyUvgJSXbZlA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9RjFEPfiBGFLUHTyYbo2u39UiMCIocdCTclrV0FxUMsIt_vX3dIESj8bJsSZs1-729vr6vH8C1lqHUNOSO2Zw9hynRctIwwoDrOFA8s6SFmG0xCLpD9jDio7JY3dbCaK1t8pl28dbG8sdTlaOrrIknTd_Y15uwxRljvCjXWgUNGG-V1dGBY84RtAxitjzRjO-fX1xkCnd9GgUCq-zXtiHLq_JDGdsdpnMAg-XaisSSVzdfSFd9fmvb-O_FH8J-aWuSdiEcR7ChJ1XYW-tAWIVtmwGq5scQtwly0aPjw0GeYiOXpJOjL43ES-NWz8igSBsn5pF0zRm2KNU0k0jv3agmYkk2Mf3IIl6DYecuvu06JeWCo6hgC0faQlQ-zqjIfHNVGfV9RpmkqQE7jITkMojSMKOYoJJKGaTUV6HRUkKJsdFVJ1CZTCf6FAiLqBR-xIyUeCzLMuFpzv0gklgqGzJZB2-JQKLKfuRIi_GW2HOJJxIELUHQkhK0OtyspnwUzTj-GlxDENYGFt-_Do0lzkn5v84TY2QZQ4Z6PDr7ZdoV7HTjp37S7w0ez2EX31R4YhpQWcxyfWFsk4W8tBL5BdgO3OE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral%E2%80%93Spatial+Fusion+Transformer+Network+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liao%2C+Diling&rft.au=Shi%2C+Cuiping&rft.au=Wang%2C+Liguo&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3286950&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon