A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification
In the past, deep learning (DL) technologies have been widely used in hyperspectral image classification tasks. Among them, convolutional neural networks (CNNs) use fixed size receptive field (RF) to obtain spectral and spatial features of hyperspectral images (HSIs), showing great feature extractio...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 61; p. 1 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2023.3286950 |
Cover
| Abstract | In the past, deep learning (DL) technologies have been widely used in hyperspectral image classification tasks. Among them, convolutional neural networks (CNNs) use fixed size receptive field (RF) to obtain spectral and spatial features of hyperspectral images (HSIs), showing great feature extraction capabilities, which are one of the most popular DL frameworks. However, the convolution using local extraction and global parameter sharing mechanism pays more attention to spatial content information, which changes the spectral sequence information in the learned features. In addition, CNN is difficult to describe the long-distance correlation between HSI pixels and bands. To solve these problems, a spectral-spatial fusion Transformer network (S 2 FTNet) is proposed for the classification of hyperspectral images. Specifically, S 2 FTNet adopts the Transformer framework to build a spatial Transformer module (SpaFormer) and a spectral Transformer module (SpeFormer) to capture image spatial and spectral long-distance dependencies. In addition, an adaptive spectral-spatial fusion mechanism (AS 2 FM) is proposed to effectively fuse the obtained advanced high-level semantic features. Finally, a large number of experiments were carried out on four datasets, Indian Pines, Pavia, Salinas and WHU-Hi-LongKou, which verified that the proposed S 2 FTNet can provide better classification performance than other the state-of-the-art networks. |
|---|---|
| AbstractList | In the past, deep learning (DL) technologies have been widely used in hyperspectral image (HSI) classification tasks. Among them, convolutional neural networks (CNNs) use fixed-size receptive field (RF) to obtain spectral and spatial features of HSIs, showing great feature extraction capabilities, which are one of the most popular DL frameworks. However, the convolution using local extraction and global parameter sharing mechanism pays more attention to spatial content information, which changes the spectral sequence information in the learned features. In addition, CNN is difficult to describe the long-distance correlation between HSI pixels and bands. To solve these problems, a spectral–spatial fusion Transformer network (S2FTNet) is proposed for the classification of HSIs. Specifically, S2FTNet adopts the Transformer framework to build a spatial Transformer module (SpaFormer) and a spectral Transformer module (SpeFormer) to capture image spatial and spectral long-distance dependencies. In addition, an adaptive spectral–spatial fusion mechanism (AS2FM) is proposed to effectively fuse the obtained advanced high-level semantic features. Finally, a large number of experiments were carried out on four datasets, Indian Pines, Pavia, Salinas, and WHU-Hi-LongKou, which verified that the proposed S2FTNet can provide better classification performance than other the state-of-the-art networks. In the past, deep learning (DL) technologies have been widely used in hyperspectral image classification tasks. Among them, convolutional neural networks (CNNs) use fixed size receptive field (RF) to obtain spectral and spatial features of hyperspectral images (HSIs), showing great feature extraction capabilities, which are one of the most popular DL frameworks. However, the convolution using local extraction and global parameter sharing mechanism pays more attention to spatial content information, which changes the spectral sequence information in the learned features. In addition, CNN is difficult to describe the long-distance correlation between HSI pixels and bands. To solve these problems, a spectral-spatial fusion Transformer network (S 2 FTNet) is proposed for the classification of hyperspectral images. Specifically, S 2 FTNet adopts the Transformer framework to build a spatial Transformer module (SpaFormer) and a spectral Transformer module (SpeFormer) to capture image spatial and spectral long-distance dependencies. In addition, an adaptive spectral-spatial fusion mechanism (AS 2 FM) is proposed to effectively fuse the obtained advanced high-level semantic features. Finally, a large number of experiments were carried out on four datasets, Indian Pines, Pavia, Salinas and WHU-Hi-LongKou, which verified that the proposed S 2 FTNet can provide better classification performance than other the state-of-the-art networks. |
| Author | Shi, Cuiping Liao, Diling Wang, Liguo |
| Author_xml | – sequence: 1 givenname: Diling orcidid: 0000-0002-8979-5246 surname: Liao fullname: Liao, Diling organization: Department of Communication Engineering, Qiqihar university, Qiqihar, China – sequence: 2 givenname: Cuiping orcidid: 0000-0001-5877-1762 surname: Shi fullname: Shi, Cuiping organization: Department of Communication Engineering, Qiqihar university, Qiqihar, China – sequence: 3 givenname: Liguo orcidid: 0000-0001-9373-6233 surname: Wang fullname: Wang, Liguo organization: College of Information and Communication Engineering, Dalian Nationalities University, Dalian, China |
| BookMark | eNp9kEtLAzEUhYMo2FZ_gOAi4HpqHpPXshT7gKJgx3XIpImkTmfGZIr03zu1XYgLN_dy4Xzncs4QXNZN7QC4w2iMMVKPxfx1PSaI0DElkiuGLsAAMyYzxPP8EgwQVjwjUpFrMExpixDOGRYDUEzgunW2i6bK1q3pgqngbJ9CU8Mimjr5Ju5chM-u-2riB-xPuDi0LqYzBJc78-7gtDIpBR9s79DUN-DKmyq52_MegbfZUzFdZKuX-XI6WWWWqLzLSoSxxGzjifK0n9YTSnOSl8SUzgqpSlZyaYQnWClhypIbQq2ggiurNoLTEXg4-bax-dy71Olts491_1ITSTEjBDHZq_BJZWOTUnRetzHsTDxojPSxPH0sTx_L0-fyekb8YWzofrL1oUP1L3l_IoNz7tcnzKlglH4Dma1_Gg |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_JSTARS_2024_3383854 crossref_primary_10_3389_fonc_2024_1469293 crossref_primary_10_1109_LGRS_2024_3367171 crossref_primary_10_3390_rs16122152 crossref_primary_10_1109_JSTARS_2024_3432743 crossref_primary_10_1109_TGRS_2024_3493387 crossref_primary_10_1109_TIP_2025_3533205 crossref_primary_10_1109_TGRS_2024_3510625 crossref_primary_10_1109_TGRS_2024_3427769 crossref_primary_10_3390_rs16244653 crossref_primary_10_1109_TGRS_2024_3364573 crossref_primary_10_3390_rs15133378 crossref_primary_10_1109_TGRS_2024_3374081 crossref_primary_10_3390_rs15133338 |
| Cites_doi | 10.1109/TGRS.2020.3015157 10.1109/TGRS.2016.2543748 10.1109/TGRS.2022.3169018 10.1109/TGRS.2018.2871782 10.1109/TPAMI.2019.2913372 10.1109/LGRS.2018.2868841 10.1109/TGRS.2022.3207933 10.1109/TGRS.2013.2264508 10.1109/TNNLS.2021.3112268 10.1109/TGRS.2020.3005623 10.1109/TGRS.2022.3185640 10.1109/JBHI.2019.2905623 10.1109/TGRS.2004.831865 10.1109/LGRS.2019.2918719 10.1109/MGRS.2021.3064051 10.1109/TGRS.2022.3144158 10.1109/JSTARS.2020.2983224 10.1109/TGRS.2022.3202036 10.1109/LGRS.2005.857031 10.1109/LGRS.2021.3069202 10.1109/TCYB.2019.2915094 10.1109/CVPR.2019.00326 10.1109/TGRS.2019.2899129 10.1109/TGRS.2018.2818945 10.1109/LGRS.2005.846011 10.1109/WHISPERS.2016.8071711 10.1109/TGRS.2021.3130716 10.1109/IGARSS.2008.4779333 10.1109/TGRS.2019.2925070 10.1109/TGRS.2022.3196661 10.1109/TGRS.2022.3184117 10.3390/rs11070884 10.1109/TGRS.2022.3196771 10.1109/TGRS.2019.2934760 10.1109/TGRS.2022.3163326 10.1109/TGRS.2020.3015843 10.3390/rs13030498 10.1109/TGRS.2016.2584107 10.1109/TGRS.2021.3062372 10.1109/TGRS.2020.3024258 10.1109/TGRS.2019.2933609 10.1109/TGRS.2018.2860125 10.1155/2015/258619 10.1109/TPAMI.2016.2572683 10.1109/TGRS.2021.3102034 10.1109/CVPR.2016.90 10.1109/TGRS.2021.3115699 10.1109/TGRS.2017.2755542 10.1109/TPAMI.2016.2577031 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| DOI | 10.1109/TGRS.2023.3286950 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 1 |
| ExternalDocumentID | 10_1109_TGRS_2023_3286950 10163753 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Heilongjiang Science Foundation Project of China grantid: LH2021D022 – fundername: National Natural Science Foundation of China grantid: 42271409, 62071084 funderid: 10.13039/501100001809 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AFRAH AGQYO AHBIQ AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS F5P HZ~ IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 Y6R 5VS AAYXX AETIX AGSQL AI. AIBXA CITATION EJD H~9 IBMZZ ICLAB IFJZH VH1 7UA 8FD C1K F1W FR3 H8D H96 KR7 L.G L7M |
| ID | FETCH-LOGICAL-c294t-b011815df29f3df2cf233424b2abec789b5b68a7f21997abb6a23c73769c9d763 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Mon Jun 30 10:11:20 EDT 2025 Wed Oct 01 02:57:53 EDT 2025 Thu Apr 24 23:10:58 EDT 2025 Wed Aug 27 02:56:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c294t-b011815df29f3df2cf233424b2abec789b5b68a7f21997abb6a23c73769c9d763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-5877-1762 0000-0002-8979-5246 0000-0001-9373-6233 |
| PQID | 2831522058 |
| PQPubID | 85465 |
| PageCount | 1 |
| ParticipantIDs | ieee_primary_10163753 crossref_primary_10_1109_TGRS_2023_3286950 proquest_journals_2831522058 crossref_citationtrail_10_1109_TGRS_2023_3286950 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 sabour (ref13) 2017 woo (ref35) 2018 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 lin (ref54) 2013 ref8 ref7 chen (ref12) 2017 ref9 ref4 ref3 ref6 ref5 ref40 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 dosovitskiy (ref25) 2020 ref23 ref26 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref31 doi: 10.1109/TGRS.2020.3015157 – ident: ref27 doi: 10.1109/TGRS.2016.2543748 – ident: ref38 doi: 10.1109/TGRS.2022.3169018 – ident: ref24 doi: 10.1109/TGRS.2018.2871782 – ident: ref34 doi: 10.1109/TPAMI.2019.2913372 – year: 2020 ident: ref25 article-title: An image is worth 16×16 words: Transformers for image recognition at scale publication-title: arXiv 2010 11929 – start-page: 1 year: 2017 ident: ref12 article-title: Dual path networks publication-title: Proc NIPS – ident: ref43 doi: 10.1109/LGRS.2018.2868841 – ident: ref53 doi: 10.1109/TGRS.2022.3207933 – ident: ref42 doi: 10.1109/TGRS.2013.2264508 – ident: ref23 doi: 10.1109/TNNLS.2021.3112268 – ident: ref21 doi: 10.1109/TGRS.2020.3005623 – start-page: 1 year: 2018 ident: ref35 article-title: CBAM: Convolutional block attention module publication-title: Proc Eur Conf Comput Vis (ECCV) – ident: ref52 doi: 10.1109/TGRS.2022.3185640 – ident: ref1 doi: 10.1109/JBHI.2019.2905623 – ident: ref8 doi: 10.1109/TGRS.2004.831865 – ident: ref29 doi: 10.1109/LGRS.2019.2918719 – ident: ref3 doi: 10.1109/MGRS.2021.3064051 – ident: ref47 doi: 10.1109/TGRS.2022.3144158 – ident: ref6 doi: 10.1109/JSTARS.2020.2983224 – ident: ref49 doi: 10.1109/TGRS.2022.3202036 – year: 2017 ident: ref13 article-title: Dynamic routing between capsules publication-title: arXiv 1710 09829 – ident: ref10 doi: 10.1109/LGRS.2005.857031 – ident: ref41 doi: 10.1109/LGRS.2021.3069202 – ident: ref18 doi: 10.1109/TCYB.2019.2915094 – ident: ref36 doi: 10.1109/CVPR.2019.00326 – ident: ref20 doi: 10.1109/TGRS.2019.2899129 – ident: ref28 doi: 10.1109/TGRS.2018.2818945 – ident: ref9 doi: 10.1109/LGRS.2005.846011 – ident: ref4 doi: 10.1109/WHISPERS.2016.8071711 – ident: ref46 doi: 10.1109/TGRS.2021.3130716 – ident: ref2 doi: 10.1109/IGARSS.2008.4779333 – ident: ref15 doi: 10.1109/TGRS.2019.2925070 – ident: ref50 doi: 10.1109/TGRS.2022.3196661 – ident: ref30 doi: 10.1109/TGRS.2022.3184117 – ident: ref37 doi: 10.3390/rs11070884 – ident: ref51 doi: 10.1109/TGRS.2022.3196771 – ident: ref7 doi: 10.1109/TGRS.2019.2934760 – ident: ref22 doi: 10.1109/TGRS.2022.3163326 – year: 2013 ident: ref54 article-title: Network in network publication-title: arXiv 1312 4400 – ident: ref19 doi: 10.1109/TGRS.2020.3015843 – ident: ref45 doi: 10.3390/rs13030498 – ident: ref17 doi: 10.1109/TGRS.2016.2584107 – ident: ref40 doi: 10.1109/TGRS.2021.3062372 – ident: ref44 doi: 10.1109/TGRS.2020.3024258 – ident: ref5 doi: 10.1109/TGRS.2019.2933609 – ident: ref33 doi: 10.1109/TGRS.2018.2860125 – ident: ref26 doi: 10.1155/2015/258619 – ident: ref16 doi: 10.1109/TPAMI.2016.2572683 – ident: ref39 doi: 10.1109/TGRS.2021.3102034 – ident: ref11 doi: 10.1109/CVPR.2016.90 – ident: ref48 doi: 10.1109/TGRS.2021.3115699 – ident: ref32 doi: 10.1109/TGRS.2017.2755542 – ident: ref14 doi: 10.1109/TPAMI.2016.2577031 |
| SSID | ssj0014517 |
| Score | 2.506616 |
| Snippet | In the past, deep learning (DL) technologies have been widely used in hyperspectral image classification tasks. Among them, convolutional neural networks... In the past, deep learning (DL) technologies have been widely used in hyperspectral image (HSI) classification tasks. Among them, convolutional neural networks... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Artificial neural networks Classification Convolution Deep learning Distance Feature extraction fusion hyperspectral image Hyperspectral imaging Image classification long-distance dependence Machine learning Modules Neural networks Principal component analysis Receptive field Semantics Task analysis Transformers |
| Title | A Spectral-Spatial Fusion Transformer Network for Hyperspectral Image Classification |
| URI | https://ieeexplore.ieee.org/document/10163753 https://www.proquest.com/docview/2831522058 |
| Volume | 61 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH-4gaAHP-bE6ZQcPAntujRpk-MQ5_Swg3awW2my9KJusrUX_3rz0laGongpLSQl9Pf68vK-fgDXRsXK0Jh7dnMOPKbl0MtigQHXRaR57kgLMdtiGk1m7HHO53WxuquFMca45DPj462L5S9WukRX2QBPmqG1r1vQikVUFWt9hQwYH9a10ZFnTxG0DmEOAzlI7p-efeQJ90MqIok19lubkGNV-aGK3f4yPoRps7IqreTFLwvl649vTRv_vfQjOKgtTTKqROMYdsyyA_tb_Qc7sOvyP_XmBJIRQSZ6dHt4yFJspZKMS_SkkaQxbc2aTKukcWIfycSeYKtCTTuJPLxZxUQcxSYmHzm8uzAb3yW3E68mXPA0lazwlCtD5Yucyjy0V53TMGSUKZpZqGMhFVeRyOKcYnpKplSU0VDHVkdJLRdWU51Ce7lamjMgTFAlQ8GsjAQsz3MZGM7DSCgslI2Z6kHQIJDquhs5kmK8pu5UEsgUQUsRtLQGrQc3X1Peq1Ycfw3uIghbA6vv34N-g3Na_62b1JpY1oyhARfnv0y7gD18e-V76UO7WJfm0lojhbpyUvgJSXbZlA |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9RjFEPfiBGFLUHTyYbo2u39UiMCIocdCTclrV0FxUMsIt_vX3dIESj8bJsSZs1-729vr6vH8C1lqHUNOSO2Zw9hynRctIwwoDrOFA8s6SFmG0xCLpD9jDio7JY3dbCaK1t8pl28dbG8sdTlaOrrIknTd_Y15uwxRljvCjXWgUNGG-V1dGBY84RtAxitjzRjO-fX1xkCnd9GgUCq-zXtiHLq_JDGdsdpnMAg-XaisSSVzdfSFd9fmvb-O_FH8J-aWuSdiEcR7ChJ1XYW-tAWIVtmwGq5scQtwly0aPjw0GeYiOXpJOjL43ES-NWz8igSBsn5pF0zRm2KNU0k0jv3agmYkk2Mf3IIl6DYecuvu06JeWCo6hgC0faQlQ-zqjIfHNVGfV9RpmkqQE7jITkMojSMKOYoJJKGaTUV6HRUkKJsdFVJ1CZTCf6FAiLqBR-xIyUeCzLMuFpzv0gklgqGzJZB2-JQKLKfuRIi_GW2HOJJxIELUHQkhK0OtyspnwUzTj-GlxDENYGFt-_Do0lzkn5v84TY2QZQ4Z6PDr7ZdoV7HTjp37S7w0ez2EX31R4YhpQWcxyfWFsk4W8tBL5BdgO3OE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral%E2%80%93Spatial+Fusion+Transformer+Network+for+Hyperspectral+Image+Classification&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Liao%2C+Diling&rft.au=Shi%2C+Cuiping&rft.au=Wang%2C+Liguo&rft.date=2023-01-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=61&rft.spage=1&rft_id=info:doi/10.1109%2FTGRS.2023.3286950&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |